

SUMMARY OF OPERATIONS

MONTEREY PENINSULA ASR PROJECT

WATER YEAR 2016

MAY 2018

May 31, 2018 Project No. 12-0046

Monterey Peninsula Water Management District Post Office Box 85 Monterey, California 93942-0085

Attention: Mr. Jonathan Lear, Senior Hydrogeologist

Subject: Monterey Peninsula ASR Project; Water Year 2016 Summary of Operations Report

Dear Jon:

We are transmitting five copies and one digital image (PDF) of the subject report documenting operations of the Monterey Peninsula ASR Project during Water Year 2016 (WY 2016). WY 2016 was a Normal Water Year on the on the Monterey Peninsula, and as a result a commensurately modest volume totaling 699 acre-feet (af) of water was able to be diverted from the Carmel River system for recharge in the Seaside Groundwater Basin (SGB) via the ASR-1, -2, -3 and -4 wells. To date, a total volume of approximately 5,090 af of excess Carmel River system water has been successfully injected, stored, and recovered in the SBG since the ASR project was initiated in 2001.

We appreciate the opportunity to provide ongoing assistance to the District on this important community water-supply project. Please contact us with any questions.

Sincerely,

PUEBLO WATER RESOURCES, INC.

Robert C. Marks, P.G., C.Hg. Principal Hydrogeologist

Stephen P. Tanner, P.E.

Principal Engineer

Copies submitted: 5 hard

1 digital (PDF)

TABLE OF CONTENTS

	Page
INTRODUCTION	1
GENERAL STATEMENTBACKGROUNDPURPOSE AND SCOPE	1 1 2
FINDINGS	3
WY 2016 ASR OPERATIONSGeneral Recharge Procedures	3
Injection Operations Summary	4
Recovery Operations Summary	4 5
WELL PERFORMANCE	5
Injection Performance	5 5
Pumping Performance and Residual Plugging	10
AQUIFER RESPONSE TO INJECTION	11
WATER QUALITY	13
General	13
Injection Water Quality	13
Mixing and Dilution	13
Water Quality During Aquifer Storage	14
Water Quality at Off-Site Monitor Wells	14
Additional Water Quality Observations	15
Water Quality Summary	18
CONCLUSIONS	27
RECOMMENDATIONS	32
CLOSURE	32
REFERENCES	33
TABLES	
1 WY 2016 Injection Operations Summary	4
2 Injection Performance Summary - ASR-1	6
3 Injection Performance Summary - ASR-2	7
4 Injection Performance Summary - ASR-3	8
5 Puming Performance and Residual Plugging Summary	14
6 Aquifer Response Summary	15
7 Summary of WY 2016 Water-Quality Data - Injectate	19
8 Summary of WY 2016 Water-Quality Data - ASR-1	20

TABLE OF CONTENTS (Continued)

	· · · · · · · · · · · · · · · · · · ·	
9	Summary of WY 2016 Water-Quality Data - ASR-2	21
10	Summary of WY 2016 Water-Quality Data - ASR-3	22
11	Summary of WY 2016 Water-Quality Data - ASR-4	23
12	Summary of WY 2016 Water-Quality Data - SM MW-1	24
13	Summary of WY 2016 Water-Quality Data – SMS Deep	25
14	Summary of WY 2016 Water-Quality Data - Off-Site MWs	26
	FIGURES	
Site Lo	ocation Map	1
ASR-1	As-Built Schematic	2
ASR-2	As-Built Schematic	3
ASR-3	As-Built Schematic	4
ASR-4	As-Built Schematic	5
Summa	ary of ASR Operations (WY 2001 – WY 2016)	6
ASR-1	Water-Level Data	7
ASR-2	Water-Level Data	8
ASR-3	Water-Level Data	9
ASR-4	Water-Level Data	10
SMS W	Vater-Level Data	11
SM MV	V-1 Water-Level Data	12
Paralta	a Test Water-Level Data	13
Ord Gr	ove Test Water-Level Data	14
Ord Te	errace Water-Level Data	15
FO-7 V	Vater Level-Data	16
FO-9 V	Vater Level-Data	17
PCA-E	ast Water-Level Data	18
FO-8 V	Vater Level-Data	19
ASR-1	Disinfection By-Products Parameters	20
ASR-2	Disinfection By-Products Parameters	21
ASR-3	Disinfection By-Products Parameters	22
SM MV	V-1 Disinfection By-Products Parameters	23
SMS D	Peep Disinfection By-Products Parameters	24
	(2/11/16 Sample Event)	25
ASR-1	(3/23/16 Sample Event)	26
ASR-1	(Unfiltered Hg vs. Tu)	27
	APPENDICES	
	oata	А
Water	Quality Laboratory Reports	В

INTRODUCTION

GENERAL STATEMENT

Presented in this report is a summary of operations of the Monterey Peninsula Aquifer Storage and Recovery (ASR) Project during Water Year 2016 (WY 2016)¹. During WY 2016, approximately 699 acre-feet (af) of excess flows were diverted from the Carmel River system for recharge, storage, and subsequent recovery in the Seaside Groundwater Basin (SGB). This report presents a summary of the project operations during WY 2016, an assessment of ASR well performance, aquifer response and water-quality data, and provides recommendations for ongoing operation of the project.

BACKGROUND

The Monterey Peninsula ASR Project is cooperatively implemented by the Monterey Peninsula Water Management District (MPWMD or District) and California American Water (CAW) and involves the diversion of excess winter and spring time flows from the Carmel River system for recharge and storage in the Seaside Groundwater Basin (SGB). The excess water is captured by CAW wells in the Carmel Valley during periods when flows in the Carmel River exceed fisheries bypass flow requirements, treated to potable drinking water standards, and then conveyed through CAW's distribution system to ASR facilities in the SGB. Recharge is accomplished via injection of these excess flows into specially designed ASR wells drilled in the SGB. The locations of the ASR wells and associated project monitoring wells in the SGB are shown on **Figure 1**. The recharged water is temporarily stored underground utilizing the available storage space within the aquifer system. During periods of high demand, other existing CAW production wells in the SGB and/or the ASR wells can be used to recover the previously recharged water, which in turn allows for reduced extractions from the Carmel River system during seasonal dry periods.

The District and CAW have been cooperatively developing an ASR project on the Monterey Peninsula since 1996. These efforts have evolved over time, from the performance of various technical feasibility investigations, leading to the construction and testing of pilot- and then full-scale ASR test wells to demonstrate the viability and operational parameters for ASR wells in the SGB. Based on the success of the ASR demonstration testing program, MPWMD and CAW are in the process of implementing a full-scale permanent ASR Project.

The Phase 1 ASR Project includes two ASR wells (ASR-1 and ASR-2) located at the Santa Margarita ASR Facility at 1910 General Jim Moore Blvd. in Seaside. The Phase 1 Project is capable of recharging up to the State Water Resources Control Board (SWRCB) water right² maximum annual diversion limit of 2,426 acre-feet per year (afy) at a combined

¹ Water Year 2016 is the period of October 1, 2015 through September 30, 2016.

² SWRCB water right 20808A for the Phase 1 ASR Project is held jointly by MPWMD and CAW.

permitted injection rate of approximately 3,000 gallons per minute ([gpm] maximum diversion rate of 6.7 cubic feet per second [cfs]), with an average annual yield of approximately 920 afy. ASR-1 is designed for an injection capacity of 1,000 gpm and ASR-2 is designed for an injection capacity of 1,500 gpm. As-built schematics of ASR-1 and ASR-2 are presented on **Figures 2 and 3**, respectively.

The Phase 2 ASR Project includes two ASR wells (ASR-3 and ASR-4) located at the Seaside Middle School (SMS) ASR Facility at 2111 General Jim Moore Blvd. in Seaside. The Phase 2 Project is designed to be capable of recharging up to the SWRCB water right³ maximum annual diversion limit of 2,900 afy at a combined permitted injection rate of approximately 3,600 gpm (maximum diversion rate of 8.0 cfs), with an average annual yield of approximately 1,020 afy. ASR-3 and ASR-4 are both designed for injection capacities of 1,500 gpm. ASR-3 was constructed in 2010, and WY 2012 was the first time injection occurred at this well. ASR-4 was constructed in 2012, and WY 2015 was the first time injection occurred at this well. As-built schematics of ASR-3 and ASR-4 are presented on **Figures 4 and 5**, respectively.

A graphical summary of historical ASR operations in the SGB is shown on **Figure 6**. Shown are the annual injection and recovery volumes since the inception of injection operations at the Santa Margarita ASR Facility in WY 2001 through the current period of WY 2016. Also presented is a delineation of the various phases of project implementation, starting with the Santa Margarita Test Injection Well (SMTIW) in 2001, which became SM ASR-1 as the project transitioned from a testing program to a permanent project in WY 2008 (Phase 1 ASR Project), through construction and operation of the second well (ASR-2) at the facility in 2010. As shown, having the Santa Margarita Facility in full operation with two ASR wells injecting simultaneously since 2010 (combined with above normal rainfall and Carmel River flows during WY 2010 and WY 2011) resulted in significant increases in the volume injected annually. As the two additional Phase 2 Project ASR wells (ASR-3 and ASR-4) come on line in full operation, commensurate increases in annual injection volumes are expected to occur (depending on hydrologic conditions in any given year).

PURPOSE AND SCOPE

The overall purpose of the ongoing ASR program is to recharge the SGB with excess treated Carmel River system water when it is available during wet periods for storage and later extraction (recovery) during dry periods. ASR benefits the resources of both systems by raising water levels in the SGB during the recharge and storage periods and reducing extractions from the Carmel River System during dry periods.

The scope of the ongoing data collection, analysis, and reporting program for the ASR program can be categorized into issues generally associated with:

1) ASR well hydraulics and performance;

-

³ The SWRCB water right 20808C for the Phase 2 ASR Project is held jointly by MPWMD and CAW.

- 2) Aquifer response to injection, and;
- 3) Water-quality issues associated with geochemical interaction and mixing of injected and native groundwaters.

The ongoing data collection and reporting program is intended to monitor and track ASR well performance and aquifer response to injection (both hydraulic and water quality) and to comply with the requirements of the Central Coast Regional Water Quality Control Board (RWQCB) for submitting annual technical reports for the project pursuant to Section 13267 of the California Water Code⁴ and the existing General Waiver for Specific Types of Discharges (Resolution R3-2008-0010).

FINDINGS

WY 2016 ASR OPERATIONS

General Recharge Procedures

Recharge of the SGB occurs via injection of diverted flows from the CAW distribution system into ASR wells during periods of available excess Carmel River system flows. The ASR recharge source water is potable (treated) water provided from the CAW distribution system. The water is currently diverted by various production well sources in Carmel Valley and (after treatment and disinfection to potable standards) then conveyed through the Segunda-Crest pipeline network to the ASR Pipeline in General Jim Moore Blvd and then to the Santa Margarita and Seaside Middle School ASR facilities.

Injection water is introduced into the ASR wells via the pump columns. Injection rates are controlled primarily by downhole flow control valves (FCV's) installed on the pump columns, and secondarily by modulating the automatic pressure control valves (i.e., Cla-Vals) installed on the ASR wellhead piping. Injection flow rates and total injected volumes are measured with rate and totalizing meters at each of the wellheads. Positive gauge pressures are maintained at the wellheads during injection to prevent cascading of water into the wells (which can lead to airbinding). Continuous water-level data at each of the ASR wells are collected with submersible pressure transducer data loggers.

Injection generally occurs at each of the ASR wells on a continuous basis when flows are available, interrupted only for periodic backflushing, which typically occurs on an approximate weekly basis. Most sources of injection water contain trace amounts of solids that slowly accumulate in the pore spaces in the well's gravel pack and adjacent aquifer materials, and the CAW source water is no exception. Periodic backflushing of the ASR wells is therefore necessary to maintain well performance by removing materials deposited/accumulated around

-

⁴ Letter from Roger W. Briggs, Executive Officer of the Central Coast RWQCB, to Joseph Oliver, Water Resources Manager for MPWMD, dated April 29, 2009.

the well bore during injection. The procedure is similar to backwashing a media filter to remove accumulated material deposited during filtration.

The trigger for backflushing occurs when the amount of water-level drawup during injection equals the available drawdown (as measured from the static water level to the top of the pump bowls) in the well for backflushing, or one week of continuous injection, whichever occurs first. This helps to avoid over-pressurization and compression of plugging materials, thereby maximizing the efficiency of backflushing and limiting the amount of residual plugging. This factor is the basis for the maximum recommended drawup levels referenced in the following section.

The general procedure consists of temporarily stopping injection and then pumping the wells at rates of approximately 2,000 to 3,000 gpm (i.e., at least twice the rate of injection) for 3 cycles of 10 minutes resting between 10 minute pumping cycles, and repeated as necessary to effectively remove particulates from the well screen / gravel pack / aquifer matrix. Backflush water is discharged to the Santa Margarita ASR Facility backflush pit, where it percolates back into the groundwater basin.

Injection Operations Summary

A summary of injection operations at the four ASR wells is presented in **Table 1** below. Field data collected during injection operations are presented in **Appendix A**.

	Injection Season		Active	Injection Rate (gpm)			Total Vol
Well	Start	End	Days	Min	Max	Avg	(af)
ASR-1	1/7/16	4/4/16	37	144	1,615	1,002	163.8
ASR-2	1/7/16	4/4/16	55	1,024	2,156	1,510	367.0
ASR-3	1/19/16	4/1/16	42	703	1,008	884	164.0
ASR-4	1/20/16	3/17/16	5	116	349	197	4.4
						Total	699.2

Table 1. WY 2016 Injection Operations Summary

As shown in **Table 1**, recharge operations were performed intermittently in WY 2016 during the period January 7 through April 4, 2016. WY 2016 was classified as a "Normal" Water Year⁵ on the Carmel River with up to 55 days of active injection and a total volume of approximately 699 acre-feet (af) of water was available for diversion from the CAW system for recharge in the SGB. The recharge water was injected at all four ASR wells into the Santa Margarita Sandstone aquifer with per-well average injection rates ranging from approximately 115 to 2,150 gpm (approximately 0.5 to 9.53 acre-feet per day [afd]).

_

⁵ Based on 44,923 af of unimpaired Carmel River flow at the Sleepy Hollow Weir in WY 2016.

It is noted that the variability in injection rates at the ASR wells during the injection season is controlled by various factors, including the number of active sources to the CAW system, customer demands on the CAW system, and the ability of CAW's distribution system to maintain piping pressure at the ASR wellheads.

Water-level data collected at ASR-1, ASR-2, ASR-3 and ASR-4 during WY 2016 are presented in **Figures 7 through 10**, respectively. The water-level data show the response of both ASR-1 and ASR-2 to injection, with maximum water-level drawups of approximately 80 and 110 feet, which were below the maximum recommended drawup levels of approximately 100 and 130 feet, respectively. At ASR-3 the maximum water-level drawup was approximately 115 feet, which was also well below its maximum recommended drawup level of approximately 170 feet. At ASR-4, the limited volume and rates of injection resulted in maximum water-level drawup of approximately 75 feet, well below the maximum recommended of 210 feet. In summary, water levels were effectively maintained below the maximum recommended drawup levels at all ASR wells during WY 2016.

Recovery Operations Summary

When the injected water is recovered via delivery through the CAW system, the recovered water is offset by reduced pumping by CAW from the Carmel River system during the low-flow, high demand periods of the year. During WY 2016, ASR-1 was utilized for recovery of previously injected water. As shown on **Figure 6**, 493 af of recharged water was recovered by ASR-1 into the CAW system during WY 2016.

It is noted that in this context, ASR recovery is essentially an accounting / allocation of CAW's various water rights and pumping from the SGB, and does not represent a "molecule-formolecule" recovery of the injected water. Rather, the volume recharged increases the operational yield of the SGB by the same amount and can be "recovered" by any of CAW's wells in the SGB and / or the ASR wells themselves.

WELL PERFORMANCE

Well performance is generally measured by specific capacity (pumping) and / or specific injectivity (injection), which is the ratio of flow rate (pumping or injection) to water-level change in the well (drawdown or drawup) over a specific elapsed time. The value is typically expressed as gallons per minute per foot of water level change (gpm/ft). The value normalizes well performance by taking into account differing static water levels and flow rates. As such, specific capacity / injectivity data are useful for comparing well performance over time and at differing flow rates. Decreases in specific capacity / injectivity are indicative of decreases in the hydraulic efficiency of a well due to the effects of plugging and/or particle rearrangement.

Injection Performance

Injection performance has been tracked at ASR-1 since the inception of the ASR program in WY 2002 by measurement and comparison of 24-hour injection specific injectivities (a.k.a. injection specific capacity).

ASR-1. A summary of 24-hour specific injectivity for ASR-1 for WY 2002 through 2016 is presented in **Table 2** below:

Table 2. Injection Performance Summary - ASR-1

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY2002					
Beginning Period	1,570	81.7	19.2		FCV not installed yet in WY2002.
Ending Period	1,164	199.8	6.4	-67%	No recovery pumping performed.
WY2003					
Beginning Period	1,070	70.0	15.5		Recovery pumping performed following
Ending Period	1,007	49.7	20.3	+31%	WY2003 Injection
WY2004					
Beginning Period	1,383	183.4	7.5		Recovery pumping performed following
Ending Period	1,072	67.4	15.9	+112%	WY2004 Injection
WY2005					
Beginning Period	1,045	46.6	22.4		Injectate dechlorinated in WY2005. No
Ending Period	976	94.1	10.4	-54%	recovery pumping performed.
WY2006	•				
Beginning Period	1,039	71.5	15.0		Injection procedures consistent and
Ending Period	1,008	62.2	17.5	+17%	performance stable in WY2006. No recovery pumping performed.
WY2007			1	1	
Beginning Period	1,098	92.4	11.9		Only one injection period in WY2007.
Ending Period				<u></u>	No recovery pumping performed.
WY2008					
Beginning Period	979	25.5	38.4		Formal rehabilitation performed prior to
Ending Period	1,063	33.4	31.8	-17%	WY2008 injection
WY 2009	1		•	•	
Beginning Period	1,119	56.1	19.9		Beginning period low specific injectivity due to high plugging rate during initial
Ending Period	1,069	34.3	31.1	+56%	injection period. No recovery pumping performed.
WY 2010					
Beginning Period	1,080	35.6	30.3		Observed decline in performance due
Ending Period	1,326	54.0	24.6	-19%	to residual plugging.
	*	•	•		

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments	
WY 2011						
Beginning Period	1,367	53.0	25.8		Observed decline in performance due	
Ending Period	1,454	63.7	22.8	-10%	to residual plugging.	
WY 2012						
Beginning Period	NA	NA	NA		No injection of this well this year	
Ending Period	NA	NA	NA	NA	No injection at this well this year.	
WY 2013						
Beginning Period	NA	NA	NA		No injection of this well this year	
Ending Period	NA	NA	NA	NA	No injection at this well this year.	
WY 2014						
Beginning Period	NA	NA	NA		No injection of this well this year	
Ending Period	NA	NA	NA	NA	No injection at this well this year.	
WY 2015						
Beginning Period	NA	NA	NA		No beginning period due to datalogger	
Ending Period	1,018	40.7	25.0	NA	malfunction.	
WY 2016					•	
Beginning Period	NA	NA	NA		No beginning period due to	
Ending Period	460	14.4	31.9	NA	datalogger malfunction.	

As shown in **Table 2**, the 24-hour specific injectivity the end of WY 2016 was 31.9 gpm/ft; there are no beginning season data to base calculation of residual plugging that occurred at ASR-1 over the course of the WY 2016 injection season.

ASR-2. A summary of the beginning and ending injection performance at ASR-2 for WY 2010 through WY 2016 is presented in **Table 3** below:

Table 3. Injection Performance Summary - ASR-2

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY 2010					
Beginning Period	1,017	156.5	6.5		Significant residual plugging.
Ending Period	237	85.0	2.8	-57%	Significant residual plugging.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments	
WY 2011						
Beginning Period	1,497	39.5	37.9		Significant improvement as a result	
Ending Period	1,292	34.3	37.7	-0.5%	of well rehabilitation. No residual plugging during year.	
WY 2012						
Beginning Period	1,830	56.1	32.6		Observed decline in performance	
Ending Period	1,817	63.4	28.7	-12%	due to residual plugging.	
WY 2013						
Beginning Period	1,087	32.7	33.2		No residual plugging during year	
Ending Period	1,508	44.2	34.1	+3%	No residual plugging during year.	
WY 2014						
Beginning Period	NA	NA	NA		No initiation of this well this year	
Ending Period	NA	NA	NA	NA	No injection at this well this year.	
WY 2015						
Beginning Period	1,456	38.9	37.4		Observed decline in performance	
Ending Period	1,574	49.1	32.1	-14%	due to residual plugging.	
WY 2016						
Beginning Period	1,270	34.9	36.4		One diamonda halam	
Ending Period	1,620	63.9	25.4	-30%	See discussion below.	

As shown in **Table 3**, the 24-hour specific injectivity at the beginning of WY 2016 was 36.4 gpm/ft and at the end of WY 2016 it was 25.4 gpm/ft, representing a decrease of approximately 30 percent, indicating that significant residual plugging occurred at ASR-2 over the course of the WY 2016 injection season (discussed further in a following section).

ASR-3. A summary of the beginning and ending injection performance at ASR-3 for WY 2013 through WY 2016 is presented in **Table 4** below:

Table 4. Injection Performance Summary – ASR-3

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY 2013					
Beginning Period	1,044	87.0	12.0		Con discussion halou
Ending Period	822	99.6	8.3	-31%	See discussion below.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY 2014					
Beginning Period	NA	NA	NA		No injection at this wall this year
Ending Period	NA	NA	NA	NA	No injection at this well this year.
WY 2015					
Beginning Period	NA	NA	NA		No hogishing pariod data
Ending Period	892	90.3	9.9	NA	No beginning period data.
WY 2016					
Beginning Period	948	83.6	11.3		Can discussion halow
Ending Period	897	74.1	12.1	+7%	See discussion below.

As shown in **Table 4**, the 24-hour specific injectivity at the beginning of WY 2016 was 11.3 gpm/ft and at the end of WY 2016 it was 12.1 gpm/ft, representing a slight increase of approximately 7 percent, indicating that no residual plugging occurred at ASR-3 over the course of the WY 2016 injection season.

ASR-4. There are no 24-hr constant rate injection data for ASR-4 during WY 2016. Rather, injection at ASR-4 during WY 2016 was limited to 5 days of well "conditioning" (4.4 af). This "conditioning" effort consisted of numerous injection and backflushing cycles at relatively low rates and durations, being incrementally increased upon confirmation that well performance was being maintained. The conditioning was performed in an effort to limit the performance decline that has historically been observed at all three previous ASR wells following their initial injection operations (discussed below).

Initial injection was performed at a rate of approximately 260 gpm for 10 minutes, followed by backflushing. The injection rate and duration were incrementally increased over the course of 5 days during WY 2016, up to an injection rate of approximately 1,530 gpm for a maximum duration of 2 hours, followed by backflushing. The specific injectivity during these operations ranged between approximately 54 gpm/ft at the initial low injection rate of approximately 260 gpm to 36 gpm/ft at the ending high rate of 1,530 gpm (the design injection rate is 1,500 gpm). The "conditioning" effort at ASR-4 was considered complete in WY 2016 and formal baseline injection testing is planned for WY 2017.

Injection Performance Summary. The above results indicate a pattern in ASR well performance, with all three ASR wells having experienced comparably significant declines in performance following initial injection, followed by a period of relative stability in performance. It is hypothesized that the observed loss in performance is due to particle rearrangement (mechanical jamming) and/or chemical precipitation, as opposed to the normal and relatively slow plugging caused by particulates. This phenomenon is the reason for the well "conditioning" effort performed at ASR-4 during WY 2015 and WY 2106. It is also noted that while ASR-3 has experienced a significant decline in performance following its initial injection, (which limits its

injection capacity to approximately 1,000 gpm,) it is expected that rehabilitation will result in significantly improved performance as has been observed at both ASR-1 and ASR-2.

Pumping Performance and Residual Plugging

Experience at injection well sites around the world shows that all injection wells are subject to some amount of plugging, because no water source is completely free of particulates, bionutrients, or oxidants, all of which can contribute to well plugging; the CAW source water is no exception. During injection, trace amounts of suspended solids are continually being deposited in the gravel pack and aquifer pore spaces, much as a media filter captures particulates in the filter bed. The effect of plugging is to impede the flow of water from the injection well into the aquifer, causing increased injection heads in the well to maintain a given injection rate, or reduced injection rates at a given head level. Well plugging reduces injection and extraction capacity, and can result in decreased useful well life if not mitigated.

Relative measurements of the particulate matter in the injectate have historically been made at the Santa Margarita site through silt density index (SDI) testing during injection. The SDI was originally developed to quantitatively assess particulate concentrations in reverse-osmosis feed waters. The SDI test involves pressure filtration of source water through a 0.45-micron membrane, and observation of the decrease in flow rate through the membrane over time; the resulting (dimensionless) value of SDI is used as a comparative value for tracking relative declines in well plugging rates associated with particulate plugging during an injection season (i.e., plugging rates tend to increase directly with SDI). During WY 2016 injection operations, SDI values at the beginning of the injection season were as high as 5.2 and fell to approximately 1.3 after the first month of injection.

Following routine backflushing operations and periods of water-level recovery, controlled 10-minute specific-capacity tests are typically performed to track well pumping performance, similar to the tracking of injection performance from 24-hour specific injectivity discussed above. Residual plugging is the plugging that remains following backflush pumping. Residual plugging increases drawdown during pumping and drawup during injection, and is manifested as declining specific capacity / injectivity. The presence of residual plugging is indicative of incomplete removal of plugging particulates during backflushing and has the cumulative effect of reducing well performance and capacity over time.

As discussed previously, routine 10-minute specific capacity tests were performed at the ASR wells as part of backflushing events during WY 2016. Presented in **Table 8** below is a summary of the residual plugging calculations for the ASR wells during WY 2016.

Table 5. Pumping Performance and Residual Plugging Summary

		Pumping	10-min	10-min	Normaliz-	Normalized	Residual
		Rate	Drawdown	Q/s ¹	ation	Drawdown ²	Plugging
Well	Test	(gpm)	(ft)	(gpm/ft)	Ratio ²	(ft)	(ft)
ASR-1	Pre-Injection	3,300	57.5	57.4	0.91	52.3	
ASK-1	Post-Injection	3,300	89.1	37.0	0.91	81.0	28.7
ASR-2	Pre-Injection	2,800	66.5	42.1	1.07	71.3	
ASK-2	Post-Injection	2,800	97.7	28.7	1.07	104.7	33.4
ASR-3	Pre-Injection	1,800	106.6	16.9	1.11	118.4	
ASK-3	Post-Injection	2,100	156.3	13.4	0.95	148.9	30.4
ASR-4	Pre-Injection	3,200	121.4	26.4	0.94	113.8	
ASK-4	Post-Injection	3,300	147.2	22.4	0.91	133.8	20.0
Notes:							
1 - Specific (Capacity. Ratio of pum	ping rate to drav	w dow n.				
2 - Normalize	ed based on ratio of 3,0	000 gpm to actu	al test pumping r	ate for ASR-1,	-2 and -4. Base	ed on 2,000 gpm fo	or ASR-3.

As shown on **Figures 7 through 10**, injection water levels were maintained below the recommended maximum available drawup levels at all four ASR wells during WY 2016; however, as shown in **Table 8**, all four wells experienced residual plugging ranging between approximately 20 and 35 feet and commensurate declines in pumping specific capacity. These results indicate that more intensive backflushing (e.g., multiple backflush cycles as opposed to a single cycle) should be implemented at all four ASR wells during WY 2017 to limit residual plugging and maintain performance.

AQUIFER RESPONSE TO INJECTION

The response of the regional aquifer system to injection has been monitored since the SMTIW project was initiated in WY 2002. Submersible water-level transducer/data logger units have been installed at seven offsite monitoring well locations in the SGB as well as three onsite monitoring wells. The locations of each offsite monitoring well are shown on **Figure 1**, and water-level hydrographs for the monitoring wells during WY 2016 are graphically presented on **Figures 11 through 19**. A summary of the regional water-level observations during the WY 2016 injection season is presented in **Table 9** below.

Table 6. Aquifer Response Summary

Well ID	Distance from Nearest Active ASR Well (feet)	Aquifer Monitored	Fig. No.	Pre- Injection DTW (ft. bgs)	Shallowest Injection DTW (ft. bgs)	Maximum Drawup Response (ft.)
SMS (Shallow)	25 (SMS ASR-3)	QTp	11	No E	Discernable Res	sponse
SMS (Deep)	25 (SIVIS ASK-3)	Tsm	''	No Data	314.5	NA
SM MW-1	190 (SM ASR-2)	Tsm	12	345.4	316.8	28.6
Paralta Test	650 (SM ASR-2)	QTp & Tsm	13	335.8	320.6	15.2
Ord Grove Test	1,820 (SM ASR-2)	QTp & Tsm	14	No Discernable Response		
Ord Terrace (Shallow)	2,550 (SM ASR-2)	Tsm	15	No E	Discernable Res	ponse
FO-7 (Shallow)	2.700 (CMC ACD 2)	QTp	16	No E	Discernable Res	ponse
FO-7 (Deep)	3,700 (SMS ASR-3)	Tsm	16	492.4	478.1	14.3
FO-9 (Deep)	6,130 (SMS ASR-3)	Tsm	17	135.6	123.9	11.7
PCA East (Shallow)	C 200 (CMC ACD 2)	QTp	40	No E	Discernable Res	ponse
PCA East (Deep)	6,200 (SMS ASR-3)	Tsm	18	89.4	77.3	12.1
FO-8 (Deep)	6,450 (SMS ASR-3)	Tsm	19	399.5	388.1	11.4

Notes:

QTp - Quaternary / Tertiary-age Paso Robles Formation aquifer

Tsm - Tertiary-age Santa Margarita Sandstone aquifer

DTW - Depth to Water

As shown on the water-level hydrographs, water levels in the Santa Margarita Sandstone (Tsm) aquifer at the start of the WY 2016 recharge season ranged between approximately 6 to 22 feet below sea level. Positive response to injection during WY 2016 was observed at 7 of the 9 monitoring wells completed in the Santa Margarita Sandstone aquifer, with apparent water-level responses ranging between approximately 11 to 29 feet, with levels decreasing with distance from the ASR wells, which is the typical and expected aquifer response to hydraulic stresses (i.e., injection or pumping). The WY 2016 responses are comparable to those observed in previous water years.

The available water-level data also continue to show that at the Tsm-only monitoring wells, water levels consistently remained below sea level throughout the injection season. Under these water-level conditions, little to no offshore groundwater flow from the Tsm aquifer would be expected to occur and any "losses" associated with ASR project operations from water potentially migrating offshore are highly unlikely.

The limited available data for wells completed in the Paso Robles Formation (QTp) also continue to show no discernible response to injection into the Tsm, and water levels in this aquifer remained above the water levels in the underlying Tsm aquifer during WY 2016. Under these water-level conditions, little to no flow of water from the Tsm to the QTp aquifer would be expected to occur.

It is further noted that the Ord Grove Test and Ord Terrace monitoring wells (refer to **Figures 14 and 15**) continue to show no discernible response to injection operations, as has been observed during previous injection seasons. Most project monitoring wells show no discernible response to the pumping of CAW's Ord Grove production well. These observations suggest that the Ord Terrace Fault or a parallel branch of the fault may represent a hydraulic barrier in the Tsm aquifer.

WATER QUALITY

General

Source water for injection is supplied from the CAW municipal water system, primarily from Carmel River system wells which are treated at the CAW Begonia Iron Removal Plant (BIRP) for iron and manganese removal. The BIRP water is also disinfected and maintains a free chlorine residual. A phosphate-based corrosion inhibitor (Zinc Orthophosphate) is also added to the filtered water before entering the CAW distribution system. The finished product water meets all California Department of Public Health (CADPH) Primary and Secondary water quality standards.

As in previous years, water quality was routinely monitored at the ASR well sites during WY 2016 injection and aquifer storage operations. Far-field water quality was also monitored at the CAW Paralta production well and at the PCE-East Deep monitoring well (PCA-E Deep). Summaries of the collected water-quality data during WY 2016 are presented in **Tables 10 through 18** below. Analytic laboratory reports are presented in **Appendix B**. A discussion of the water-quality data collected during WY 2016 is presented below.

Injection Water Quality

Injection water quality from the CAW system during WY 2016 is presented in **Table 11** below; the data show injection water quality was typical of recent years. Levels of Trihalomethanes (THM) and Haloacetic Acid (HAA) compounds, as well as bionutrients (oxygen, nitrogen, phosphorous, and organic carbon), were all present at levels similar to previous years.

Mixing and Dilution

Injection operations have occurred over the past 15 Water Years (injection began at ASR-1 in WY 2002), an as a result, the proximate groundwater quality in the vicinity of the ASR well field has been altered from the natural subsurface conditions, making a clear distinction between "native" and "non-native" water quality both complex and somewhat subjective. In the past, the most illustrative basis for discussing water-quality changes for the ASR project was to consider groundwater conditions immediately prior to the injection season as a baseline; however, establishing baseline conditions is more complex now that injection is occurring at multiple wells. Because the issue of precisely defining baseline water-quality conditions is increasingly difficult as injection occurs at multiple wells with varying amounts of recovery pumping between injection seasons, the practice has been dropped in this and future reports.

Water Quality During Aquifer Storage

Tables 12 through 15 present summaries of water-quality data collected at the four ASR wells. Tables 16 and 17 present similar data collected at the on-site monitoring wells SM MW-1 and SMS Deep, respectively; and Table 18 presents the water-quality data collected at the off-site monitoring wells (PCA-E Deep and Paralta). Data for the ASR wells include baseline water quality taken prior to WY 2016 injection (end of WY 2015 Storage) and stored water quality (WY 2016 Storage) collected periodically from the aquifer after WY 2016 injection operations were terminated.

Review of water-quality parameters gathered at the ASR wells, including major anions and cations, redox potential (ORP), and conductivity all showed similar effects of dilution / intermixing of injected water with native groundwater during aquifer storage. As found in previous ASR operations at the site, the most significant water-quality changes observed during aquifer storage other than simple dilution/mixing were redox-related (and likely biologically mediated) reactions; these were primarily evidenced by the degradation of HAA and THM compounds and absence of hydrogen sulfide⁶ even in mixed NGW and injected waters.

Disinfection Byproducts (DBPs) parameters at the on-site wells during WY 2016 are graphically presented on Figures 20 through 24. As shown, THMs at the ASR wells showed their typical initial and significant ingrowth during the storage period, which results from the presence of free chlorine and trace levels of organic carbon in the injected water. THM ingrowth generally peaks in concentration approximately 60 to 120 days after the cessation of injection, followed by a gradual decline during the storage period. After approximately 150 to 180 days of storage, THMs typically degraded to below the initial injection levels. The decline in THMs observed at the ASR and on-site monitoring wells followed the characteristic process: rapid degradation of Bromoform and the highly brominated species with much slower decline in Chloroform. It is noted that THMs were below the Maximum Contaminant Level (MCL) of 80 ug/L throughout WY 2016, with the exception of transiently elevated levels during the peak ingrowth periods, which dropped to below the MCL by the end of the storage season⁷. HAAs also showed their typical pattern of limited (if any) ingrowth during the initial storage period, followed by rapid degradation by the end of the storage season.

Water Quality at Off-Site Monitor Wells

Water-quality data collected from off-site wells in WY 2016 data are presented in Table 18. Samples from PCA-E Deep were collected following the WY 2016 injection season (but were not collected prior for unknown reasons). The absence of DBP's suggest that the influence of recharge operations is negligible to date at this location. Limited data are available from the nearest CAW production well to the ASR wells (i.e., Paralta)8; however, the available

⁶ Low levels of Hydrogen Sulfide are ubiquitous in the Tsm aguifer under natural conditions.

⁷ SMS Deep could not be sampled in the 3rd quarter of 2016 due to a sampling pump malfunction.

⁸ Paralta was not sampled by CAW during WY 2016 in accordance with the SAP for unknown reason(s).

THM data show a potential trend of an increasing contribution of injected water quality over the WY 2016 storage season.

Additional Water Quality Observations

As discussed in the WY 2015 Summary of Operations Report (SOR), at the commencement of WY 2013 recovery pumping of ASR-1, a sample collected by CAW 9 had a Mercury (Hg) concentration of 4 μ g/L, exceeding the State MCL of 2 μ g/L. Although the occurrence of Hg in surface water and groundwater has been documented elsewhere in the Monterey Bay region, the detection of Hg in SGB water was unusual; further investigation of the actual sampling conditions and protocols for that sample were also nonstandard. The results were nonetheless followed up with additional sampling to verify the presence of Hg; the subsequent sampling identified detectable levels of Hg, although below the MCL. The fact that detectable Hg was identified, and at levels above historical NGW and Injectate concentrations led to the development of an in-depth investigation of Hg occurrence at the ASR wells. The origin of the detected Hg above background concentrations could be the result one or more sources, including the following:

- Naturally occurring Hg present in the Santa Margarita Sandstone (Tsm) aquifer mineralogy, which solubilized into the groundwater under natural NGW / Tsm geochemical interaction conditions.
- Hg present in the Carmel River System injection source water that accumulated in the well bore area, similar to the accumulation of other particulate matter present in the Carmel River injectate and CAW conveyance system.
- Solubilization of naturally occurring Hg present in the Tsm minerals, which is the
 result of geochemical interactions between the injection source water, NGW and
 aquifer minerals. Recent mineralogy analyses have identified the presence of trace
 levels of four different sulfide minerals in Tsm cuttings and ASR well backflush
 residue; the speciation of these four minerals are potentially capable of harboring
 elemental Hg within their matrix. Further analysis of these samples is in progress.
- Other anthropogenic sources of Hg in well components or other off-site sources.

Prior to WY 2016, a Supplemental Sampling and Analysis Plan¹⁰ (SSAP) was developed for additional investigation of the Hg occurrence. In addition to the collection of Hg samples utilizing a variety of EPA-approved laboratory methods and detections limits, the suite of analytes included a variety of constituents that are known to affect (or directly react with) Hg and/or Hg compounds. As of this writing, the investigation is ongoing; however, the results of SSAP during WY 2016 provided several initial findings, discussed below:

⁹ Collected on October 24, 2013.

¹⁰ Dated September 4, 2015

WY 2016 Sampling and Analysis Discussion. Additional sampling was performed during the WY 2016 injection season to further assess the correlation between Hg detections and high Turbidity levels, resulting in these additional findings:

- All sample results showed Hg levels below MCL's, with positive correlation between declining turbidity and decreasing Hg levels.
- Additional sampling of CAW source waters from the Begonia Iron Removal Plant (BIRP) indicated detectable Hg in the raw well water plant influent, and in the BIRP plant finished product water. These Hg levels were all far below MCL's, and even below the detection limits of conventional EPA 200.8 analysis methods; the influent Hg detections were in sub-parts-per-trillion levels.

Figure 25 presents a plot of Hg and Turbidity versus time for a series of samples collected on February 11, 2016 at ASR-1 during a backflush event after one week of injection operations at approximately 1,100 gpm. The new triple-surge backflushing procedure was implemented at this time. Samples were collected at 1, 6, 20, and 30 minutes after well startup; the characteristic occurrence of elevated Hg and elevated Turbidity are present, but decline rapidly as the well is flushed. Similar results are presented in **Figure 26**, which presents the results of a similar well backflushing event at ASR-1 on March 23, 2016; again after approximately one week of injection. The same decline in Hg content and Turbidity is observed.

Figure 27 is a summary plot of all Hg and Turbidity data collected to date from the ASR-1 Hg study, showing the correlation between Hg and Turbidity versus time from start of well pumping. The data thus far are strongly suggestive that there is a meaningful correlation between Hg content, Turbidity, and pumping time in the produced water from ASR-1. The possible explanation for this phenomenon is that the trace-level Hg present in the Carmel River System injection source waters is accumulating in the near-well-bore area during injection operations, and is then released when reverse flows associated with backflushing or recovery production occur.

Initial Recommendations for Facility and Operational Improvements. The results of the investigation thus far have identified important issues associated with the occurrence – and mitigation of Hg in the ASR-1 well. The following conclusions and recommendations provided below are based on the results of the investigation thus far:

• Because the occurrence of elevated Hg levels in ASR-1 appears to be directly correlated to elevated turbidity levels in initial well flush waters, the formal adoption of the enhanced well flushing procedure should be made a part of regular well operations both in Injection mode backflushing operations, and in regular production service whenever the well is placed back into service after any idle period. This procedure should consist of performing a series of 3 consecutive short flush episodes instead of a single longer flush period; thusly increasing well bore velocity changes and inducement of reverse flows in the well. This process resulted in lower final turbidities and lower Hg levels overall after well flushing operations were completed.

- As an additional conservative measure, we recommend continuation of periodic (monthly) well backflushing and associated water quality monitoring with the ASR wells during the WY 2017 storage periods to further assess and confirm the data collected thus far regarding the correlation of Hg occurrence with turbidity on initial well flush discharges.
- To ensure compliant water quality once the ASR-1 well is in recovery mode and is
 delivering water directly into the Cal-Am distribution system, the use of Turbidity as a
 surrogate parameter for possible elevated Hg would allow continuous on-line
 monitoring of water quality vis-à-vis the installation of an online Turbidity analyzer on
 the well discharge line that is interlocked to a well shutdown and alarm algorithm in
 the facility PLC/SCADA controls.
- To verify the absence of Hg in produced waters from the well, special sampling is recommended prior to bringing the well back online for production, or whenever the well has been offline for more than one month. The special testing program consists of a series of Hg samples collected at 1, 6, 30 and 60 minutes after initial well startup; these samples will be analyzed by an outside laboratory and results received before the well is placed back into production service.

A revised protocol reflecting the new triple-surge well flushing procedure has been developed and is planned to be adopted for all regular and special operations in WY 2017. The addition of an on-line Turbidity analyzer as discussed above, along with the associated modification of PLC and SCADA system algorithms, are also planned to be implemented to serve as a safeguard against the possible conveyance of turbid (and potentially Hgnoncompliant) waters into the distribution system.

Next Steps. The investigation thus far has established a strong correlation between turbidity in initial flush waters and Hg occurrence at ASR-1, with both parameters declining in the early period of well purging operations. There are currently several additional technical issues that are planned for further investigation in WY 2017, including the following:

- Collection of high-frequency (daily) samples of injectate during the Injection Season to monitor for the presence / absence of Hg in the injected water.
- "Breakthrough" sampling of arrival of injection front from ASR-3 at ASR-4.
- Determination of the precise identification of Hg-bearing particulates (i.e., molecular composition and structure) will be pursued via specialty analytical laboratory methods. This will aid in the understanding of which chemical compounds might be associated with Hg-occurrence. Residue samples collected during the course of the WY 2017 Injection Season are planned for evaluation by the specialty lab to establish if the samples have sufficient quantities of Hg-bearing particulates for this determination.
- Assuming there are suitable quantities of Hg-bearing compounds available that can be identified analytically, this will then be utilized to facilitate refined geochemical

modeling to provide an improved understanding of the geochemical mechanism(s) responsible for Hg-occurrence in the initial flush water samples.

• These recommended steps are intended to facilitate long-term operational improvement considerations for the Aquifer Storage and Recovery program.

As the Hg investigation continues, additional findings, conclusions, and recommendations will be documented in the WY 2017 SOR to facilitate ongoing operation of the ASR project.

Water Quality Summary

Overall, water-quality data from WY 2016 showed no significant deviations from previous years. The only deviation from the norm for the ASR program was the intermittent and transient occurrence of Hg detections as described for the ASR-1 well; however, as discussed above, additional investigation in WY 2017 will be implemented to further investigate the origin of the detected Hg. The most important factors regarding ASR operations to date are that:

- No evidence of adverse geochemical reactions has been observed during aquifer storage (with the exception of near-bore Hg accumulation possibly related to Hg dissolution), and;
- Injection has shown direct and measurable benefit to the basin water quality vis-à-vis
 reductions in salinity, dissolved solids, hardness, and aesthetic parameters such as
 manganese and sulfide ion, which impart color and odor to the consumers' drinking
 water.

These improvements are likely to prevail as ASR operations continue and expand in the future.

Table 7. Summary of WY 2016 Water Quality Data – Injectate

				Results			
Danis de la constante de la co	11-26	DOL	MOI	4/44/40	CAW Injectate	04040	
Parameter	Unit	PQL Sample D	MCL	1/11/16	2/19/16	3/16/16	
Major Cations		Sample D	escription		Injectate		
Calcium	mg/L	0.5		47			
Magnesium	mg/L	0.5		15			
Potasium	mg/L	0.5		3.2			
Sodium	mg/L	0.5		52			
Major Anions	mg/L	0.0		02			
Alkalinity, Total (as CaCO3)	mg/L	2		153			
Chloride	mg/L	1	250	34			
Sulfate	mg/L	1	250	91			
Nitrate (as NO3)	mg/L	1	45	1			
Nitrite (as Nitrogen)	mg/L	1	1	0.3			
General Physical					<u> </u>		
pH	Std Units			7.6			
Specific Conductance (EC)	uS	1	900	603			
Total Dissolved Solids	mg/L	10	500	380			
Metals							
Arsenic (Total)	ug/L	1	10	1		-	
Barium (Total)	ug/L	10	1000	70			
Iron (Dissolved)	ug/L	10		ND			
Iron (Total)	ug/L	10	300	ND			
Lithium	ug/L	1		7			
Manganese (Dissolved)	ug/L	10	_	ND			
Manganese (Total)	ug/L	10	50	ND			
Molybdenum	ug/L	1	1000	3			
Nickel	ug/L	10	100	ND	-		
Selenium Strontium (Total)	ug/L	2	50	4			
Strontium (Total)	ug/L	5 1	30	263 1			
Uranium (by ICP/MS) Vanadium (Total)	ug/L ug/L	1	1000	ND			
Zinc (Total)	ug/L ug/L	10	5000	318			
Miscellaneous	ug/L	10	0000	010			
Ammonia-N	mg/L	0.05		ND			
Boron	mg/L	0.05		ND			
Chloramines	mg/L	0.05		0.19	0.11	0.1	
Gross Alpha	pCi/L		15	1.72 +/- 1.65			
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND			
Methane	ug/L	0.1		0.59			
Nitrogen (Total)	mg/L	0.5		0.5			
o-Phosphate-P	mg/L	0.05		0.3			
Phosphorous (Total)	mg/L	0.03		0.47			
Radium 226	pCi/L		3	0.036 +/- 0.159			
Organic Analyses							
Haloacetic Acids (Total)	ug/L	1.0	60.0	11.5	13.9	12.	
Dibromoacetic Acid		1.0		3.1	2.6	1.9	
Dichloroacetic Acid		1.0		5.2	6.8	6.	
Monobromoacetic Acid		1.0		ND	ND	NE	
Monochloroacetic Acid		2.0		ND	ND	NE	
Trichloroacetic Acid		1.0		3.2	4.5	4.7	
Organic Carbon (Dissolved)	mg/L	0.2		1.4			
Organic Carbon (Total)	mg/L	0.2	20.0	1.4	00.4	07.	
Trihalomethanes (Total)	ug/L	1.0	80.0	25.8	30.4	27.:	
Bromodichloromethane	ug/L	0.5		8.8	11.0	9.8	
Bromoform Chloroform		0.5		1.7	0.99	0.73	
Dibromochloromethane	ug/L ug/L	0.5 0.5		6.9 8.4	11.0 7.4	11.0 6.0	
Field Parameters	ug/L	0.0		0.4	7.4	0.0	
Temperature	° C	0.1			14.6	16.	
Specific Conductance (EC)	uS	1.0	900		476	45	
pH	Std Units	0.1	6.5 - 8.5		7.5	6.	
ORP	mV	1.0	0.0 - 0.0		589	37.	
Free Chlorine Residual	mg/L	0.1	2 - 5		0.2	1.	
Dissolved Oxygen	mg/L	0.01	2 - 0		0.2	2.	
Silt Density Index	Std Units	0.01				۷.	
	mL	2.0					
Gas Volume	IIIL	2.07					

Notes

Table 8. Summary of WY 2016 Water-Quality Data – ASR-1

				Results				
				SM ASR-1				
Parameter	Unit	PQL	MCL	3/21/01	9/22/15	7/12/16	9/21/16	
		Sample D	escription	NGW	WY 2015 Storage	WY 2016	Storage	
Elapsed Storage Time	Days				217	99	170	
Volume Purged at Sampling	1,000 gals			-				
Major Cations								
Calcium	mg/L	0.5		85	96		68	
Magnesium	mg/L	0.5		19	23	13	17	
Potasium	mg/L	0.5		5.3	5.7	2.9	4.0	
Sodium	mg/L	0.5		88	101	43	71	
Major Anions	/I	2		224	227	135	180	
Alkalinity, Total (as CaCO3) Chloride	mg/L mg/L	1	250	120	237 141	28	72	
Sulfate	mg/L	1	250	95	118		96	
Nitrate (as NO3)	mg/L	1	45	ND	ND		1.0	
Nitrite (as Nitrogen)	mg/L	1	1	ND	0.3		0.3	
General Physical	J							
pH	Std Units			7.1	7.1	7.4	7.4	
Specific Conductance (EC)	uS	1	900	1015	1141	496	763	
Total Dissolved Solids	mg/L	10	500	618	677	317	471	
Metals								
Arsenic (Total)	ug/L	1	10	ND	1		1	
Barium (Total)	ug/L	10	1000	52	84	56	55	
Iron (Dissolved)	ug/L	10			10		ND	
Iron (Total)	ug/L	10	300	120	59		ND	
Lithium	ug/L	1			41	6	19	
Manganese (Dissolved)	ug/L	10	50	40	20	ND ND	ND ND	
Manganese (Total) Molybdenum	ug/L	10 1	50 1000	40	23 10		ND 6	
Nickel	ug/L ug/L	10	1000		ND	ND	ND.	
Selenium	ug/L	2	50	ND	2	4	2	
Strontium (Total)	ug/L	5		140	472	222	308	
Uranium (by ICP/MS)	ug/L	1	30		1	ND	1	
Vanadium (Total)	ug/L	1	1000		ND	ND	ND	
Zinc (Total)	ug/L	10	5000	10	118	219	87	
Miscellaneous								
Ammonia-N	mg/L	0.05		0.33	0.19	ND	ND	
Boron	mg/L	0.05		0.14	0.13	ND	0.08	
Chloramines	mg/L	0.05			ND	ND	ND	
Gross Alpha	pCi/L		15		4.70 +/- 2.00		2.52 +/- 1.55	
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	ND	ND	
Methane	ug/L	0.1			0.4		2.2	
Nitrogen (Total)	mg/L	0.5 0.05		0.46	ND 0.2	ND ND	0.5 0.1	
o-Phosphate-P Phosphorous (Total)	mg/L mg/L	0.03		0.46	0.2	0.26	0.13	
Radium 226	pCi/L	0.03	3		1.28 +/- 0.34			
Organic Analyses	POUL	<u> </u>			1120 17 010 1	0.201 17 0.210	0.100 17 0.107	
Haloacetic Acids (Total)	ug/L	1.0	60.0		0.0	6.0	0.0	
Dibromoacetic Acid	ug/L	1.0			ND	1	ND	
Dichloroacetic Acid	ug/L	1.0			ND	1	ND	
Monobromoacetic Acid	ug/L	1.0			ND	ND	ND	
Monochloroacetic Acid	ug/L	2.0			ND	ND	ND	
Trichloroacetic Acid	ug/L	1.0			ND	4	ND	
Organic Carbon (Dissolved)	mg/L	0.2			1.5		1.0	
Organic Carbon (Total)	mg/L	0.2		6.3	1.3		1.0	
Trihalomethanes (Total)	ug/L	1.0	80.0		0.6			
Bromodichloromethane	ug/L	0.5			ND		7.6	
Bromoform	ug/L	0.5			ND		0.5	
Chloroform Dibromochloromethane	ug/L ug/L	0.5 0.5			0.6 ND	62.1 9.3	18.8 2.0	
Field Parameters	ug/L	0.5			ND	9.3	2.0	
Temperature	⁰ C	0.1			20.4	16.4	19.4	
Specific Conductance (EC)	uS	1.0	900	1015	1211		667	
pH	Std Units	0.1	6.5 - 8.5	7.1	7.3			
ORP	mV	1.0	0.0		-147			
Free Chlorine Residual	mg/L	0.1	2 - 5		ND		ND	
Dissolved Oxygen	mg/L	0.01			ND		1.17	
Silt Density Index	Std Units	0.1						
Gas Volume	mL	2.0						
H ₂ S	mg/L	0.1		1.5	0.07		ND	
Notes:								

Table 9. Summary of WY 2016 Water Quality Data – ASR-2

				Results				
					SM ASR-2			
Parameter	Unit	PQL	MCL	12/15/15	6/21/16	9/27/16		
Flancad Characa Time	Davis	Sample D	escription	WY 2015 Storage	WY 2016			
Elapsed Storage Time Volume Purged at Sampling	Days 1,000 gals			301	78	176		
Major Cations	1,000 gais							
Calcium	mg/L	0.5			40	60		
Magnesium	mg/L	0.5			13	19		
Potasium	mg/L	0.5			3.0	3.8		
Sodium	mg/L	0.5			42	64		
Major Anions								
Alkalinity, Total (as CaCO3)	mg/L	2			129	180		
Chloride	mg/L	1	250	126	29	64		
Sulfate	mg/L	1	250		72	8′		
Nitrate (as NO3)	mg/L	1	45		1			
Nitrite (as Nitrogen)	mg/L	1	1		ND	0.3		
General Physical	Ctrl Haita				7.7	7.5		
pH Specific Conductance (EC)	Std Units uS	1	900		7.7 487	7.5 707		
Total Dissolved Solids	mg/L	10	500		326	431		
Metals	ıg/ =	10	500		520	+5		
Arsenic (Total)	ug/L	1	10		1			
Barium (Total)	ug/L	10	1000		54	83		
Iron (Dissolved)	ug/L	10			ND.	NE		
Iron (Total)	ug/L	10	300		70	66		
Lithium	ug/L	1			6	14		
Manganese (Dissolved)	ug/L	10			ND	10		
Manganese (Total)	ug/L	10	50		ND	11		
Molybdenum	ug/L	1	1000		5	6		
Nickel	ug/L	10	100		ND	ND		
Selenium	ug/L	2	50		6	2		
Strontium (Total)	ug/L	5	00		206	300		
Uranium (by ICP/MS)	ug/L	1	30		ND ND	ND.		
Vanadium (Total) Zinc (Total)	ug/L ug/L	10	1000 5000		228	ND 317		
Miscellaneous	ug/L	10	3000		220	317		
Ammonia-N	mg/L	0.05			ND	NE		
Boron	mg/L	0.05			ND	0.06		
Chloramines	mg/L	0.05		ND	0.05	ND		
Gross Alpha	pCi/L		15		0.550 +/- 1.08	2.59 +/- 2.16		
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	1		
Methane	ug/L	0.1			0.43	1.7		
Nitrogen (Total)	mg/L	0.5			ND	1.5		
o-Phosphate-P	mg/L	0.05			0.3	0.3		
Phosphorous (Total)	mg/L	0.03			0.31	0.25		
Radium 226	pCi/L		3		0.000 +/- 0.105	U.UUU +/- 0.246		
Organic Analyses	Lug/I	1	60.0		40.0			
Haloacetic Acids (Total) Dibromoacetic Acid	ug/L	1.0 1.0	60.0	0.0 ND	12.0 1.0	0.0 ND		
Dichloroacetic Acid		1.0		ND ND	2.0	ND ND		
Monobromoacetic Acid	_	1.0		ND ND	ND	ND ND		
Monochloroacetic Acid		2.0		ND	ND ND	ND ND		
Trichloroacetic Acid		1.0		ND	9.0	ND		
Organic Carbon (Dissolved)	mg/L	0.2		7,15	1.4	. 12		
Organic Carbon (Total)	mg/L	0.2			1.4	1.10		
Trihalomethanes (Total)	ug/L	1.0	80.0	0.0	101.8	47.9		
Bromodichloromethane	_	0.5		ND	23.7	12.0		
Bromoform		0.5		ND	1.0	0.60		
Chloroform		0.5		ND	66.5	29.8		
Dibromochloromethane	ug/L	0.5		ND	10.6	5.5		
Field Parameters	I ⁰ C	1 2.1	-	, = =	10 -			
Temperature	°С	0.1	000	18.5	16.3	18.0		
Specific Conductance (EC)	uS Std Units	1.0	900	1048	540 7.6	610.0		
pH ORP	Std Units mV	0.1 1.0	6.5 - 8.5	7.4 -188	7.6 -189	-202.5		
Free Chlorine Residual	mv mg/L	0.1	2 - 5	-188 ND	-189	-202.5		
Dissolved Oxygen	mg/L	0.01	2-5	ND ND	1.98	1.01		
Silt Density Index	Std Units	0.01		ND	1.90	1.01		
Gas Volume	mL	2.0						
H ₂ S	mg/L	0.1		0.05		0.02		

Table 10. Summary of WY 2016 Water Quality Data – ASR-3

				Results				
				SMS ASR-3				
Parameter	Unit	PQL	MCL	10/22/10	12/16/15	6/22/16	9/21/16	
		Sample D	escription	NGW	WY 2015 Storage	WY 2016	Storage	
Elapsed Storage Time	Days				302	79	170	
Volume Purged at Sampling	1,000 gals							
Major Cations	1							
Calcium	mg/L	0.5		76		38	53	
Magnesium	mg/L	0.5		18		13	17	
Potasium Sodium	mg/L	0.5 0.5		5 102		2.8 41	3.6 59	
Major Anions	mg/L	0.0		102		41	39	
Alkalinity, Total (as CaCO3)	mg/L	2		304		129	171	
Chloride	mg/L	1	250	107	95	30	58	
Sulfate	mg/L	1	250	56		72	72	
Nitrate (as NO3)	mg/L	1	45	1		1.0	1.0	
Nitrite (as Nitrogen)	mg/L	1	1	ND		ND	0.3	
General Physical								
pН	Std Units			7.7		7.6	7.5	
Specific Conductance (EC)	uS	1	900	954		501	657	
Total Dissolved Solids	mg/L	10	500	575		306	426	
Metals								
Arsenic (Total)	ug/L	1	10	4		16	6	
Barium (Total)	ug/L	10	1000	50		52	78	
Iron (Dissolved)	ug/L	10		21		ND	ND	
Iron (Total)	ug/L	10	300	21		53	56	
Lithium	ug/L	1 10		36		6 ND	14 12	
Manganese (Dissolved) Manganese (Total)	ug/L	10	50	27 27		ND ND	13	
Molybdenum	ug/L ug/L	10	1000	21		76	21	
Nickel	ug/L	10	1000	ND		ND	ND	
Selenium	ug/L	2	50	ND		9	3	
Strontium (Total)	ug/L	5		403		207	281	
Uranium (by ICP/MS)	ug/L	1	30			1	3	
Vanadium (Total)	ug/L	1	1000			ND	ND	
Zinc (Total)	ug/L	10	5000			231	266	
Miscellaneous								
Ammonia-N	mg/L	0.05		249		ND	ND	
Boron	mg/L	0.05		ND		ND	0.05	
Chloramines	mg/L	0.05		0.08	ND	ND	ND	
Gross Alpha	pCi/L		15			1.16 +/- 1.41	4.28 +/- 1.73	
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND		ND	1	
Methane	ug/L	0.1		ND		0.52	1.40	
Nitrogen (Total)	mg/L	0.5		ND		ND 0.0	1.5	
o-Phosphate-P	mg/L	0.05		ND 0.03		0.3	0.2	
Phosphorous (Total) Radium 226	mg/L pCi/L	0.03	3	0.03		0.28	0.27 0.178 +/- 0.302	
Organic Analyses	pci/L		3			0.635 +/- 0.370	0.176 +/- 0.302	
Haloacetic Acids (Total)	ug/L	1.0	60.0	ND	0.0	16.0	3.0	
Dibromoacetic Acid	ug/L ug/L	1.0	00.0	ND ND	ND	1.0	1.0	
Dichloroacetic Acid		1.0		ND	ND	4.0	2.0	
Monobromoacetic Acid	Ŭ	1.0		ND	ND	ND	ND	
Monochloroacetic Acid		2.0		ND	ND	ND	ND	
Trichloroacetic Acid	ug/L	1.0		ND	ND	11	ND	
Organic Carbon (Dissolved)	mg/L	0.2		0.71		1.5	0.9	
Organic Carbon (Total)	mg/L	0.2		0.70		1.4	1.0	
Trihalomethanes (Total)	ug/L	1.0	80.0	ND	20.9	99.7	61.4	
Bromodichloromethane	ŭ	0.5		ND	6.2	22.5	15.9	
Bromoform	ug/L	0.5		ND	ND	1.1	0.8	
Chloroform		0.5		ND	11.0	65.8	36.7	
Dibromochloromethane	ug/L	0.5		ND	3.7	10.3	8.0	
Field Parameters	0 0	, , , ,		25 -	97.7	4.0. =		
Temperature	⁰ C	0.1	000	26.2	20.8	16.3	17.3	
Specific Conductance (EC)	uS Std Units	1.0	900	991	788	486	588	
pH ORP	Std Units mV	0.1 1.0	6.5 - 8.5	7.0 -82	7.4 -136	7.6 -164	7.07 -171	
Free Chlorine Residual	mv mg/L	0.1	2 - 5	-82 ND	-136 ND	-164	-171 ND	
Dissolved Oxygen	mg/L mg/L	0.1	2-5	ND 	ND ND	2.72	4.67	
Silt Density Index	Std Units	0.01			ND	2.12	4.07	
Gas Volume	mL	2.0						
H ₂ S	mg/L	0.1		0.60	0.03		ND	
Notes:						•		

Table 11. Summary of WY 2016 Water Quality Data – ASR-4

-						
Parameter	Unit	PQL	MCL	7/13/2016	9/21/16	
Parameter	Unit		escription		Storage	
Elapsed Storage Time	Days	Oample D	escription	100	170	
Volume Purged at Sampling	1,000 gals					
Major Cations	, , , , , , , , , , , , , , , , , , , ,					
Calcium	mg/L	0.5		65	76	
Magnesium	mg/L	0.5		14	16	
Potasium	mg/L	0.5		3.7	4.6	
Sodium	mg/L	0.5		88	103	
Major Anions						
Alkalinity, Total (as CaCO3)	mg/L	2		215	234	
Chloride	mg/L	1	250	109	121	
Sulfate	mg/L	1	250	51	55	
Nitrate (as NO3)	mg/L	1	45	ND ND	1.0	
Nitrite (as Nitrogen) General Physical	mg/L	1	1	טא	0.3	
pH	Std Units			7.4	7.5	
Specific Conductance (EC)	uS	1	900	850	924	
Total Dissolved Solids	mg/L	10	500	529	563	
Metals	····9·-	,0	550	023		
Arsenic (Total)	ug/L	1	10	6	5	
Barium (Total)	ug/L	10	1000	52	54	
Iron (Dissolved)	ug/L	10		41	ND.	
Iron (Total)	ug/L	10	300	108	144	
Lithium	ug/L	1		28	32	
Manganese (Dissolved)	ug/L	10		14	21	
Manganese (Total)	ug/L	10	50	16	21	
Molybdenum	ug/L	1	1000	7	6	
Nickel	ug/L	10	100	61	58	
Selenium	ug/L	2	50	3	2	
Strontium (Total)	ug/L	5		457	444	
Uranium (by ICP/MS)	ug/L	1	30	2	1	
Vanadium (Total) Zinc (Total)	ug/L ug/L	10	1000 5000	5 28	ND ND	
Miscellaneous	ug/L	10	3000	20	ND	
Ammonia-N	mg/L	0.05		ND	ND	
Boron	mg/L	0.05		0.08	0.11	
Chloramines	mg/L	0.05		ND	ND	
Gross Alpha	pCi/L		15	2.76 +/- 1.40	3.01 +/- 2.64	
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	0.5	
Methane	ug/L	0.1		1.2	1.7	
Nitrogen (Total)	mg/L	0.5		ND	1.0	
o-Phosphate-P	mg/L	0.05		ND	ND	
Phosphorous (Total)	mg/L	0.03		0.04	ND	
Radium 226	pCi/L		3	0.596 +/- 0.326	0.760 +/- 0.438	
Organic Analyses	_					
Haloacetic Acids (Total)	ug/L	1.0	60.0	1.0	0.0	
Dibromoacetic Acid		1.0		1.0	ND	
Dichloroacetic Acid	_	1.0 1.0		ND ND	ND ND	
Monobromoacetic Acid Monochloroacetic Acid	_	2.0		ND ND	ND ND	
Trichloroacetic Acid		1.0		ND ND	ND ND	
Organic Carbon (Dissolved)	mg/L	0.2		0.8	ND	
Organic Carbon (Dissolved)	mg/L	0.2		0.7	0.6	
Trihalomethanes (Total)	ug/L	1.0	80.0	4.5	0.0	
Bromodichloromethane		0.5		1.2	ND	
Bromoform		0.5		ND	ND	
Chloroform		0.5		2.6	ND	
Dibromochloromethane	ug/L	0.5		0.7	ND	
Field Parameters						
Temperature	°C	0.1		21.4	25.1	
Specific Conductance (EC)	uS	1.0	900	926	564	
pH	Std Units	0.1	6.5 - 8.5	8.1	7.1	
ORP	mV	1.0	_	-218	-262	
Free Chlorine Residual	mg/L	0.1	2 - 5	ND 1.75	ND 0.07	
Dissolved Oxygen	mg/L	0.01		1.75	0.97	
Silt Density Index Gas Volume	Std Units mL	0.1 2.0				
H ₂ S	mg/L	0.1		ND	0.01	
	· - -	J. 1		.,0	5.01	

Notes:

Constituents exceeding MCLs denoted in ${\bf BOLD}$ type

Table 12. Summary of WY 2016 Water Quality Data – SM MW-1

				Results					
				SM MW-1					
Parameter	Unit	PQL	MCL	12/15/15	1/12/16	6/16/16 9/27/16			
	-	Sample D	escription		WY 2016 Injection	WY 2016			
Elapsed Storage Time	Days			301	0	73	176		
Volume Purged at Sampling Major Cations	1,000 gals								
Calcium	mg/L	0.5			61	45			
Magnesium	mg/L	0.5			14	11			
Potasium	mg/L	0.5			3.5	2.9			
Sodium	mg/L	0.5			57	45			
Major Anions	<u> </u>				-	-			
Alkalinity, Total (as CaCO3)	mg/L	2			175	138			
Chloride	mg/L	1	250	161	63	32	47		
Sulfate	mg/L	1	250		83	73			
Nitrate (as NO3)	mg/L	1	45		1.0	ND			
Nitrite (as Nitrogen)	mg/L	1	1		0.3	ND			
General Physical									
pH	Std Units				7.5	7.6			
Specific Conductance (EC)	uS "	1	900		715	520			
Total Dissolved Solids	mg/L	10	500		446	323			
Metals					=	_1			
Arsenic (Total)	ug/L	1	10		2	2			
Barium (Total)	ug/L	10 10	1000		37 ND	19 ND			
Iron (Dissolved) Iron (Total)	ug/L ug/L	10	300		ND ND	ND ND			
Lithium	ug/L ug/L	10	300		19	8 8			
Manganese (Dissolved)	ug/L ug/L	10			ND	ND			
Manganese (Total)	ug/L	10	50		ND	ND			
Molybdenum	ug/L ug/L	10	1000		6	3			
Nickel	ug/L	10	100		ND	ND			
Selenium	ug/L	2	50		2	4			
Strontium (Total)	ug/L	5			226	242			
Uranium (by ICP/MS)	ug/L	1	30		2	1			
Vanadium (Total)	ug/L	1	1000		ND	ND			
Zinc (Total)	ug/L	10	5000		23	ND			
Miscellaneous									
Ammonia-N	mg/L	0.05			ND	ND			
Boron	mg/L	0.05			0.06	ND			
Chloramines	mg/L	0.05		ND	ND	ND	ND		
Gross Alpha	pCi/L		15		2.53 +/- 1.27	0.924 +/- 1.32			
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	ND			
Methane	ug/L	0.1			1.0	0.57			
Nitrogen (Total)	mg/L	0.5			0.5	ND			
o-Phosphate-P	mg/L	0.05			ND	ND			
Phosphorous (Total)	mg/L	0.03			0.05	0.04			
Radium 226 Organic Analyses	pCi/L		3		0.000 +/- 0.393	0.000 +/- 0.389			
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	0.0	0.0	0.0		
Dibromoacetic Acid	Ü	1.0	00.0	0.0 ND	ND	ND	ND		
Dichloroacetic Acid		1.0		ND	ND ND	ND ND	ND ND		
Monobromoacetic Acid	Ü	1.0		ND ND	ND ND	ND ND	ND ND		
Monochloroacetic Acid	U	2.0		ND	ND	ND	ND		
Trichloroacetic Acid		1.0		ND ND	ND	ND	ND		
Organic Carbon (Dissolved)	mg/L	0.2			1.0	1.3			
Organic Carbon (Total)	mg/L	0.2			0.9	1.1			
Trihalomethanes (Total)	ug/L	1.0	80.0	0.0	58.8	82.1	1.9		
Bromodichloromethane	ug/L	0.5		ND	15	15.9	0.7		
Bromoform		0.5		ND	ND	0.7	ND		
Chloroform		0.5		ND	41	58.8	1.2		
Dibromochloromethane	ug/L	0.5		ND	2.8	6.7	ND		
Field Parameters	10 -								
Temperature (50)	° C	0.1		17.4	18.1	19.6	18.9		
Specific Conductance (EC)	uS Out Haira	1.0	900	975	967	473	519		
pH	Std Units	0.1	6.5 - 8.5	7.3	7.3	7.8	6.45		
ORP	mV ma/l	1.0	2 -	-212 ND	-210	-151 0.15	-243		
Free Chlorine Residual	mg/L	0.1	2 - 5	ND ND	ND ND	0.15	ND 0.39		
Dissolved Oxygen Silt Density Index	mg/L Std Units	0.01 0.1		ND	ND	2.72	0.38		
Gas Volume	mL	2.0							
H ₂ S	mg/L	0.1		0.07	0.04		0.01		
Notes:	, ,			5.01	5.01	l	2.3.		

Table 13. Summary of WY 2016 Water Quality Data – SMS Deep

Parameter				Results				
				SMS Deep				
	Unit	PQL	MCL	12/16/15	2/19/16	6/16/16		
Flancad Charage Time	Davis	Sample D	escription	WY 2015 Storage	WY 2016 Injection	WY 2016 Storage		
Elapsed Storage Time Volume Purged at Sampling	Days 1,000 gals			302	0	73		
Major Cations	1,000 gais							
Calcium	mg/L	0.5			46	4:		
Magnesium	mg/L	0.5			11	1:		
Potasium	mg/L	0.5			2.8	2.		
Sodium	mg/L	0.5			45	4		
Major Anions	mg/L	0.0			40	-		
Alkalinity, Total (as CaCO3)	mg/L	2			142	13-		
Chloride	mg/L	1	250	123	31	2:		
Sulfate	mg/L	1	250	120	81	7		
Nitrate (as NO3)	mg/L	1	45		1.0	Ni		
Nitrite (as Nitrogen)	mg/L	1	1		0.3	NI		
General Physical	3- =							
pH	Std Units				7.6	7.0		
Specific Conductance (EC)	uS	1	900		554	50		
Total Dissolved Solids	mg/L	10	500		366	32		
Metals					300			
Arsenic (Total)	ug/L	1	10		16	12		
Barium (Total)	ug/L	10	1000		31	3		
Iron (Dissolved)	ug/L	10	7000		ND.	NI NI		
Iron (Total)	ug/L	10	300		ND	NI		
Lithium	ug/L	10	550		6	141		
Manganese (Dissolved)	ug/L	10			ND	NI		
Manganese (Total)	ug/L	10	50		ND	NI		
Molybdenum	ug/L	1	1000		39	4:		
Nickel	ug/L	10	100		ND.	NI		
Selenium	ug/L	2	50		12	1:		
Strontium (Total)	ug/L	5	00		287	26		
Uranium (by ICP/MS)	ug/L	1	30		2	20		
Vanadium (Total)	ug/L	1	1000		ND	NE		
Zinc (Total)	ug/L	10	5000		ND	NE		
Miscellaneous	. 3							
Ammonia-N	mg/L	0.05			ND	NE		
Boron	mg/L	0.05			ND	NE		
Chloramines	mg/L	0.05		ND	ND	NI		
Gross Alpha	pCi/L	0.00	15		1.97 +/- 1.64	1.20 +/- 1.3		
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	NI		
Methane	ug/L	0.1			0.52	0.5		
Nitrogen (Total)	mg/L	0.5			0.5	N		
o-Phosphate-P	mg/L	0.05			ND	0.:		
Phosphorous (Total)	mg/L	0.03			0.12	0.:		
Radium 226	pCi/L		3		0.067 +/- 0.228	0.000 +/- 0.31		
Organic Analyses								
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	17.4	9.0		
Dibromoacetic Acid		1.0		ND	1.1	1		
Dichloroacetic Acid		1.0		ND	4.3	2		
Monobromoacetic Acid		1.0		ND	ND	NI		
Monochloroacetic Acid		2.0		ND	ND	NE		
Trichloroacetic Acid	ug/L	1.0		ND	12			
Organic Carbon (Dissolved)	mg/L	0.2			1.1	1.4		
Organic Carbon (Total)	mg/L	0.2			1.4	1.4		
Trihalomethanes (Total)	ug/L	1.0	80.0	0.0	104.5	84.:		
Bromodichloromethane		0.5		ND	31	19.0		
Bromoform	ug/L	0.5		ND	1.5	1.0		
Chloroform	ug/L	0.5		ND	57	54.4		
Dibromochloromethane		0.5		ND	15	9.2		
Field Parameters								
Temperature	⁰ C	0.1		19.7	18.5	19.		
Specific Conductance (EC)	uS	1.0	900	775	511	47		
pH	Std Units	0.1	6.5 - 8.5	7.4	7.1	7.		
ORP	mV	1.0		-142	+2.4	-14		
Free Chlorine Residual	mg/L	0.1	2 - 5	ND	0.04	0.0		
Dissolved Oxygen	mg/L	0.01		ND		2.7		
Silt Density Index	Std Units	0.1						
Gas Volume	mL	2.0						

Table 14. Summary of WY 2016 Water Quality Data – Off-Site Monitoring Wells

				PCA-E Deep	Paralta			
Parameter	Unit	PQL	MCL	7/26/16	11/12/15	4/26/16		
1 drameter	Onic			WY 2016 Storage				
Volume Pumped at Sampling	1,000 gals			are a constant	are consuge	are accounting		
Major Cations			•					
Calcium	mg/L	0.5		38		32		
Magnesium	mg/L	0.5		8		10		
Potasium	mg/L	0.5		3.4		5		
Sodium	mg/L	0.5		72		55		
Major Anions Alkalinity, Total (as CaCO3)	ma/l	2		148		95		
Chloride	mg/L mg/L	1	250	82		68		
Sulfate	mg/L	1	250	22		41		
Nitrate (as NO3)	mg/L	1	45	ND.		0.8		
Nitrite (as Nitrogen)	mg/L	1	1	ND		0.1		
General Physical								
pH	Std Units			7.4		7.8		
Specific Conductance (EC)	uS	1	900	587		551		
Total Dissolved Solids	mg/L	10	500	358				
Metals					Т			
Arsenic (Total)	ug/L	1	10	6		3		
Barium (Total)	ug/L	10	1000	59 ND		100		
Iron (Dissolved) Iron (Total)	ug/L ug/L	10 10	300	ND 17		100		
Lithium	ug/L ug/L	10	300	22		100		
Manganese (Dissolved)	ug/L	10		ND				
Manganese (Total)	ug/L	10	50	ND		20		
Molybdenum	ug/L	1	1000	10				
Nickel	ug/L	10	100	36		10		
Selenium	ug/L	2	50	ND		5		
Strontium (Total)	ug/L	5		200				
Uranium (by ICP/MS)	ug/L	1	30	ND				
Vanadium (Total)	ug/L	1	1000	ND				
Zinc (Total)	ug/L	10	5000	24		50		
Miscellaneous	a /l	0.05		ND		1		
Ammonia-N Boron	mg/L mg/L	0.05 0.05		ND 0.06		100		
Chloramines	mg/L	0.05		ND		100		
Gross Alpha	pCi/L	0.00	15	1.27 +/- 1.54				
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND				
Methane	ug/L	0.1		0.19				
Nitrogen (Total)	mg/L	0.5		ND				
o-Phosphate-P	mg/L	0.05		ND				
Phosphorous (Total)	mg/L	0.03		0.05				
Radium 226	pCi/L		3	0.035 +/- 0.470				
Organic Analyses	//	4.0	00.0	4.0	1			
Haloacetic Acids (Total) Dibromoacetic Acid	ug/L	1.0 1.0	60.0	1.0				
Dichloroacetic Acid		1.0		ND				
Monobromoacetic Acid	ug/L	1.0		ND				
Monochloroacetic Acid		2.0		ND				
Trichloroacetic Acid	Ŭ	1.0		ND				
Organic Carbon (Dissolved)	mg/L	0.2		0.5				
Organic Carbon (Total)	mg/L	0.2		0.4				
Trihalomethanes (Total)	ug/L	1.0	80.0	0.0	4.7	8.0		
Bromodichloromethane	ug/L	0.5		ND	1.0	1.6		
Bromoform	ug/L	0.5		ND	1.0	1.0		
Chloroform Dibromochloromethane	ug/L	0.5 0.5		ND ND	1.7 1.0	4.4 1.0		
Field Parameters	ug/L	0.5		ND	1.0	1.0		
Temperature	⁰ С	0.1						
Specific Conductance (EC)	uS	1.0	900					
pH	Std Units	0.1	6.5 - 8.5					
ORP	mV	1.0						
Free Chlorine Residual	mg/L	0.1	2 - 5					
Dissolved Oxygen	mg/L	0.01						
Silt Density Index	Std Units	0.1						
Gas Volume	mL	2.0						
H ₂ S	mg/L	0.1				i		

CONCLUSIONS

Based on the findings developed from operation of Monterey Peninsula ASR Project during WY 2016, we conclude the following:

WY 2016 Recharge Operations

WY 2016 was classified as a Normal Water Year on the Monterey Peninsula and a total volume of 699 af of water was recharged into the Seaside Groundwater Basin at the Santa Margarita and Seaside Middle Schools ASR Facilities during the WY 2016 injection season.

ASR Well Performance

ASR-1. Pertinent well performance conclusions for ASR-1 during WY 2016 are summarized below:

- <u>Injection Rates:</u> Ranged between approximately 145 to 1,615 gpm, averaging approximately 1,000 gpm.
- Water Levels: Generally maintained greater than 270 ft. bgs with 15 ft. of available "freeboard" remaining below the maximum recommended drawup level.
- Specific Injectivity: Although there are no initial specific injectivity data for WY 2016, the ending specific injectivity was approximately 32 gpm/ft, which is slightly great than the ending value in WY 2015 of approximately 25 gpm/ft.
- Residual Plugging: Approximately 29 feet of residual plugging occurred.
- General Conclusions: ASR-1 performed well during WY 2016; however, the
 well did experience a moderate level residual plugging. The negative trend in
 performance at injection rates ranging up to 1,600 gpm suggests the injection
 rate at this well should be maintained at or below the design rate of 1,500
 gpm in WY 2017 and the triple-backflush procedure should be implemented
 to limit residual plugging.

ASR-2. Pertinent well performance conclusions for ASR-2 during WY 2016 are summarized below:

- <u>Injection Rates:</u> Ranged between approximately 1,025 to 2,160 gpm, averaging approximately 1,510 gpm.
- Water Levels: Generally maintained greater than 270 ft. bgs with 20 ft. of available "freeboard" remaining below the maximum recommended drawup level.

- <u>Specific Injectivity:</u> Ranged between approximately 25 to 36 gpm/ft with an overall negative trend in 24-hr specific injectivity.
- Residual Plugging: Approximately 33 feet of residual plugging occurred.
- General Conclusions: ASR-2 performed well during WY 2016; however, the
 well did experience a moderate level residual plugging. The negative trend in
 performance at injection rates ranging up to 2,160 gpm suggests the injection
 rate at this well should be maintained at or below the design rate of 1,500
 gpm in WY 2017 and the triple-backflush procedure should be implemented
 to limit residual plugging.

ASR-3. Pertinent well performance conclusions for ASR-3 during WY 2016 are summarized below:

- <u>Injection Rates:</u> Ranged between approximately 700 to 1,010 gpm, averaging approximately 885 gpm.
- Water Levels: Generally maintained greater than 240 ft bgs with 60 ft of available "freeboard" remaining below the maximum recommended drawup level.
- <u>Specific Injectivity:</u> Ranged between approximately 11 to 12 gpm/ft and overall stable trend in 24-hr specific injectivity.
- Residual Plugging: Approximately 30 feet of residual plugging occurred.
- General Conclusions: ASR-3 performance appeared to be relatively stable compared to the significant declines observed in WY 2012. The pattern of relative performance stabilization followed by the initial significant decline in well performance observed at ASR-3 is very similar to the pattern observed at both ASR-1 and ASR-2 when they were initially brought on-line. The stable performance at injection rates ranging between 700 to 1,010 gpm suggests the injection rate should be maintained at or below 1,000 gpm to maintain performance.

ASR-4. Injection at ASR-4 during WY 2016 was limited to five days of well "conditioning". This conditioning was a continuation of similar efforts performed over the course of three days in WY 2015, and consisted of initial injection at relatively low rates and durations, being incrementally increased following thorough backflushing and upon confirmation that well performance was being maintained. The conditioning was performed in an effort to limit the amount of residual plugging that has historically been observed at all three previous ASR wells following their initial injection operations. Injection rates ranging between approximately 250 gpm up to the design rate of 1,500 gpm for durations up to 2 hours were achieved during WY

2016 without a measurable loss in performance. Based on these results, a baseline injection testing program should be implemented in WY 2017.

Water Quality

Significant conclusions regarding the water-quality investigation during WY 2016 include the following:

- Consistent with previous observations, no significant ion exchange, acidbase, or precipitation reactions were observed at the ASR sites.
- THMs at the ASR sites showed characteristic and significant initial "ingrowth" that peaked at approximately 60 to 120 days after the cessation of injection, followed by a gradual decline over the remainder of the WY 2016 Storage Period.
- HAAs showed little "ingrowth" following the cessation of injection and degraded completely during aquifer storage.
- Although there appears to be a correlative relationship between Hg and Turbidity at ASR-1, the exact nature and source of observed Hg exceedances are still unknown. Developing a more complete understanding of the geochemical mechanism(s) responsible for Hg-occurrence will be subject to additional investigation in WY 2017.

RECOMMENDATIONS

Based on the WY 2016 ASR program results and our experience with similar ASR projects, we offer the following recommendations for continued and future operations of the Monterey Peninsula ASR Project wells:

ASR-1 Well Operational Parameters

- <u>Injection Rate</u>: Based on the amount of residual plugging that occurred during WY 2016 with the well injecting up to 1,615 gpm, we recommend the injection rate be limited to approximately **1,500 gpm** in order to limit residual plugging and maintain long-term performance.
- Water-Level Drawup: Under the present local water-level conditions, the amount of water-level drawup should be limited to approximately 100 feet. This amount of water-level drawup during injection equals the typical available drawdown in the well for backflushing. This helps to avoid over-pressurization and compression of plugging materials, thereby maximizing the efficiency of backflushing and limiting the amount of residual plugging.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 100 feet, whichever occurs first. Backflushing should consist of the triple-flush procedure discussed above.

ASR-2 Well Operational Parameters

- <u>Injection Rate</u>: Based on the amount of residual plugging that occurred during WY 2016 with the well injecting up to 2,160 gpm, we recommend the injection rate be limited to the design rate of approximately **1,500 gpm** in order to limit residual plugging and maintain long-term performance.
- Water-Level Drawup: Under the present local water-level conditions, the
 amount of water-level drawup should be limited to approximately 130 feet,
 which is equal to the typical amount of available drawdown in the well for
 backflushing. Again, this helps to avoid over-pressurization and compression
 of plugging materials and limiting the amount of residual plugging.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 130 feet, whichever occurs first. Backflushing should consist of the triple-flush procedure discussed above.

ASR-3 Well Operational Parameters

- <u>Injection Rate</u>: Based on the amount of residual plugging that occurred during WY 2016 with the well injecting up to 1,010 gpm, we recommend the injection rate continue to be limited to **1,000 gpm** in order to limit residual plugging and maintain long-term performance.
- Water-Level Drawup: Under the present local water-level conditions, the
 amount of water-level drawup should be limited to approximately 170 feet,
 which is equal to the typical amount of available drawdown in the well for
 backflushing. Again, this helps to avoid over-pressurization and compression
 of plugging materials and limiting the amount of residual plugging.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 170 feet, whichever occurs first. Backflushing should consist of the triple-flush procedure discussed above.

ASR-3 should undergo formal rehabilitation to improve well performance and injection capacity, similar to that performed at SM ASR-1 and SM ASR-2. It is believed that following rehabilitation, the well will be able to operate at its design injection rate of 1,500 gpm (i.e., 50 percent greater than the current capacity of 1,000 gpm).

SMS ASR-4 Well Startup Conditioning and Baseline Injection Testing

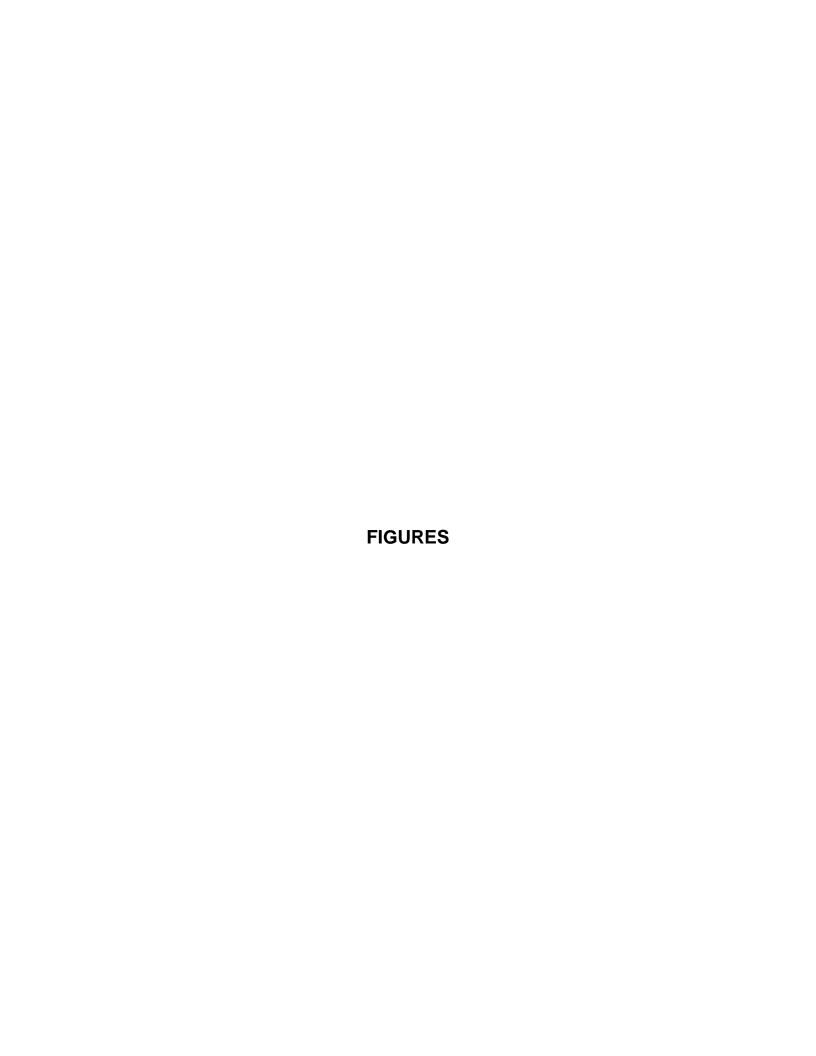
"Conditioning" of ASR-4 was completed in WY 2016. A baseline injection testing program should be implemented in WY 2017 that includes the following tests:

- 1. 8-hr variable rate injection test;
- 2. 24-hr constant rate injection test;
- 7-day constant rate injection test;
- 4. Backflushing between each of the above injection tests, and;
- 5. Post-injection production performance testing.

At the conclusion of the baseline injection testing program, recommendations for the long-term injection operations of ASR-4 can then be provided.

CLOSURE

This report has been prepared exclusively for the Monterey Peninsula Water Management District for the specific application to the ASR Project on the Monterey Peninsula. The findings and conclusions presented herein were prepared in accordance with generally accepted hydrogeologic and engineering practices. No other warranty, express or implied, is made.



REFERENCES

- Clark, J.C., Dupré, W.R., and Rosenberg, L.I. (1997), Geologic Map of the Monterey and Seaside 7.5-Minute Quadrangles, Monterey County, California: a Digital Database, U.S. Geological Survey Open-File Report 97-30.
- Driscoll, Fletcher, G., (1986), *Groundwater and Wells, Second Edition*, published by Johnson Screens.
- Fugro West, Inc. (1997), *Hydrogeologic Assessment, Seaside Coastal Groundwater Subareas, Phase III Update, Monterey County, California*, prepared for Monterey Peninsula Water Management District.
- Fugro West, Inc. (1997), Reconnaissance-Level Feasibility Study for Seaside Basin Injection/Recovery Project, prepared for Monterey Peninsula Water Management District.
- Huisman, L., and Olsthoorn, T.N. (1983), *Artificial Groundwater Recharge*, Delft University of Technology, Pitman Advanced Publishing Program.
- Nicholson, B.C., Dillon, P.J., and Pavelic, P. (2002), Fate of Disinfection By-Products During Aquifer Storage and Recovery, American Water Works Association Research Project No. 2618.
- Padre Associates, Inc. (2001), Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2002), Summary of Operations, Water Year 2002 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2004), Summary of Operations, Water Year 2003 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2005), Summary of Operations, Water Year 2004 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2006), Summary of Operations, Water Year 2005 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.

- Pueblo Water Resources, Inc. (2007), Summary of Operations, Water Year 2006 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2008), Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well No. 2, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), Summary of Operations, Phase 1 ASR Project, Water Year 2007, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), Summary of Operations, Phase 1 ASR Project, Water Year 2008, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2010), Summary of Operations, Phase 1 ASR Project, Water Year 2009, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2011), Summary of Operations, Phase 1 ASR Project, Water Year 2010, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), Summary of Operations, Well Construction and Testing, Seaside Middle School Test Well, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), Summary of Operations, Phase 1 ASR Project, Water Year 2011, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2013), Summary of Operations, Monterey Peninsula ASR Project, Water Year 2012, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2014), Summary of Operations, Monterey Peninsula ASR Project, Water Year 2013, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2018), Summary of Operations, Monterey Peninsula ASR Project, Water Year 2015, prepared for Monterey Peninsula Water Management District.
- Pyne, R.D. (1994), Ground Water Recharge and Wells, Boca Raton, Florida, CRC Press.
- Raines, Melton & Carella, Inc. (2002), *Plan B Project Report*, prepared for the Water Division of the California Public Utilities Commission.
- Theis, C.V. (1935), Relationship Between Lowering of Piezometer Surface on the Fate and Duration of Discharge of a Well Using Ground Water Storage, Transactions of the Geophysical Union, vol. 16, pp. 519-524.

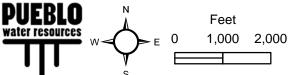
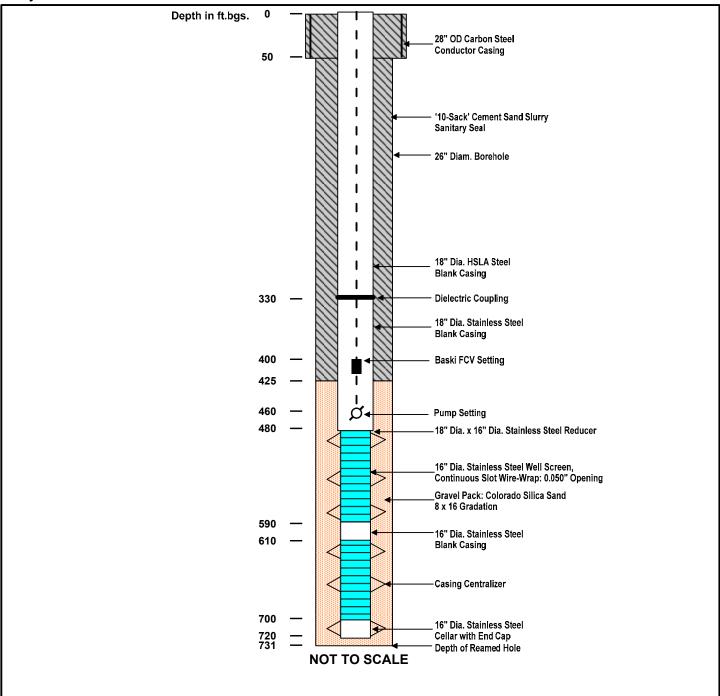
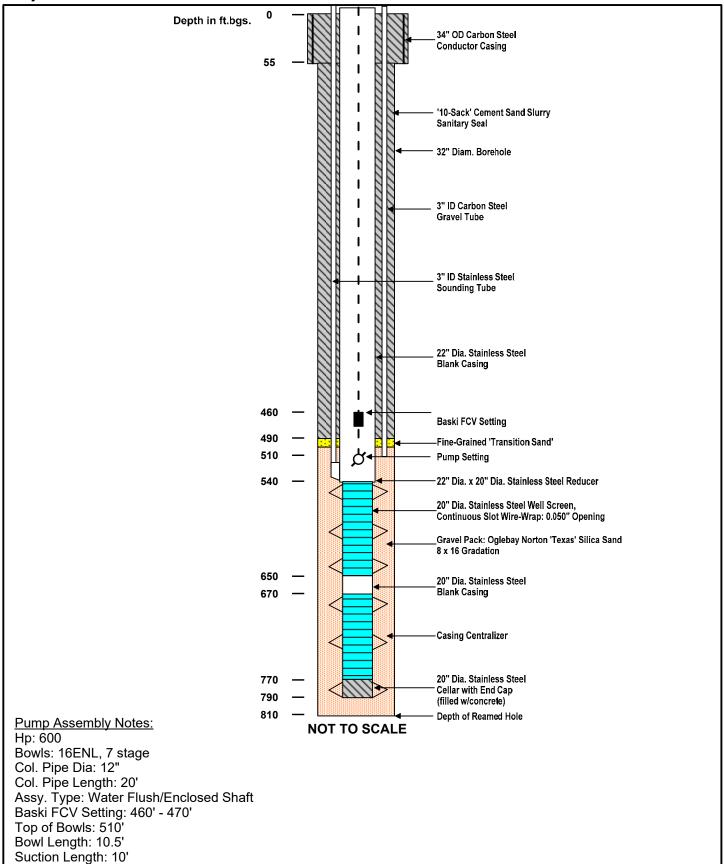



FIGURE 1. SITE LOCATION MAP WY 2016 ASR Program Monterey Peninsula Water Management District

Pump Assembly Notes:

Hp: 600


Bowls: 16ENL, 7 stage Col. Pipe Dia: 12" Col. Pipe Length: 20'

Assy. Type: Water Lube/Open Shaft

Baski FCV Setting: 400' - 410'

Top of Bowls: 460' Bowl Length: 10.5' Suction Length: 10' Intake: 480.5'

Intake: 530.5'

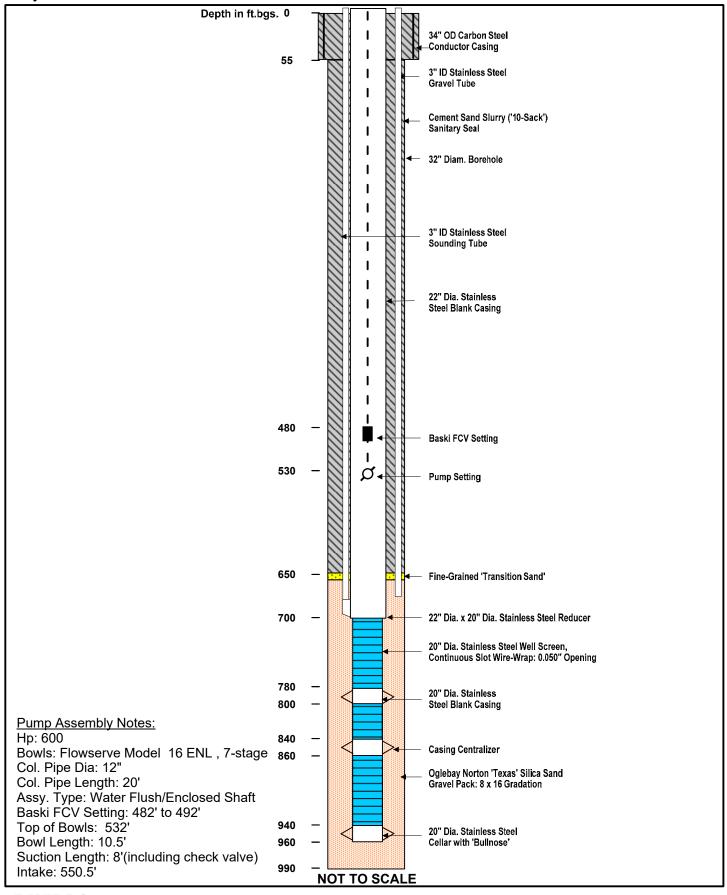


FIGURE 4. ASR-3 AS-BUILT SCHEMATIC
WY 2016 ASR Program
Monterey Peninsula Water Management District

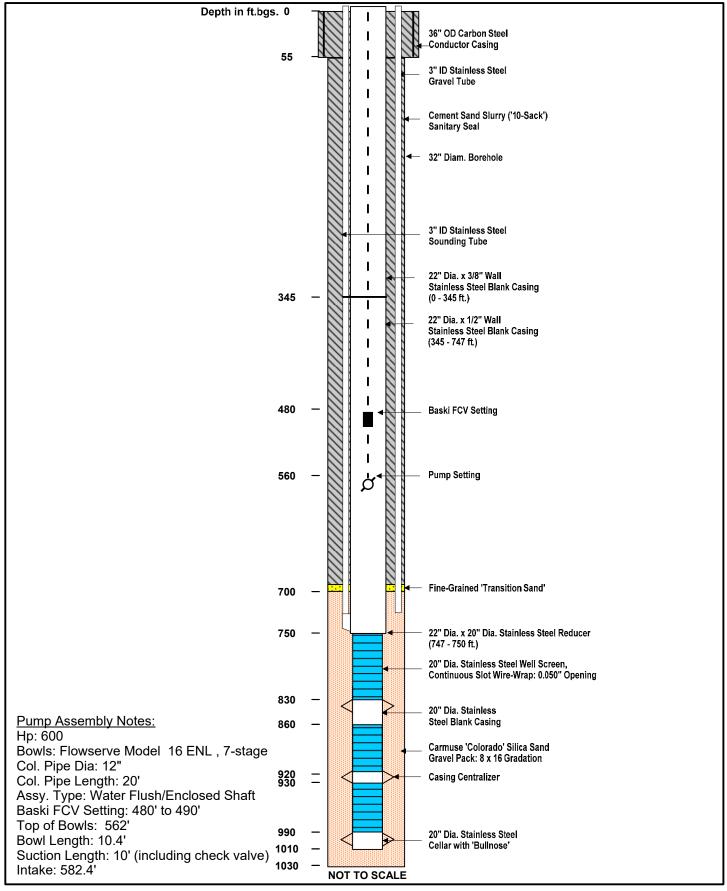


FIGURE 5. ASR-4 AS-BUILT SCHEMATIC WY 2016 ASR Program Monterey Peninsula Water Management District

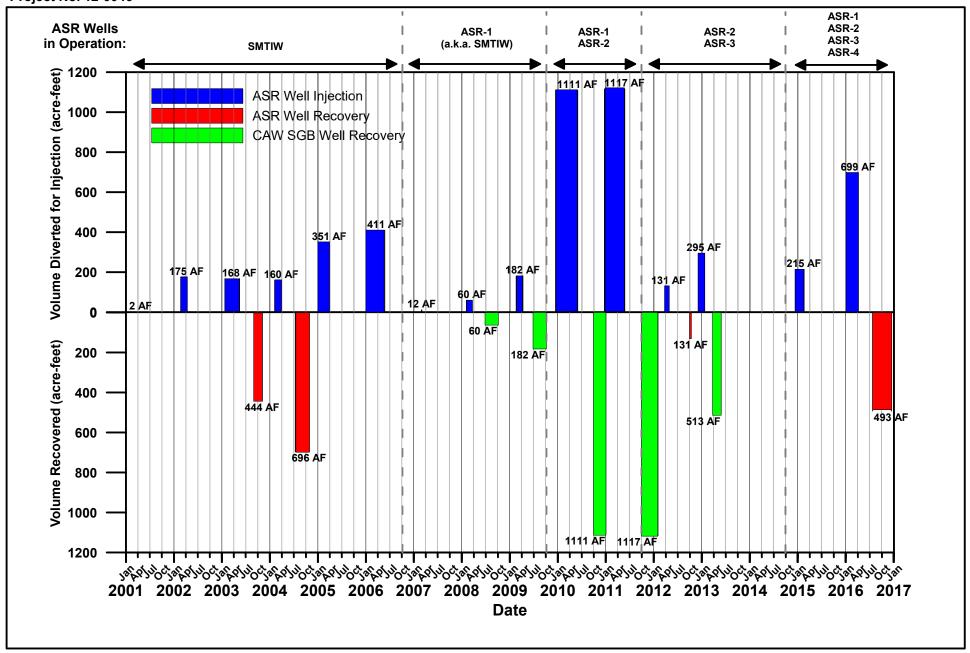


FIGURE 6. SUMMARY OF ASR OPERATIONS (WY 2001 - WY 2016)
WY 2016 ASR Program
Monterey Peninsula Water Management District

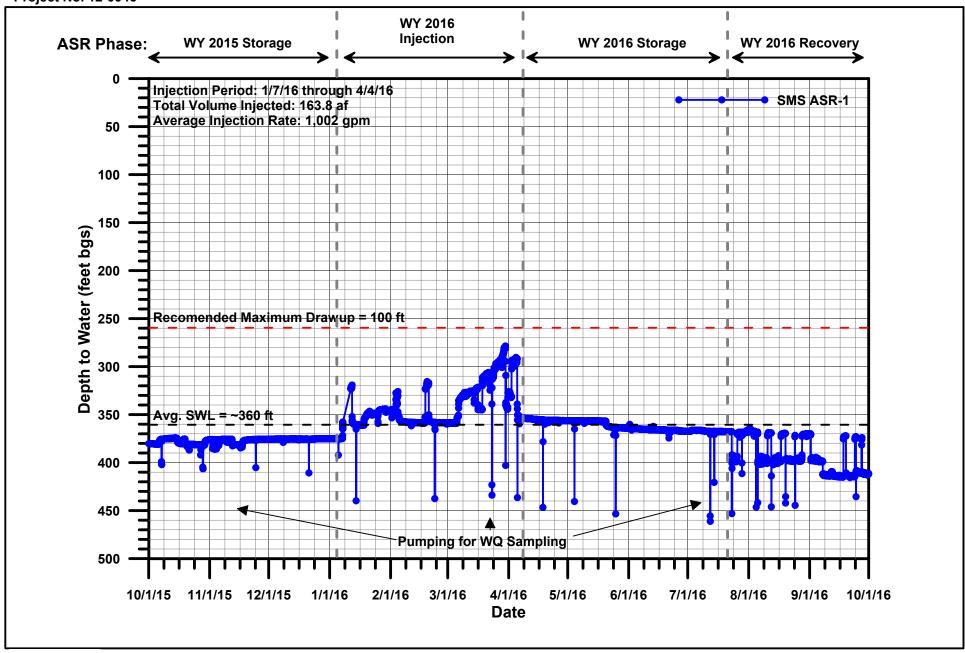


FIGURE 7. ASR-1 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

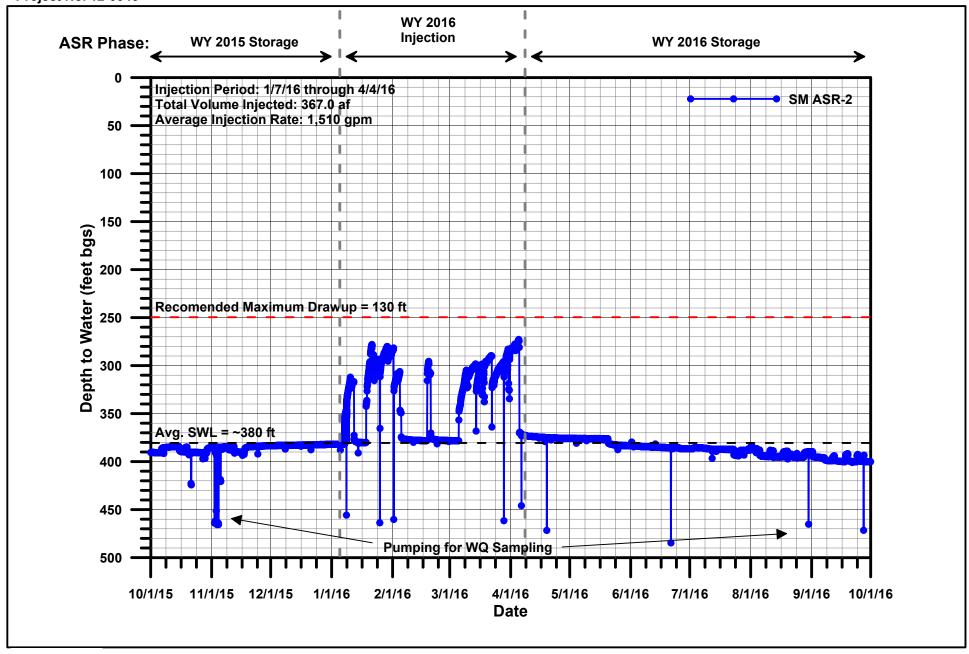


FIGURE 8. ASR-2 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

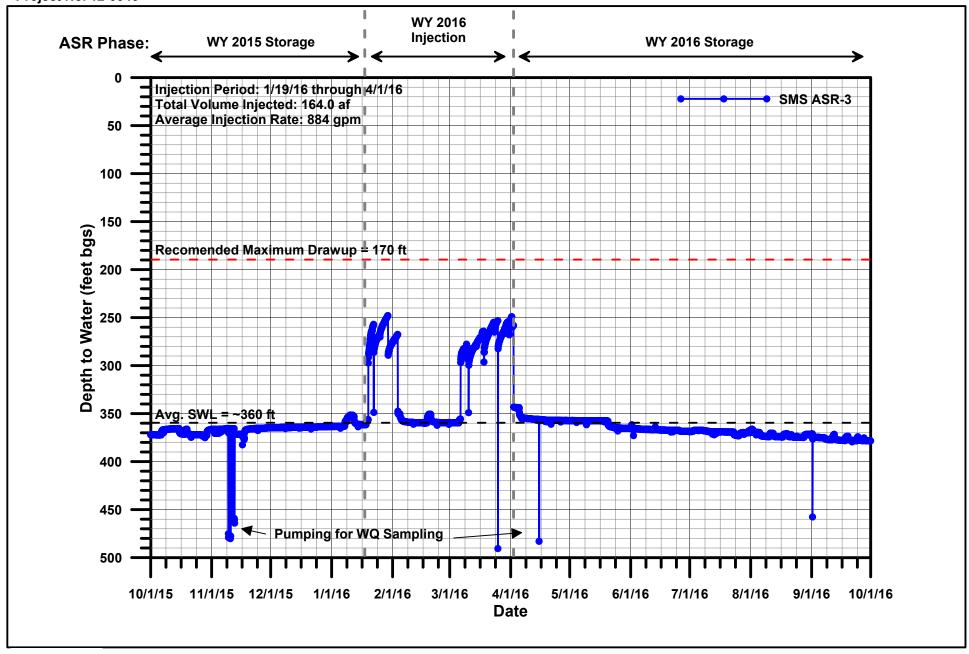


FIGURE 9. ASR-3 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

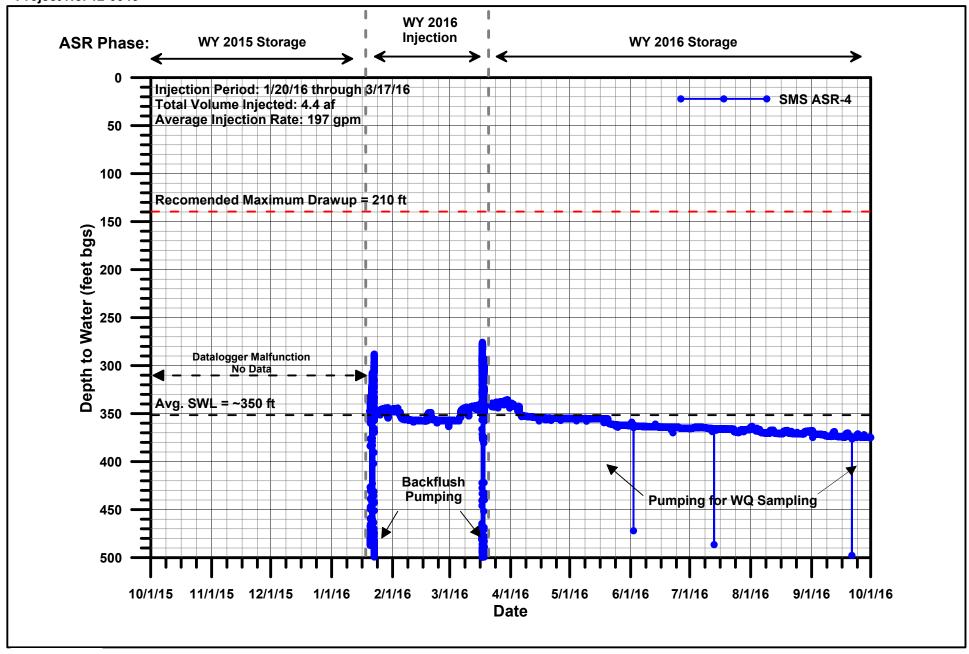


FIGURE 10. ASR-4 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

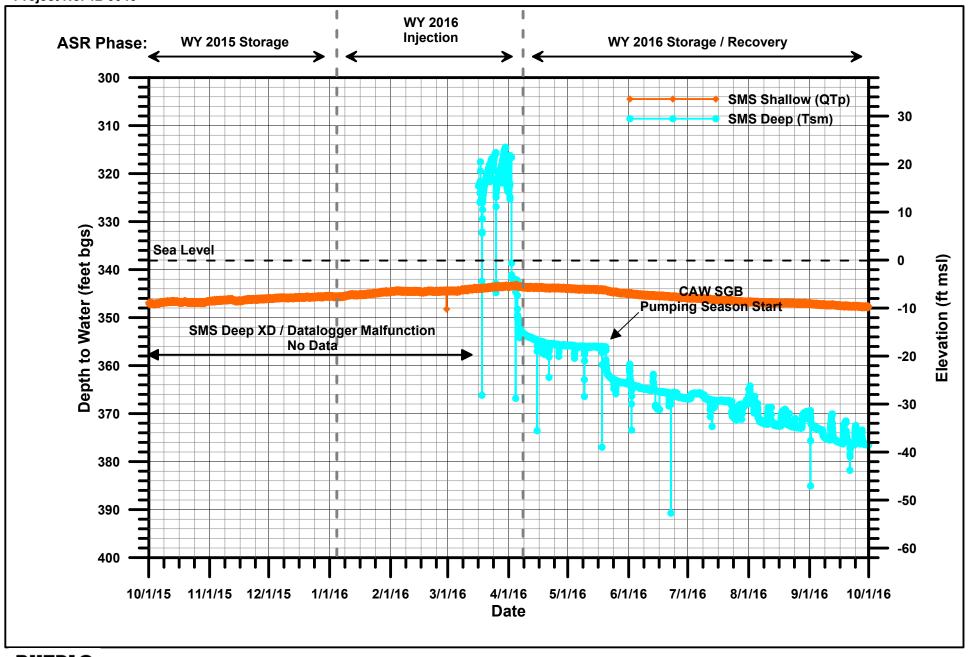


FIGURE 11. SMS MW WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

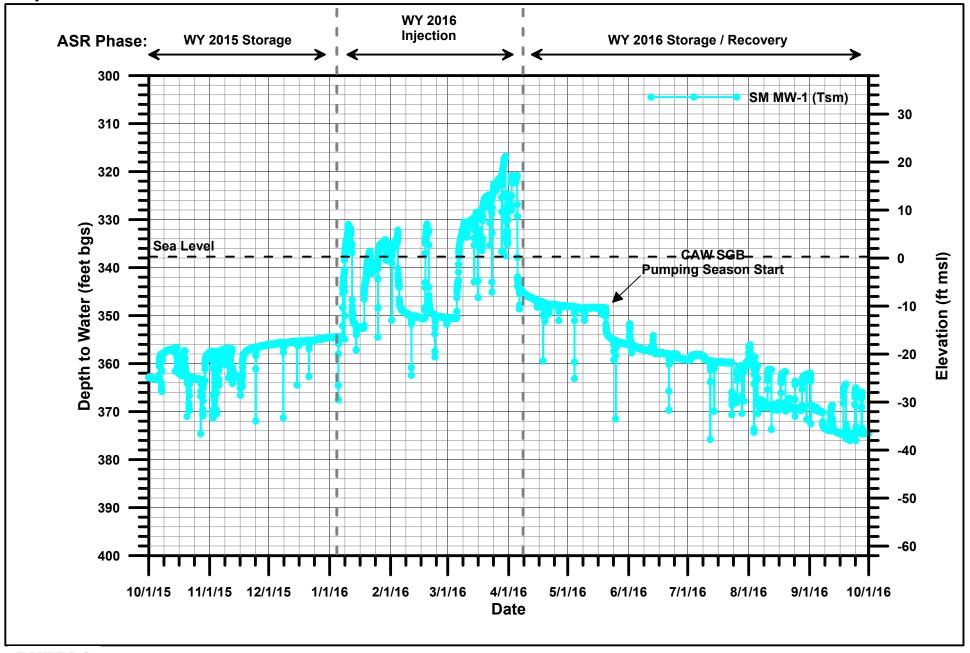


FIGURE 12. SM MW-1 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

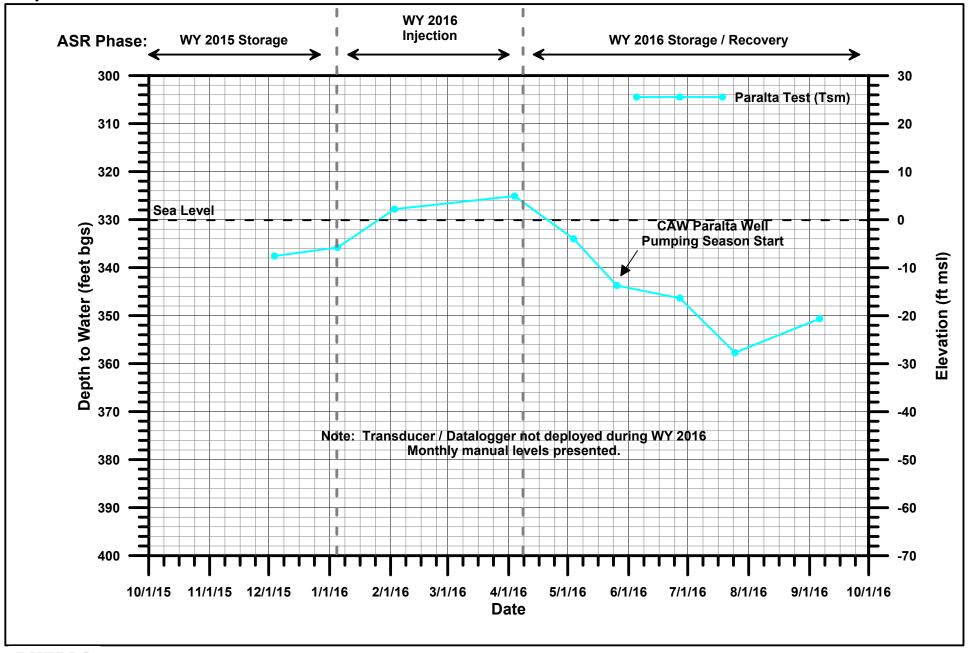


FIGURE 13. PARALTA TEST WATER-LEVEL DATA
WY 2016 ASR Program
Monterey Peninsula Water Management District

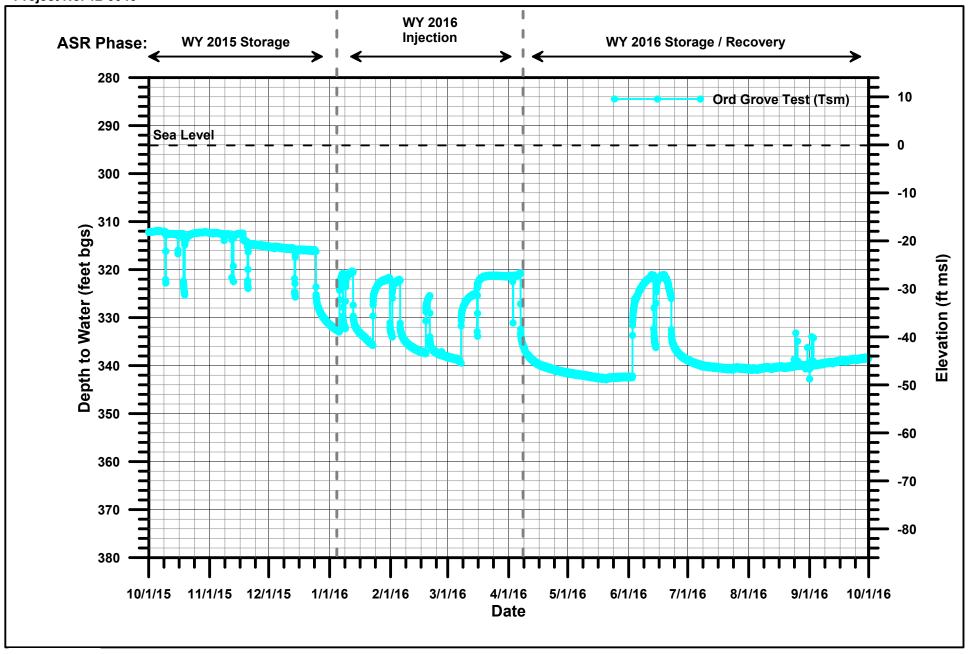


FIGURE 14. ORD GROVE TEST WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

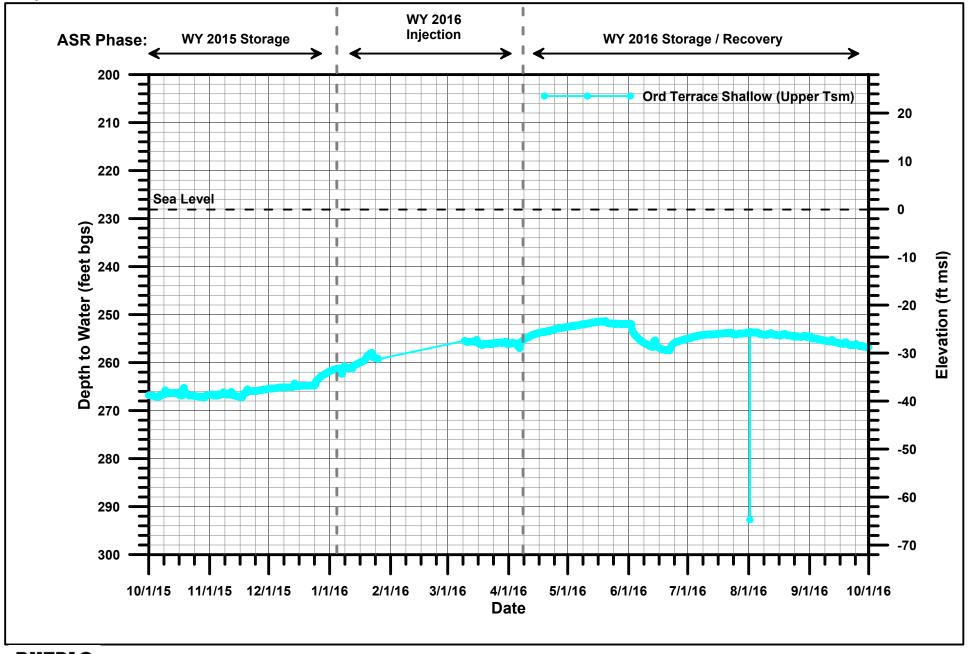


FIGURE 15. ORD TERRACE WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

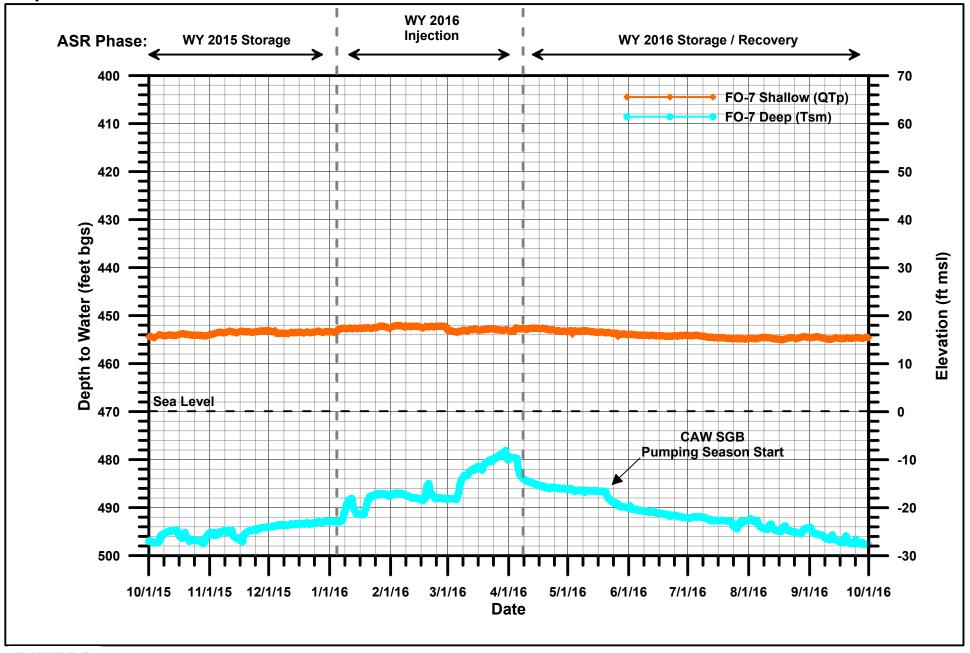


FIGURE 16. FO-7 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

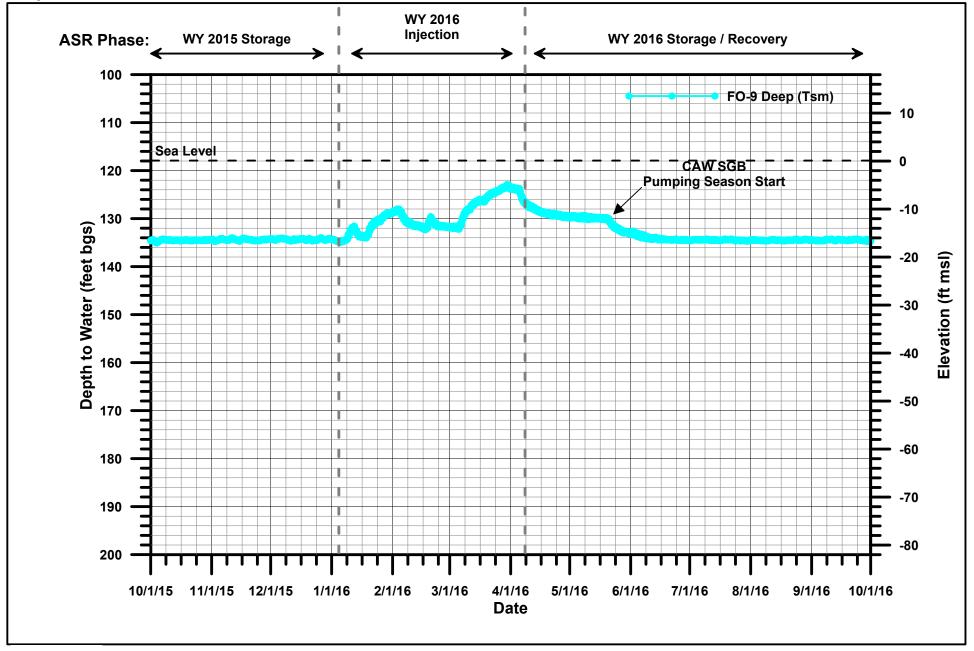


FIGURE 17. FO-9 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District

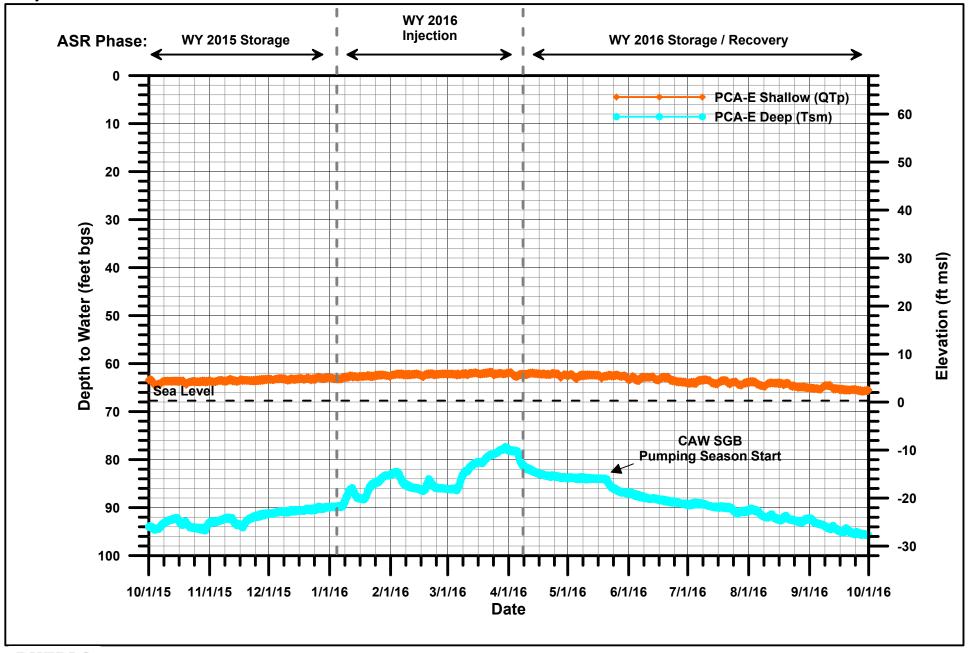
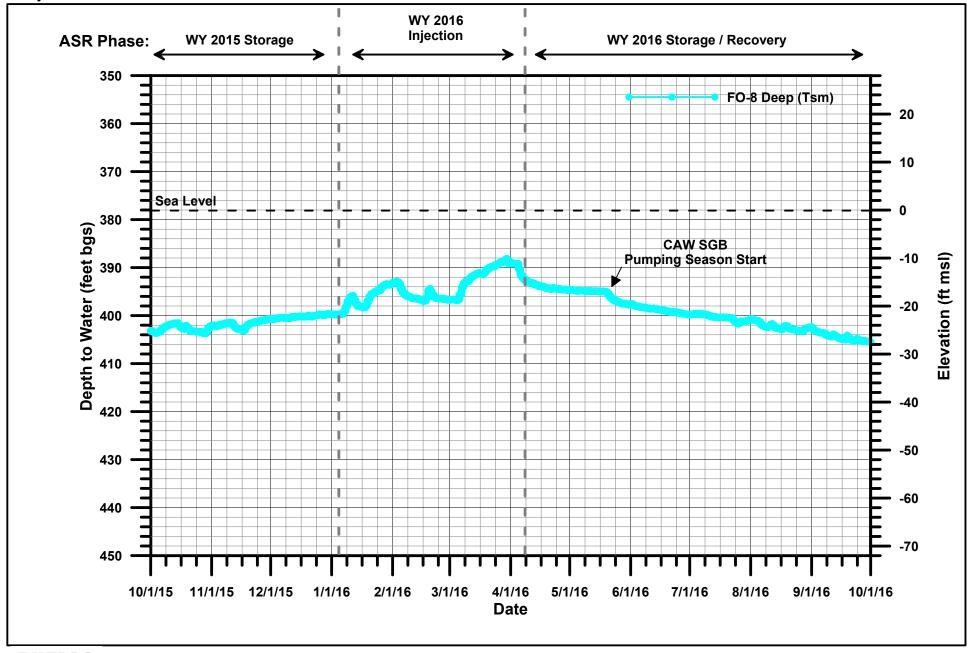
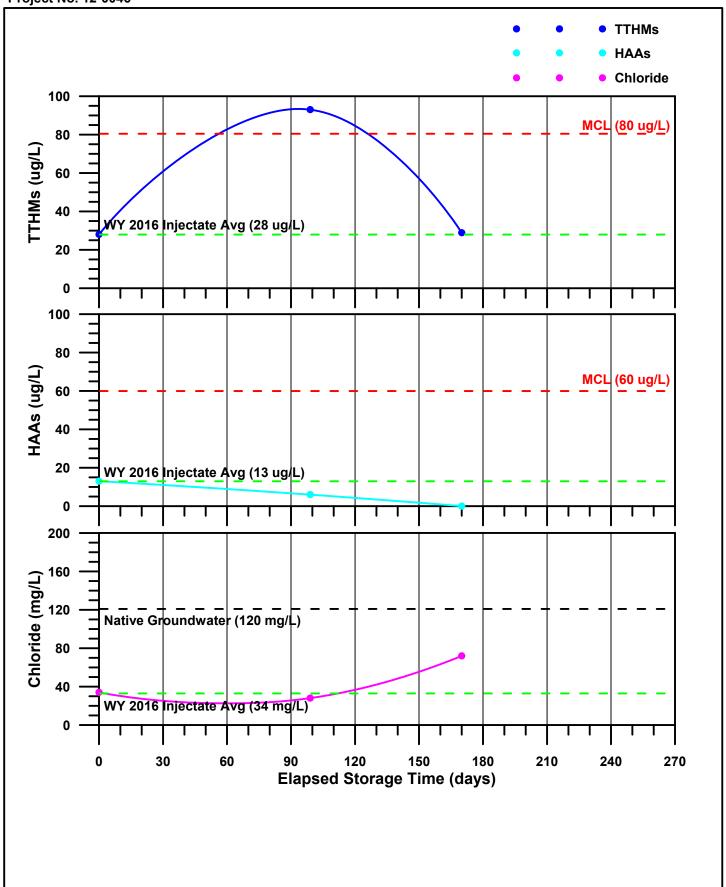
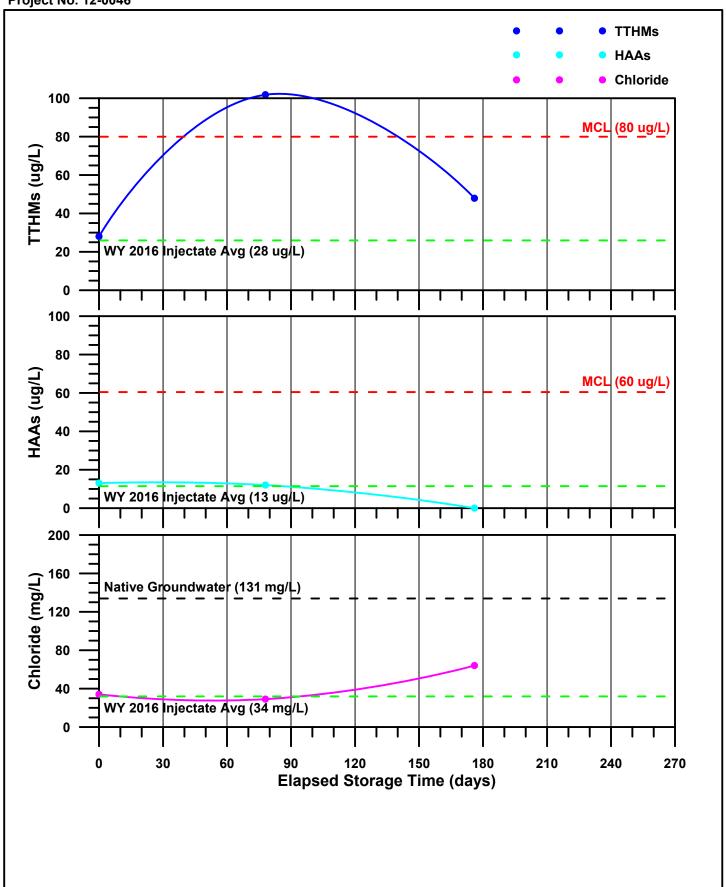
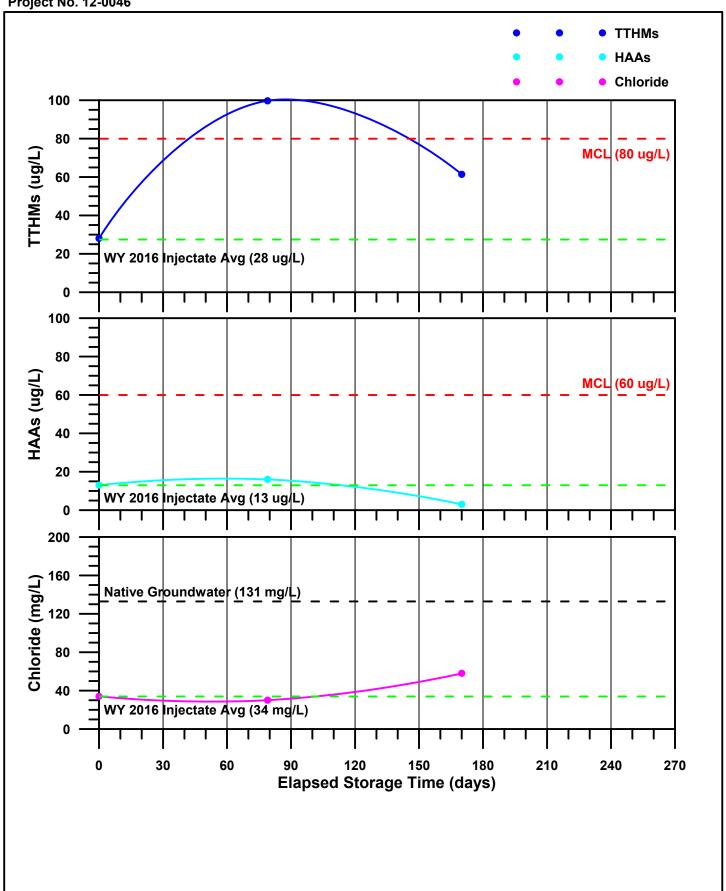
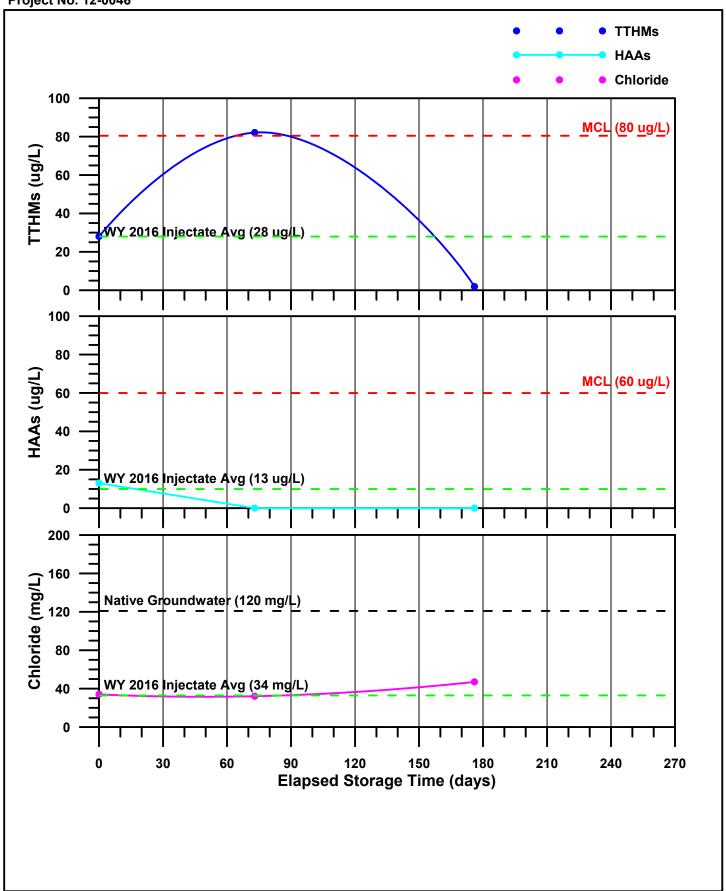
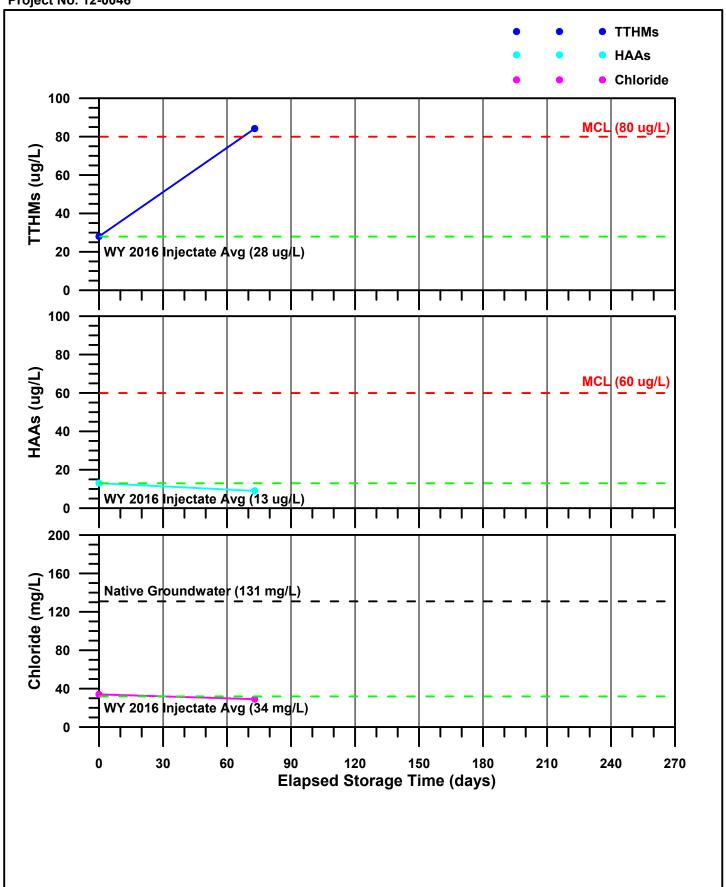


FIGURE 18. PCA-EAST WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District


FIGURE 19. FO-8 WATER-LEVEL DATA WY 2016 ASR Program Monterey Peninsula Water Management District





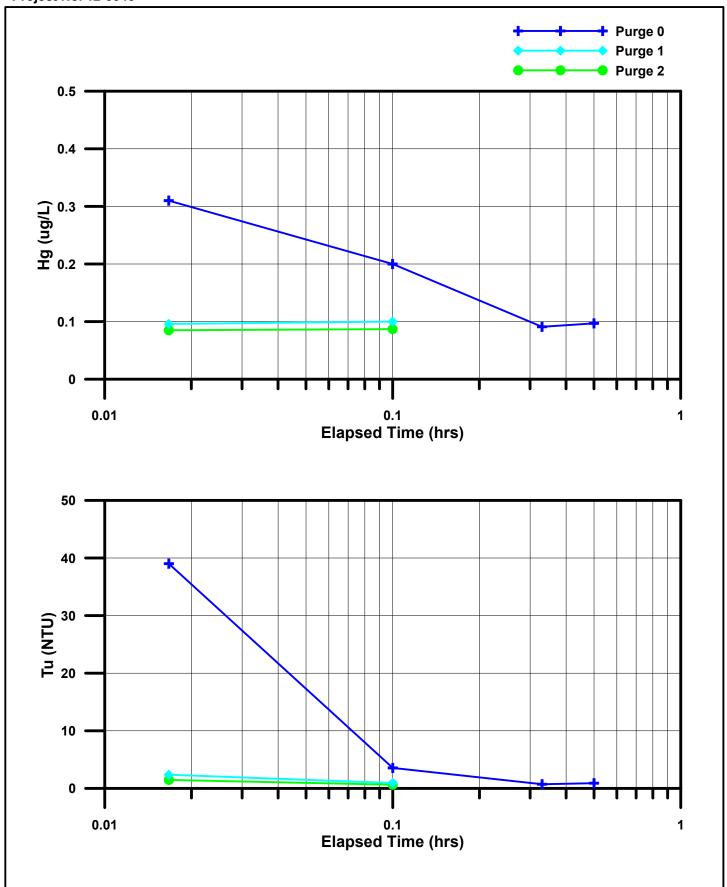


FIGURE 25. SM ASR-1 (2/11/16 SAMPLE EVENT)
WY 2016 ASR Program
Monterey Peninsula Water Management District

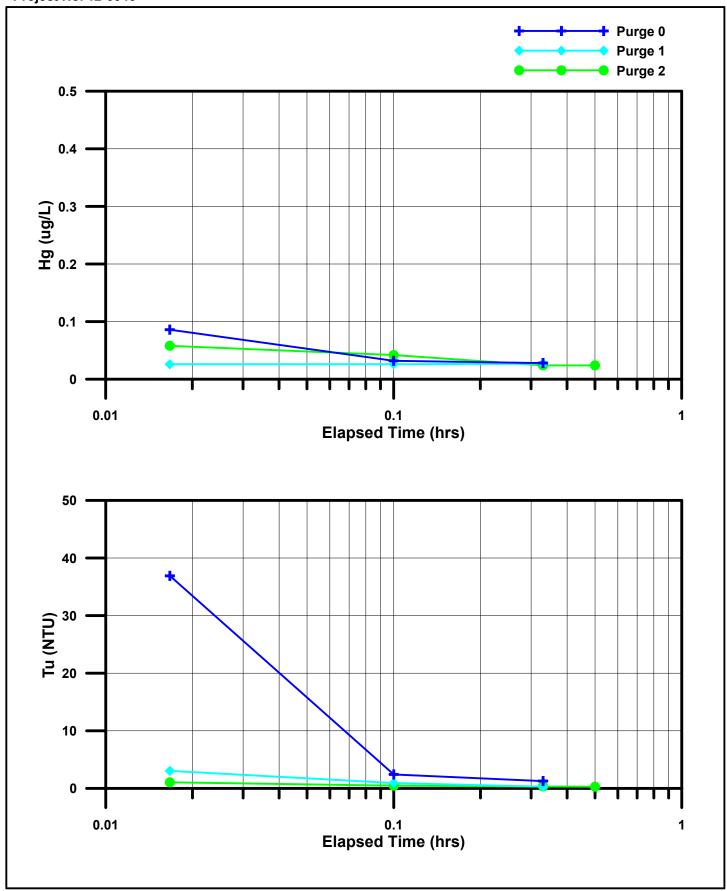


FIGURE 26. SM ASR-1 (3/23/16 SAMPLE EVENT)
WY 2016 ASR Program
Monterey Peninsula Water Management District

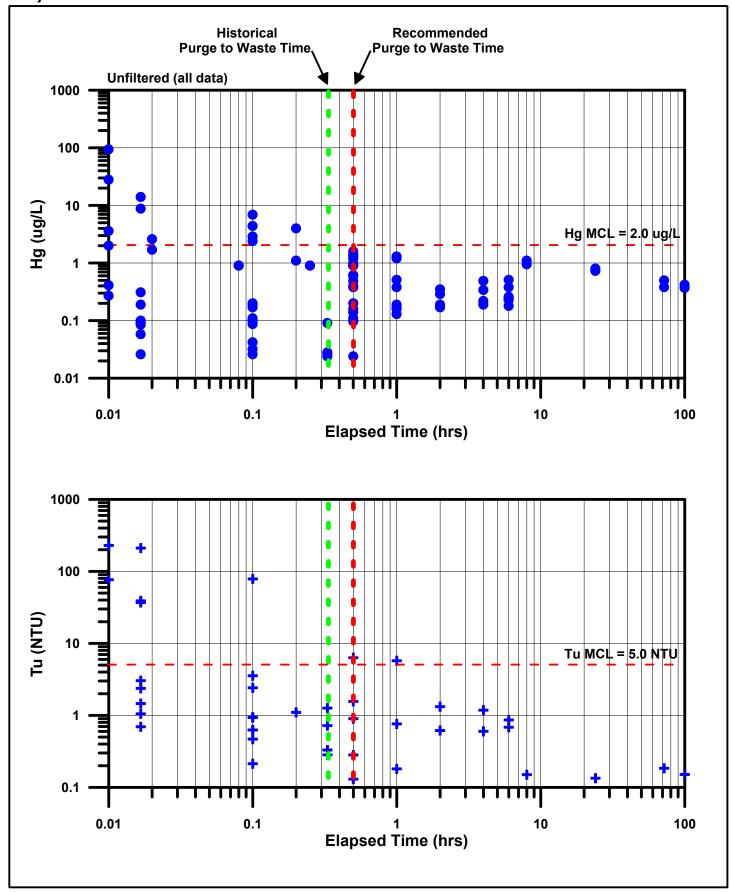


FIGURE 27. SM ASR-1 (Unfiltered Hg vs. Tu)
WY 2016 ASR Program
Monterey Peninsula Water Management District

Well: ASR-(

ASR Period Storage

Sheet /

PENINSULA MONTEREY MANAGEMENT DISTRICT

Test: SSAP ZA (SAMPLEID) Weather SUNKY, WWM Well Draw Up Inj Rate Lube / Skid DTW Comments FCV (psi) Tiger [F] (gal) | Tiger [R] (gal) | BF (gal) ×1000 Line Head N₂ (psi) (feet) (GPM) Meter (gal) (feet) Time (psi) Date (psi) 40090 __ Lube line rate = 3.8 gol/min 37591 10/7/150900 272732 1163457 064612 1990 317 78 OFF 10/7/5 1730 272732 1163457 65067 Turbidity (NTU) min after start 0 1 2 5 10 15 20 Sampler / H₂S DO ORP/ Temp Cond Post Purge [Cl₂] Pre Purge Laboratory (mg/L) (mg/L)

Date	Time	Meter Read	Meter Read	· u.g.	(°C)	(µ/cm)		Zobell	(mg/L)	(mg/L)	. \m					
	1			YSOGPM	23.1	932	7,39	-150	PO	0	TC IN MICKMBELL	190	-			
10/7/15	min	.3)	.45]	1 /		976	7.38	157 235	OU			148	-		\neg	++
-	bmin	44506+400	24500+ 250	450GPM				1/1	OU			247	_	-	=	1
-	OWIN	.3)	45]	400GPM		. 0	7,38	-128.435	ND			18	_	-		+
-	SOMIN	400 ML	1.451		23.H 23.5		7.34	-26,835	CW			7.7	_	-		++
	60MIN	64500	6×500+50	1300,PM				294.3	QN			4.2	-	-	_	
	120MIN	13 CHS00+300	4574500	1300/PM	23.4			00000	ND			Z.4	_		-	-
	240mm	-3 7 XSCO+200		13005PM	23.4						V.	39	_			+
	360 MIN	3 94500	145 134500	1300 GPM	23.3	1054	1+32	3000	ND		Y	0.1				
											1.3					

Well: ASR Period STORAGE

Sheet 1

PENINSULA MONTEREY MANAGEMENT DISTRICT

Test: CALAM DDW Weather SUNIM Well DTW FCV Line Draw Up Inj Rate Lube / Skid Head N₂ (psi) Time Comments Date (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) 4101010 40 07 42 PSI (BRUTER 381.4 1163457 FIGO 399.7 410260 JN-COLLECTED 75 1900 Turbidity (NTU) min after start Pre Purge Post Purge Temp Cond DO H₂S ORP/ Sampler / [Cl₂] Date Time Purge Volume Zobell Meter Read Meter Read (°C) (µ/cm) (mg/L) (mg/L) Laboratory 0 1 1 1 2 1 5 1 10 1 15 1 20 IN- (ALAM DBP 65105 38000 14 7.2 5.4 3.2 4.3 3.7 65067 22.4 1043

Sheet 1

MONTEREY PENINSULA TER MANAGEMENT DISTRICT

Well: ASR 1

MONTHLY STORAGE FIELD SAMPLE

Test: CALAM BI-WEEKLY DBP Weather COOL, SUN

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Comments							
10-27.15	0900	272732	1163466	65105	305	102	Ø	1900	381.68		Ø	413820	SZ	-> S:	s Psi	Lusi	ELINE			
				65115					392.37		750									
10 .27.15	'elloo	272732	1163466	65161	315	102	×	1900	-				CAL	AM	DBP	Cour	CTON	- AR	ZEL	
1027.15	1145	1		65256			1	-	-		3200							W. *		
12-27.15		7	7	65263	315	102	B	1900	_		1300		SET UP SAMPLING PORTS							
													FOR	5	SAP	3	BACK	PRE	SURF	
																		1		
	-															1				
																	UCE -			
													B. F	HAVE	N2	7851	(8 SA	MPCE		
																OR F	FILTER	ED		
			1			-							LEFT LUBE ON FOR SSAP							
	10.00									-										
			1 14						- 10				SA	MPLI	UG T	omor	erow	COW		
							-						TUR	UED (DEE	N,				
																_	-71	-		
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory					min at			
10/27:15	6900	65105	65161	750 GPM	19.2	1047	7,47	-14/28	NO	ND	NO	#JL FIELD		1			4.19			
10:27:15		65/61	65256	3000 GPM	_	-	_	7/	_	N-	_	TH NONE					5.66			
10/27/15		65256	65263	1300 GPM	_	_	_	-/	-			JL NONE	3,57							
dillo	1142	23030	03000									NONE	-							
37								/						-						
		The same of						/								600	P. 10			
- 1					5							3								
								1		7							3			
										12						100	1			

Well: ASR 1

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: CALAM DBP

Weather SUN

of 1

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)		Comm	ents		
uliolis	6900	272732	1163623	65738	350	no	15	1500	_	_	_	424030	CAL-AM	DBP			-
11/10/15		7	V	65777	ofF	110	-8	OFF	-	-	-	424200	50 ←	>52 P	1		
							1						N2 OF	F			
											3				-		
															- 1		
					+			1, -1						4			7
																	7
		1						2	7								
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	$[Cl_2]$	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Turbi	dity (NTU)	min af	ter start	20
11/10/15	0900	65738	65777	39,000	_							ARZEL	-			-,	
								/									
																	-
	-							/									
									-								
						1											
											7 3						
				-, -, -, -, -, -, -, -, -, -, -, -, -, -						÷							

Well:	ASR Period	STORAGE	
-------	------------	---------	--

Sheet 1

MONTEREY PENINSULA MANAGEMENT DISTRICT

Test: CALAM DBP SAMPLE Weather RAIN CLOUDY

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)			Cor	nments		
1/24/15	0800			65778	340	110	X	1500	3804	_	ø	427500	-	524	750) psi	FILTER	2
				65787					397.5	17.1	3000		5	7 H Z	2			
		272232	1163623	66035	OFF	110	Ø	1450				428120						
			,										11	J- C	octec	700	DBP	
													Lu	BE 0	FF			
Н																		
				4														
							-3											
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler /	0	Turbid	lity (NT	J) mi	n after st	art 20
11/24/15	6400	65778	66035	257,000	19.8	989	7.47	-158 235	_	ND	(mg/L)	Laboratory JN-CALAM CALAM	73	472	11.3 8	.4 3	7 7.8	3.4
								/							-	_	-	-
-															+	-		1
								/										
																-		

Well:	ASIR	- (ASR Period	stora
-			LOS L CITOU	_

R Period Storage

Sheet___

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: CAC-AM DBP sample Weather overcast, humid Time Tiger [F] (gal) Tiger [R] (gal) BF (gal) ×1000 FCV (psi) Line Draw Up Inj Rate Date Head N₂ (psi) DTW Lube / Skid Comments (psi) (feet) (feet) (GPM) Meter (gal) (psi) 0435640] 45/44 US/d3 Pilus 21-15/010 272723 1163623 066198 340 105 d 1310 STUP 1130. 272723 1163673 066333 330 1350 Argel collected DBPs \$0.05 H2S From Arzel (col-Am)'s Hotel test lett. Could smell 1 in pit after nommules, Pre Purge Post Purge Temp Cond Date Time ORP/ DO H₂S Turbidity (NTU) min after start Sampler / Purge Volume $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) 919 165 488 2.21 1120 1107 115 1157 Zobell (mg/L) (mg/L) Laboratory 12-21-15 1010 66 198 66 333 135,000 0.05

Well: ASR1

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: CALAM DEP

Weather RAN

of I

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	PS 1/0		Co	mment	s /PSI	
·S.6	0900	272723	1163623	66333	320	112	8	1750	372.3			439350	1	18	443	52 PS	51	
.5.15		272723	1163623	66599	320	112	Ø	1250				939990	/	10	443.	He		
	-												1	- 1				
															JL			
														LUB	E\$	NZO	FF	
					1													
													-					
													-					
													-					
													-					
_								9					-					
													-					
												1	-					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	[CI ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	Turbic	lity (NT	U) m	in after sta	art 1 20
1.5.15	0900	66333	64599		20.1	853	7.36	-180		NO	0,04	CALAM					.1 0.98	
								/										
														1	1 1			

Well:	ASR1	ASR Period WY 2016
	-	110111100

MONTEREY PENINSULA

Test:

Time

1-7-16 1410 272732

0830

1045

Time

1-8-16

Date

1445 272732

Date

11:	ASR (ASR Period	WY 2	2016				Sheet	1		W T E R
st:			Weather						of			MANAGEMENT DISTRICT
	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Comments FCV tank = 750 psi
,	272732	1163623	066599	335	92	0	750	372.33	0	0	0439970	92/50
	272732		066606	335				L				
N				-/90		-		367		~530		begin this
)				186				364.1	4 .	-560		adi rev
2				185				362.		600		adj PCV
				184				360.9	5	705		11 11
Ò				183				360146		720		To goes to #2 to Adj rute
-				185			_	359,90		735		JO made NO 4050 #2
)				181				359,11		755		
5				180				358,7	1	770		
1				181				358,04		780		Adj FCV + tale + 0/8/ps/
1				181				358,25		785		NO ADT
5				180				357.8	3	790		Jo back with #2 for a check
7	2			179			1,	705	-	800		
5				189				,		810		Adj. #2 to hyber note
5				176				?		870		Reg, seems to drift
0				181				7		770	439940	NO 10') but a lo sod and them
		1164433		179	C.I	11-	7	3.	2101		101.11	NO ADJ. DL IS OFF.
	Pre Purge	Post Purge		179 Temp	96 Cond	45	700 ORP/	340.42	31.91 DO	863 H ₂ S	Sampler /	Jo · ASR2 off@ 1040 for BF Turbidity (NTU) min after start
t	Meter Read	Meter Read	Purge Volume	(°C)	(µ/cm)	рН	Zobell Zobell	[Cl ₂]	(mg/L)	(mg/L)	Laboratory	0 1 2 5 10 15 20
						-						
						-						

Well: ASR 1

ASR Period INJECTION

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: ZND IN CYCLE

Weather CLOUDY /COOL

of

		1 cst.	במו ומן ני	yere	weatner	2000	ad Ico	26			01				
	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down	
1	1.8.16	1300	272732	1164677	66606	199	91	27	600			1000	44550	55 51	SHUT DOWN FOR BF
-					66606					372.4				/	
H					66642					427,90		3400		/	BACKFLUSH EVENT
4					66687										* LOGGER NOT WORKING
	4														PULL ON MONDAY.
	1.8.16	1400	272732	1164677		300	91	_		372.4	-	Ø			REPLACED No TANK
													144710		IN PHONED, SET TO
	1-8-16	1420			66701	190	86	42	20003	372.4	£	400			2000GPM FOR BOTH WELLS
						159	67	40	2000			1450			A ADD LE TO IN S
1	1011	117				110						122			mining
1	1-8-16					163	6.73					1380		/	
	1-9-16			1166176	066701	161	64	40	2030	52119	50.5	1420		//	
		0920				164						1340		/	Adj. to leep total <3000
11	1-10-16		272732	1168593	066701	164	56	45	-			1625			50 - Bowen onsite - tanks low
11		1320			1 1	174	74	45			48,3			/	Jo - adjust to reduce vot
14	1-11-16	0820	272732		066701	174				322	2	1190			TL - NO ADJ.
		0840		1169974		175	74	46	2100		14-11	1200			Attempted to MOS. to 169 FT
		0918				166	66	47				1490		/	CHECKLY MA 4677
1-1			Pre Purge	Post Purge			Cond		ORP/		DO	H-S	Sampler /	/	urhidity (NTII) min after start

Da	te	Time	Pre Purge	Post Purge	Purge Volume	Temp	Cond	рН	ORP/	[Cl ₂]	DO	H ₂ S	Sampler /		Turbi	dity (N	TU)	min at		
	-		Meter Read	Meter Read		(°C)	(µ/cm)		Zobell	1 21	(mg/L)	(mg/L)	Laboratory	0	1 1	1 2	1 5	10	1 15	1 20
1.8.	16	1330	66606	66687										17,6	14.9	12,8	5.63	4.85	3.99	6.73
																		E		
					- 5							1								
																	130-	= 30	14.	-
		=1																		
					1															
					11															

ASRI Well:

ASR Period 272016 NJ

MONTEREY PENINSULA

Test: ZND INJ CYCLE

Weather Cook SUN

of_2

MANAGEMENT DISTRICT

							_				0.									
	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressu Up/Dov	re vn		Comm		i i	
	1-11-16	1100	272732	1170192	066701	166	65	48	2010			1.560		/	30	Slux	ing t	- not	Stal	ne;
		1530		1170623		173	68	50	2040			1350		/	Jo	-redu	iced f	von	1710	90
	11216	0830	2-2732	1171830	066701	168	73	40	1950	39.54		1207		7/	AC	1 01	1			Je
				1171875		161	72	40	1950			1430		/	1-				_	_
	1.12.16	0900		1171875		300	90	_	1950		1	Ø		/	F	OW B	ELOW	40	ES	
														/	0	Huy	11-	STOP	P60	
7 60.4	1													/	In	Viecn				
ASR1	1.14.16	1100	272732	1171875	66701	300	81		1900	377.65	-	16	448490	52/54	13	ACKE	FLUSH			
DMIN					66735					446,4				/						
					66845										1					
														/	L	UBE .	OFF			
											1		448670			Nz C				
															,	PSV	CLOSE	0		
															-					_
														/	-					
											-			/	-					
	Date	Time	Pre Purge	Post Purge	Purge Volume		Cond	pН	ORP/	[Cl ₂]	DO	H ₂ S	Sampler/	/	Turbid	lity (N7	ΓU) n	nin aft	er star	t
C4 .			Meter Read	Meter Read	Tange , olume	(°C)	(µ/cm)	P	Zobell	[0.2]	(mg/L)	(mg/L)	Laboratory	10	1	2	5	10	15	2
120	1.11.16	1900								-			W8AS	-						
11->	1:12.16	1000		25966 GAL		18.1	967	7.37	-210	ND	ND	0.04	JL-51/12 DEP MBAS					_		
												,		657	51.2	13.4	109	5.3	1.7	19
8F	1.14.16	1100	66701	46445					//											
										V. 11										
				1.0																

Well: ASR-Period IAL

Test: 2ND IN) CYCLE Weather Code/County

Sheet 1

Line DTW Draw Up Ini Rate Lube / Skid Time Head N₂ (psi) Date Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) Up/Down Jo-noinia ASRI today 277732 1171891 66845 350 75 1-18-1(1810 2 LP CVE 2.3.16 1430 272732 117181 345 75 0 1910 344.1 66845 INMATE IN J JL.TC.TL 66846 LINE FLUSH ZOOGAL BEGINI 184 40 1500 272732 1171891 66846 82 650 BTW ZYNO NUFRNIGHT 2.4.16 0830 277732 1172521 1-6846 182 41 1610 3396 82 602 I MADT 2.4.16 1600 272732 1172784 66846 175 81 41 1600 850 AD I TO SCO FREION SPIET 2/4/16 1705 272732 1172907 66846 175 81 325.88 41 946 INJ. SAUT DOWN TC 0 0452390 ON 4847 Will BF & collect SSAP samples 2/11/16 1100 272732 1173004 66846 330 100 1600 358.11 2/11/16 66912 3450 gpm / 439-363 = 45 Soc 10 - Sample collection done! 0452810 OFF 2/11/16 1320 272732 1173004 66989 1600 360.65 322 101 Pre Purge Post Purge Temp Cond ORP/ DO H₂S Sampler / Turbidity (NTU) min after start Time Date Purge Volume $[Cl_2]$ Meter Read Meter Read (µ/cm) Zobell (mg/L) Laboratory 0 1 2 5 10 15 20 (mg/L) RUNI 2-11-16/200 66846 132 69.6 19.4 9.73 3.66 4.42 3.44 66910 RUNZ 2-11-16 1230 66912 66946 8.46 8.65 6:01 291 RUN3 2-11-16 1250 66946 66988 267 5.17 4.23 2.40 1.98

	ASR-1	+ MMM 1
Well:	2,71	+ MW-

ASR Period

Sheet

MONTEREY PENINSULA

Test:

Weather

of

MANAGEMENT DISTRICT

	Test:			Weather						of									
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)			С	omme	nts		
2-18-16	0900	272732	1173004	66989	326	102	Ø	1500	3583	3 0	6		6-1	er to	infe	ctru	n	TL/	Jo
	1400	Continue	LFing - n	of able to	get Ps	v to	skut	until	14106	v (w/:	J. Wich	ls, Cleof Hoss							
	1410	ND	1173207	67198-									Pr	ror .	toa	Herp!	ly 11	rj, ag	5a
_ 3	1450		1173247					1500			1350				te,	150			
	1620				159						1315			-	ty	to			
2-19-16	-	272932	882PF11	67198	158	C05	35	1400			1320			-	7				
	1330										1425		(v)	ept o	ap ou	115	ouse.	TL	
Police	0900										1370								
1-1.0	0910	272732	1176570	67198	159	92	56	1400	318:35		1390		250	in s	- Guy	Low	10 F	12	7
	0916	OFF	1176572						1.3								, .		
/22/16									~ 6 11			452810			_	line			,
2 23 16	0930	meterdrift 272734	1176572	67198	330	88	0	1198	358.1	1	0	456410	will	BF	+ coll	ect s	SAP LO	O-gal	(I
123/16			, ,	67198												,			
123/16				67233		-			437.2			15649 DOFF	lo-mii	n Spc	= 35	00/7	9.1=	44.	2
	1115	272739	1176572	67323	312	76	0	1200		-7	0	1564912001	sto	P 131	f; c	lose	FCV &	tank	-(7
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	II ₂ S (mg/L)	Sampler /					min af		
2/10/16	1715	Turned		ine =	1	1	0)4												
		0031760	0041300	2/ =>	18.8	51.7	7.23	186.3	0.02	ND	ND	TL						5 .	
112/16		0001110	1,700	9600	3010	10'	1.00	/	1				Ca	iA	DR-	W-	566	SDI	
110/11	dan	1173024						/					19	19	W	22		0.9	1
		1.771/2	1173096					/					17	19	20	21		1.3	1
123/11	103-	1173065 67198 67,271	12221	73,000				/				Turbically	97.9	18.5	23	2.7	1.41	1.55	1.7
123/11	1050	67 771	67304	331000				/								1,95			
46110	1 0	67304	67323	19,000		-	1	1	1	1	-		1001	1	a.38	110	-		

29.80

10 min BF SpC

Injectio

95R-1

Well:	ASR-1	ASR Period
		11011100

Sheet

PENINSULA MONTEREY /

WY 2016 Test: MANAGEMENT DISTRICT Weather of Wall Tiger [F] (gal) | Tiger [R] (gal) | BF (gal) ×1000 Line DTW Date Time Draw Up Inj Rate Lube / Skid Lube Head N2 (psi) (psi) (psi) Pressure Comments (feet) (feet) (GPM) Meter (gal) (psi) Up/Down 3-5-16/15/ 272739 1176572 067323 74 ϕ 1120 358.8 Ø Ø Prior to line flush TL, JO Had to wait to start line flush until CAW CVCrew got more wells online 3.5-16 1320 Begin LF@ 3000 gpm 5-5-16 1660 272739 1176782 67528 278 Can't shut PSV - no ini Fo 1090 272739 67528 286 shut 3-6-16 11115 1176782 92 Ø 1060 PSV is shut today Jo / Th. 3-6-16 1300 272739 117-6833 67528 78 36 178 340.7 18.1 680 rate /- 50 gpm JB 3-7-16 0815 272739 1177630 67528 176 70 36 1000 700 332.9 no morma adi 272739 1177797 67528 177 70 1000 690 NO ADT TL 3-8-16 D850 272739 1178641 67528 175 68 38 995 330.5 28,3 720 NO NOJ. TL 1178989 11 1640 272739 67528 177 330.1 1008 78.7 700 NONDO TL 3-9-160850 272739 179650 175 64 36 67528 975 328.5 30.3 725 NO ADJ TL 1200 Sheek Orlan Record Shut 173 272739 67528 1179797 62 1000 800 Adjo#2, not here -1235 175 36 1000 815 1179896 67528 bell's 72759 1410 175 35 1000 770 OVO FOR here TL 2727839 1710 1180029 67528 176 88 36 1000 NOAUS 0840 2927939 1180700 3-10-16 67528 38 175 71 32905 26.75 760 900 NE ADDA 27270390 1181769 0850 177 3-11-16 67528 72 36 30,4 900 328,4 3-12-16 0820 2727039 1107756 67 578 70) 36 850 730 NO 205. 71 77 can t 3-13-16 0940 272739 1183800 176 65 36 825 326.1 32.7 205 noad: To 3-14-16 1040 272739 1184852 67528 24.1* 720 178 90 36 008 334.7 no ale To Pre Purge Post Purge Temp Cond ORP/ DO H₂S Time Sampler / Purge Volume -Turbidity (NTU) min after start $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L)Laboratory 0 1 1 1 2 1 5 1 10 1 15 1 20 Lineflush SDI 3-5-16 1330 17 19 19 19 =165

* 3-14-16 Draw-up value (24.1') could be misleading -- ASRZ in is temporarily off for BF (IWO).

MPWMD ASR DATA SHEET MONTEREY PENINSULA Well: AS RA ASR Period (WY 2016 Sheet MANAGEMENT DISTRICT Weather Test: Well Tiger [F] (gal) Tiger [R] (gal) BF (gal) ×1000 DTW Draw Up Inj Rate Lube / Skid **FCV** Line Head N₂ (psi) Comments Date Time (feet) (GPM) (feet) Meter (gal) (psi) (psi) (psi) 325,1 33,2 735 820 414-16 16US 272739 TL NO ADT 1185120 67528 695 3-15-16 0820 272 739 67528 37 800 no adj 1185755 176 63 775 04569 D 56 36 322.6 wo and! 67528 176 808 1620 272739 1186119 Prior to shutdown To BE /M 0159820 67528 321.06 37.74 815 1186880 272739 175 800 3.16.15 09/5 67528 340.7 Start BF 1196830 300 1000 DON Q15=3400/821=41.499045K 422.8 82.1 67562 10 22 67602 StOP BF 1030 Start BE 345,2 67602 000 1040 Q/s = 3500/80.1=43.7 1350 425.3 80.1 67637 stop (84.6 2 41.4) 10 501 67649 3455 67649 Start BE DON Q15=3400/80.1=42.5 426.6 80.1 67683 Stop 11/2 67691 3000 wed offining Jo 8 78 3-17-16 0830 272739 1186380 62691 625 0 046993 Q Readings prior to my resume To Start inj; rate variable (+557) RM/Sp re-open 2025 344.4 3-18-16 1340 67691 80 272739 1186880 3-18-14 1405 250 28 36 157 Target NTE = 1200 gpm 42 3-18-16 1730 272739 1187165 169 55 1200 2010 Nords -TI 2010 311.9 32.5 1175-52 1188720 67 3-19-16 1030 272734 171 3/16/16 Sampler / Turbidity (NTU) min after start Laboratory 0 1 2 5 10 15 Post Purge Temp Cond DO H₂S Pre Purge ORP/ ASR I BF Date Time Purge Volume pН $|Cl_2|$ Laboratory (mg/L) (mg/L)Meter Read Meter Read (°C) (µ/cm) Zobell 3-16-15 10W 201 184 697 417 211 1.4 1 NOY 67528 1.33820MIN 67602 74000 2.55 13.3 4.45 1.96 0.8 1.1 67649 run Z 67602 47000 4.52 3.43 226 121 2.86 67649 67691 Run 3 42000 Injector= 3/16/16 1230 16.1 450 64 37021 1.46 2.74 @ 18.7°C meter start meter en MW-1 3-17-16 0930 (ORION meter indicates 25°C) ← 16.9 544 7.37 -68 2 0.07 3.68 @ 17.5°C 00 1-63 00 00501 00

Well: ASR - (

Test:

ASR Period WYZOLL

Weather

Sheet

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Well FCV Line DTW Draw Up Inj Rate Lube / Skid Date Time Head N₂ (psi) Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) 344.4 Sun 3.20-16 0925 469930 1189830 272739 309.6 67691 171 54 45 2050 34.8 1200 Jo no adi 272739 1191435 46 Man 3-21-16 0840 96 308.9 172 2000 1150 no adi Jo 272739 1192014 1645 55 62691 174 VV 2050 1130 No als 272739 56 3-22.16 0950 1193141 306.5 67691 172 37.9 1175 Noadi-2727239 172 0469930 1193510 67 691 55 35.3 1100 309,1 205 0470260 3 23-16 0920 272739 1194527 57 1920 309.2 35.2 1040 67691 174 42 no adj 049 038 @ ON 76 1055 272739 1194518 67691 310 1950 339.4 Puror to-BF 16-19ic 86.8 1105 67727 426.2 SpC= 3600/86.8 = 41.4 272779 67766 1950343.2 1130 1194618 315 52 0 428.6 85.4 67 801 SOC = 3500/85.4 = 41.0 67340 1200 345.4 Ø 1210 67874 Sec = 3400/85.4 = 39.8 430,8 272739 1194618 1300 67964 2000 345.0 314 55 readings prior to in i resume To 047095 Q 1605 119 4893 53 1345 165 39 rate likely to 1 overnight 312.0 3-24-16 0825 272739 1196129 67964 164 51 42 1890 307.3 37.7 1390 ad to 1530 spm @ 0930 hr 50 1196740 1500 158 45 adi to 1575 gom @ 1600 hr Jo 1630 36 0470950 3-25-16 0810 272739 67964 1198283 49 41 301.7 43.3 1470 160 1900 no adi JU 1630 272739 1199066 67964 160 45 37 2000 298.8 46.2 1570 No ads. 3-26. 6 0945 272739 1200608 67964 159 47 297.7 47.3 1515 1870 no adi To

Pre Purge Post Purge Temp Cond Turbidity (NTU) ORP/ DO H_2S Sampler / min after start Date Time Purge Volume $|Cl_2|$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory 0 1 1 1 2 1 5 3-23-11, 1105 67691 67766 2.61 18.6 74.6 (54 3.29 3.59 1.76 75000 1125 67666 67840 1.63 7.12 5.06 355 1.45 1.99 0.87 30 mm 1200 87946 2.30 3.08 (4.1 2.77 0.89 1.00 0.73 0.3 67840

10V7

SCANNED TO DROPBOX tuo

MPWMD ASR DATA SHEET

WY 2016 ASR-1 ASR Period Well:

Sheet

MONTEREY PENINSULA MANAGEMENT DISTRICT

	Test:			Weather						of			^	MAN	AGEN	ENT [DISTRI	CT	
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)			С	ommei	nts	N	ek
3-27-18	1105	272739	1202886	67964	159	45	4.6	1880	294.4	50.4	1525		~	0 0 1	6.	TL	(-	2 mr	w)
5-28-7 L	0835	272739	1204810	67964	160	50	42	1800	294,2	50.2			N	2 Och s	2 61	Lede			
18	1625	272734	1205545	67964	021	39	29	1875	289.	155.6	1625	04	N.	ر دور	1 -	TL			
-29-16	0900	272739	1207111	67964	150	41	3 1	1890	286.2	S8.8	1385	01-	~	od.	< ·	te			
di.		272739	120 7896	12964	150	39	3/.	1880	280,9	641	1695	6470040	To EDO	rusel o	FF S	2160	Her	1.00	Ce. 1
-30-16	0835	272739	1209413	67964	150	41	35	1700	278.5	66.5	1050	047387 50 ON	5	9/60	(05	21 for	م کرند	43	5
1	1000	272739	1209511	67764	290	69	67		334,2		0		read	ings pr	ior to	BF	7		
	1010			67999					427.2	1930.						93.0	= 37	6	
	1030			63036					340-1										
1	1040			68 071					430.8	Ddn 90.7			SpC	= 35	00/	90.7	= 38	3.6	
	1050			68078					341.9	-			1						
	1100			68113					432.7	90.8			Spc	- 35	00/0	70.8	= 38	3.5	
	1130	272739	1209511	68 125	290			. (340.4		Ø	47447 OFF	read	ings p	rior	to in	is re	sum	٠.
V	1315	272739	1209620	•	350				336.5		8		Stop	inj -	lows	ystem	press	(per	JN)
	0800	272779		68125	300				-4.		1								
11	1240	772739	1209620	68/25	300	77	31	1700	经120		9		Ad	to	4000	pri-1	882	21 12	7
(1	1645	272739	1209750	68125	175	64	OY	1700			630		Add	to 2	1200	car b	1900	si T	2
4-1-16	6820	277439	131017	68122	152	68	42	1625	3280	14.0	460			or of 1					
	1320	272739	1210292	68125	186	65		1650	326.5	15.5	565		44;	to 5	00 91	m		JO	
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell		DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	Turbio	dity (N	TU)	min af	ter star	rt 20
30.11		67964	65036	72,000									1.0	139	55,1	7,18	2,30		
		48036	68078	42,000												1.62	0.99		
	1050	68078	068128	50,000				/					0.89	1.38	1.97	0.94			
								11050	14.000										
3-30-16			11		14.0	465	7.3	48556	0.2	2.9									
3-30-16	1200	205400	00548 x100	4400	18.2	564	7.5	14678	10.02										
							/												
		1111																	
																		1	

RUN 1 PRUNT 18 N

MW-1-

A LWZE @ MWI = 0050Z X100 C) Colonic Zonel @ 162° E

		Well:			ASR Period	w/					Sheet		~	1	MAN.		T	VIINSU E Distr	R	J
	Date	Time		Tiger [R] (gal) ×1000	Weather BF (gal) ×1000		Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)		Lube / Skid Meter (gal)	4/1	T of	anget SRI	NIE omme	3000 mts	gpm ined	OV
4	-2.16	1045	272739	1210775	68125	139	85	43	1620	331.2	10.8	340		B-4	ore of			ease	-11)	C/M
	Lŧ	1130				161	65	42				1490	47447 9				neres			
1	1-3-16		277739	1212961	68125	160	43	42	1510	294.3	47.7	1630						151	61 ps	ż
		1450	272739	1213448	68125	159	67	41	1550			1700						(500		
4	-4-16	J836	272739	1215014	68125	165	67	43	1450	295.8	46.2	1505			ady			حارده	To	
	v.	1410	272739	1215537		165	63	42	1510			1580	0474476		o.d	ť			Jo	
	LI	1650		1215801		165	62	43	1575			1690	ON	Ad	(10	170	osi/	142	ORP	رار
4	-5-16	07FC	272739	1217092	62125	166	65	44	1410	2714	50.6	1540	0477 33 C ON	Read	en,	VIST	to low	flow	stoo	
	4.	1020	272739	1217120	68125	300	88	Ø	1420	346.2	DDW	Ø	5947 /56 dn	Inis	stoppe	d@07	150;	BF too	lay	
4	- 65	1030			68158					435.3	89.1		214/120					= 3		
Г	**	1050			68 193					351.1				1						
4	la	1100			68226					439.0	87.9			SpC	= 33	00/	87.9	= 3	7.5	
1	4	1110			68233					352.6										
4	EL	1120			68 266	300				440.2	87.6			Spe	- 33	ioo /	87.6	= 3:	7.7	
	O .	1140	272739	1217120	68293	fank/FCV	100	\$	14.00	352.7		Ø	0478120 OFF							e
	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell		DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	Turbi	dity (N	TU) 1 5	min at	ter star	
4	1-5-16	1020	68125 000		68,000							- 1						1.63		0
1	и	1050	68 193 000	68233000	40,000				/					1.87	1.33	1.93	1-66	0.98		L
+	и	1110	68 23 3 000	68293000	60,000									1-65	0.65	3.24	1-46	1.17	0.44	-
-																				
		1							/											
-																				-
+										-				-		-	-			-

ASR-1 ISF

MPWMD ASR DATA SHEET MONTEREY PENINSULA ASR-1 ASR Period WY 2016 Well: TER Sheet MANAGEMENT DISTRICT Test: Weather Well **FCV** Line DTW Draw Up Ini Rate Lube / Skid Lube Date Time Head N2 (psi) Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) Up/Down 4-17-16 1630 0478120 76 42 0 luse line on TL 272747 068293 0481640 4-18-16 1015 1217120 310 76 0 355.3 BF today TL /50 SPC 90.0 445.3 68327 1025 Soc = 3400 /90 = 37.8 1045 68359 358-1 אסס 68392 447,1 SC = 3300 /89 = 37.1 1055 89.0 68399 360.4 1105 drift -115 68432 448.1 Spc = 3300 / 87.7 = 37.6 87.7 shu 1481969 272 755 1217120 68486 1135 0 1380 Well off lube off 48196 4-26-16 0900 272755 68486 1217176 Turn off TXZ circuit 1100 10 - nm SpC 04851901 5-4-16 1000 272755 1217176 68486 55 356,5 0 1250 90.3 1010 68 520 446.8 05 SpC = 3400/90.3 = 37.6 68554 360.3 1030 63538 448.6 88.3 1040 Soc = 3400/88.3 = 38.5 6859Z 1050 3608 449.4 88-6 68 625 Soc - 3300/88,6 = 37.2 1100 6485680 68711 79 wall off; shut FCV; shut PSV 1130 272755 1217176 314 1200 362.0 Pre Purge Post Purge Temp Cond ORP/ DO H₂S Sampler / Turbidity (NTU) min after start Date Time Purge Volume $[Cl_2]$ Meter Read Meter Read (µ/cm) Zobell (mg/L) (mg/L) Laboratory 4-18-16 1015 68293 68359 66,000 4.67 389 5.7 097 0.85 1.14 RUN 40,000 20.4 545 6.9 75 RUNZ 1045 68359 68 399 19.12.25 1.73 0.82 0,00 TO - 55 AP RUNB 68399 1105 87,000 68486 2.58 5.97 2.4 0.72 0.77 0.15 0.66 4720 4/20 L-21 1 200 MW-1 4246 00006 5460 7.42-100,46-105 508 579 3300c 7,36 -15 5-4-16 10:00 68486 63554 200 7.13.36 0.52 1.18 1.10 0.73 3.55 - 266 059 0,48 68554 10:30 68592 1.38 0.98 1.88 0.57 68592

*Temp of water from of water. Of water notes 25°C

Well: ASP . /

Test:

ASR Period WY 2016

Weather

Sheet

of

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

two

SpC

Da	ite	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi) FCV (reg Shut	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)			Lube Pressure Up/Down		Commen		TO/TL	
5.25	5-16	0917	-TXZ bre	aker off —	068711	318	60	Ø	1190	363.2		o	48897	56 54	BFér	too/89.	P. femp.	PH	
1		0927			068745	319			1190	452.4	89.Z				Soc = 31	400/89.	2 = 38	3.1	
		1017			068914	314 shut 314	64			457.7				/	1		-	_	1
V		1027			068 949	shut 314	64								well olh.	shut FCV	tank. lu	hel Jo	1
														/	Arzell c	allects so	imples		
														/	for c	al-Am c	molina	ce	1
																	1	TO	1
																			1
																			1
														/					1
														/					
																			1
Da	ite	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Tu 0	rbidity (N	TU) mir 5 10 1.50 0.7	after sta	rt 1 20	30
5.25.	16	0917	068711							018.8				31.7 10	.1 2.37	1.50 0.7	5 0.69	0.58	0.71
1				068949	238,000	16,0	455	7.64	240		3.23	-							

SCANNED TO DROPBOX

(NOTE: When volve to FCV was opened, gauge dropped to & psi.

MPWMD ASR DATA SHEET

Well: ASR-1

ASR Period WY2016

Sheet

MONTEREY PENINSULA
T E R

MANAGEMENT DISTRICT Weather JO/TL/JL/ST Well Lube Tiger [F] (gal) Tiger [R] (gal) BF (gal) ×1000 FCV Line DTW Draw Up Inj Rate Lube / Skid Time Head N₂ (psi) Date Pressure Comments (psi) (feet) (feet) (GPM) (psi) Meter (gal) Up/Down (psi) 6489240 314 shut 068949 lube line ON 7-11-16 1630 049247101 57 55 BF well collect ORP \$ 55AP samples \$5AP samples \$5AP samples \$5AP samples \$5AP samples \$5AP samples 10-min -7-12-16 (1015) 316 open 1200 367.59 DDN 454.74 86.75 \$68949 272755 1217176 101 068984 1025 1120 069161 \$4931007 Welloff; FCV shut; lube off 311 shut 1140 272755 1217176 100 460.86 069240 0 1180 Cl2 OP DO Pre Purge Post Purge Temp Cond ORP/ H2S Sampler / Turbidity (NTU) min after start Purge Volume Time Date Zobell 0 1 2 5 10 15 20 570 19.7 5.35 4.23 1.86 2.71 0.96 (mg/L) Meter Read Meter Read (°C) (µ/cm) (mg/L) Laboratory \$68949 069227 0.51 1,93 7-12-16 1130 069240 7-12-16 1140 291,000

Well: ASR 1 ASR Period STORAGE Test: (AL AM SAMPLE Weather SUN / WIND

Sheet 1

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comn	nents		
7-14-16	1100	272755	1217176	69240	320	40	\$	1150	347.18		Z400 E	49790	5555	ARZEL	TO S	SAMPL	E	
		1	1.				/				Z400							
7-14-16	1215	d	A	69375				USD			Ø	4974160	5555	LUBE	+N-	AFC	- 11	
											-					0.,	ال	
														Bower	118	NIT	CHE	Cia
														ON				
														Olo	0,	inde		
														r -				
			1															
												,						
						1			- 4									
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume		Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0.	rbidity (N'	ΓU) 5	min afte	r start	2
7-14-16	1100-1200	69240	69375									ARZEL (ALAM						
	-								1									
	-																	

Z. SET VBLA dullo Audo, GFF to HAND ENGLOSE WERGHAND WERGHAND

Well: A S R Period_____ Sheet

MONTEREY PENINSULA

MANAGEMENT DISTRICT Weather_ Well Head (psi)

N2 (psi)

DTW (feet)

Draw Up Time Tiger [F] (gal) Tiger [R] (gal) BF (gal) ×1000 FCV Line (psi) Date 7-23-16 6915 272755 1217176 069375 320 0 0 1050 3676 0 - 050 1010

BF 15 FMPL (, then 30 Com 17 U)

Started 503 50 m to 5 5 tel 11 00 50m 0 2/530 5 % Proposed put a CAW 57524 rest (0) than they to TO 545 509 80 725 0830 275671 1217176 069507 310 40 40 1000 -TL AC MAX set to 80, on and temp is 85, 0K Pre Purge Post Purge Temp Cond DO H,S ORP/ Turbidity (NTU) min after start Sampler / Date Time Purge Volume $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory 0 1 1 1 2 1 5 1 10 1 15 1 20

Well: ASR1

ASR Period RECOVERY

MONTEREY PENINSULA

Test: BI WECKLY REC FIELD Weather FOG SMOKE

MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)			Lube Pressure Up/Down		Comr	nents		
8.10.16	1110	284563	1217252	707177	320	45	45	1850	399.N	_	1085	584290	48/0	CACAM	1 Re	C		
													/					
													/					
													/					
													/					
																		_
													/					_
				-									//					
													/					_
													//					_
													1					
													/					
													/					
													/					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/O Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 Ti	rbidity (N	TU)	min af	ter star	t 20
3-10.16	1110	NOPULGE &	EC SAMPLE	_	18,0	533	7.2	220.8	0.22	2.51	N/A		0.32					
										1				-				
							-	/					+-					
								/					+					
							-						++					
								/										

F-1

MONTEREY PENINSULA

Well: ASR1

Test: Bi-WEGKLY FIELD

Weather SUN/CLOUPS

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comment	s
9.8.16	1300			_	308	39	39	1900			1050			Bi-WE	eny F	ieus-JL
				φ.												
				+				1 23								
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ S Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 Tu	urbidity (N)	5 10	after start
9.8.16	1300	_		-	16.3	483	7.52	-88238	ND	1.3	004	JL FIELD	-		_	10.
																1 -4
																1 4
														1 1		1 1

Well: ASR 1

ASR Period RECOVERY

MONTEREY PENINSULA MANAGEMENT DISTRICT

Test: NA QUARTERY SAGADED Weather FOG

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000			Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)	Lube Pressure Up/Down		Comi	ments		
.21.16	6916	1217428	340534	70813	315	418	48	1050	413,90		1590	77066		REC TI	SYSTI	EM C	1500	
													/					
													/		~/		11	1
													/	A125 Cow	5/1	de	gett	3
													/	2000				
													/					
-													/		-			
													/					_
																		_
-								1										
_													/					_
1								1					/					_
													/					_
		-											/					
													/					
													/					
													/					
													/					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	O .	arbidity (1	NTU)	min aft	er start	20
121/1	0927		-	NA			7.03	-242.9	ND	1.17	ND	51-41-08P NBAS	NA -			10	15	_
		_																
								/										
								/										
								/										
								/						-				
					l.													

Well: ASP 2 ASR Period & STORAGE
OFFICE OF MONTHLY Weather FOLG SUN

Well Line DTW Draw Up Inj Rate Lube / Skid FCV Date Time Head N₂ (psi) Comments (psi) (psi) (feet) (feet) (GPM) Meter (galf (psi) 10/20/5 0900 22035 137876 281786 336 84 52 -> 50 JL REPLACED 1800 389.91 281817 465.10 FILTER 10/19/15 1920/5 1145 22134 15404 P88185 336 84 0081 GLEFT LUBE ON FOR INZI SAMPLING ADJUST FOR FOR SSAP SAMPLING TOMORROW SET WELL B 1300 GPM AND 20 Bill WELL HEAD FOR SAMPING Turbidity (NTU) min after start Pre Purge Temp Cond DO H₂S Sampler / Post Purge ORP/ [Cl₂] Purge Volume Date Time 0 1 2 5 10 15 20 43.5 28.1 233 15.2 3.65 2.16 3.32 Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory FIELD JLILIO 28 1884 98000 21.7 841 0.04 10/20/15 281786

Well: ASR 2

ASR Period STURAGE

Sheet 1

		Test	SSAP S	AMPLING	Weather	SV	N				of	1		-	MAN			DISTR		
	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)			C	ommo	ents		
-	10.21.15	0830	22134	137876	281884	318	85	8	1800	390.22		-	15729	S	SAP S	S And a	0/.04	e		
101					281899				34	420.1	,	GyreAction 1288	· ·			SAM	tello	7		
-			19/2		181383					1		1000	15836							
1											17.									
		7 9																		
							7					1		1	-					
													Tr.							
											40						2			
											1									
								- 5 - 1												
														1 1000						
									1			,								
				1																
												- 1	,							
						To be						110								
				14							7	and P								
												3 11			. /-				.~	
	Date	Time	Pre Purge	Post Purge	Purge Volume			pH	ORP/	Cl2	DO	H ₂ S	Sampler /	NTU	Turbid	lity (N	FFILT	min al	er start	+
61	101215	6830	Meter Read	Meter Read		(°C)	(µ/cm)		Zobell	1	(mg/L)	(mg/L)	Laboratory	4	11	2	5	10	15	2
167	1012.5	002	281884	281884	3000	22.9		1	92.5	ND	ND	ND	TL ISL MCCAMBELL	37.7		210	47			
				281893		22.3	657			NO	NO	NO	Thish mechanises	8.03	367	20	-	1001		
5					9000			7.28	111.3	NO	NO	NO	TLIS MELANBER TLISH MELANBER TLISH MELANBER	0.95	3590	74(500)	1250+	1086		
5				281924,			815	7.15	89.8		0103	NO	T- MCLAMBER	1.04	5150	12(50)	+380+	250		
			-	282076			875	7.16	7019		0.02	00	MELANBLE	1,22	5680	.46	19(500)	+250		
1				200000				7.21			0.61	ND	TI MANGELL	0.74	6760	180	580	+250		
0		-				-		7,39	58.5	CN	0000	NY	JLITE MEANERUL Shite JO	1.12	6760 380 4720	93	-90	+586		
			4,	282378			753		58.5 240.10	ND	ND	no	75,40	1.36	3480	788	0+25	0		
ND										0.85	NO									

Well: ASRZ

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: Fush

Weather PAIN

of <u>1</u>

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)			Co	mme	nts		
WZIS	930	22677	V37676	282383	335	-	-	1600	-		4	16176	N	O FI	ELP	PAR	AMO	GRS	
	1400	22986		282684										F	EUSH	426	ONL	4	
	1630	23340	137876	283(41)												1			
1/3/15	0800	23340	V37876	283041	335			, 3,			77.2	wer8							
11/3/15				283793	335														
11415	6960	24109	137876	283793	355			1600				16485							
																1			
							Mel I								T WAY	V			
				N. Charles			MARKET SE			100					ALC: Y		141		
		2///						72000			ham?								
								4											
											y/35/								
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell		DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	Turbic 1 1	lity (NT	TU) 5	min af	ter star	t 20
														6.16					
)	
													171						
										15,415,49	THE STATE OF	Marie Comment			TATAL S			W. 1947	

15T FLUSH ZNO RISIN

Well: ASR 2

ASR Period STORAGE

Sheet 1

MANAGEMENT DISTRICT

PENINSULA

MONTEREY

Test: SSAP

Weather SUN

of 1

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Comments
11/5/15	09100	24792	137876	284481	330	92	Ø	1850		0	0	17271	SSAP SAMPLING
111515	1630	25282	137876	285023	330	92	ø.	1850		K	1325	17375	NO SPECIFIC CAPACITY TAKEN
					-								· 47930
								1					
		1-											
					(4)								
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Turbidity (NTU) minarter start 0 1 2 5 10 15 20
	4				21.9	854	7.56	/	NO	no	-	JL, JO, TL MCCAMBEL	-3.59
					20,2	945	7,70	210	ND	QU	_		0.38
			284501		7:05	904	7.67	033	ND		_		0.39 3×50+700=2260 1730+1086=
			284521		19.8	880	7,69	123.3	ND	NN	_		0.40 7850+650-4150 4 19D+586=
			244570		20.5	823	7,80	193.3	MO	NO	-		0,49 6890 +250 7140 5380+250 =
			284657			630	7.75	40.6	NO	ND			0.38 0.22 0.30 4 775 - 250 = 0.31 30 4 775 - 250 = 0.71 325 0 + 586
			284430		19.4	820	7.61	142.2	ND	NN	-	1	7.+1 87507600 4600 51250 4586
			922001		19.5	843	1.77		NO	NO	_	A	7,49 87500 550= 4550 8x80 250 =

0.0167

6

Well: ASR2 3 MW1 ASR Period STORAGE

MONTEREY PENINSULA MANAGEMENT DISTRICT

Test: QUARTERLY DBP

1w1

Weather COLD, SUN

Da	ite	Time	*1000 ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)			N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)		1	Со	mmen	ts	
12/15	150	0080	25361	137876	285023	330	Ø	92	1500	383.1	_	Ø	17604				12		
			25424	1	285051		-	12	1000			-	1100	S	,4 4	> sops	100 m	FILTE	R
			25424	A	285088					449.6	-7-	2700		10	MIN	U SPC	TES	T	
					203000								17640						
										- 11-6									
														JL.	- Lu	BE OFF	_		
														(4	2-0	FE			
														103		-			
				4															
									15 . 1		= 1			1					
				- V															
														-					
														-					
	N													-					
Date		ime	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S	Sampler /		Turbid	lity (NTU) mi	n after st	art
2 15	15 100	00	285023	285088		18.5	1048	7.43	188	UD		(mg/L)	Laboratory L-DBP MBAS	0	1	2 5	1	0 1 15	1 2
							10		244	NU	VD (0,05	MBAS	13.4	69.3	16.011.	3 12	5 9.48	4.
15/15	- 110	0 1	10022000	M22630		17,4	975	721	212	1.0			1,000						
				70		117	173	7.31	245	ND	NO (50,07	JL-PBP MBAS	=			_	-	=
				3												1			
-																			1

Well: ASR-Z

ASR Period INJECTION

Sheet 1

Test: LINE FLUSH TO INSECTION TEST 2 Weather COOL SUN

I	Date	Time	Tiger [F] (gal)	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)		N ₂ (psi)	DTW (feet)	Draw Up		Lube / Skid Meter (gal)	Lube Pressure	Comments
							176	(psi)	1.17 =			10	17640	Up/Down	
1	1-7-16	0900	25425	137876	282087	328	90	ø	1425	38191	_		11010	39/21	Pro to the flux
1										-				1 24	1
11														5045	LF INMATED 0930
Н															1500GPM@ 74PSI ASR
1				1											LUBE ON FOR BFTOUGH
1															
11	1-7-16	1400	25425	137878	285 799	322	90	32	1600	381.84	Ø	Ø	17711	5045	BEGINNING IN]
	1-7-16					206	87	27				1200			TL ADJ TO 1200
11	1-7-16	1550	25425	137998	285700	209	74	27	1510			1086	17740		Jo no adj
	1-7-16	1620	25425	138031	285700	204	72	27		354.74		1160			ū.
11	1-8-16		25425	139193	285700	206	70	27	1400	346.9	34.94	-1270	18253	50 45	JL NO ADJ
	1-2-16	1050	25425	139 379	285700	300	86	0	1470			0	18014	48 45	Jo well of for BF
-	1-8-16	1160			285700		-			37480		3000			BACKFLUSH EVENT
H					285730					454.67		3000		/	
41					285798							R			<u>\</u>
11								1							
The	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume		Cond (µ/cm)	рН	ORP/ Zobell	$[Cl_2]$	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	MIN THE	1 2 5 10 15
	1-7-16	0900	285087	285768	81									18	X X 20 36 53 (
		0936	285168	285204	24 36									14	x x 22 33 46 4
		0945	58250A	285264	36									14 >	< x 29 - 69 S
		1000	285 264	285318	7 54									13	xx - 44 61 5
		1230	285318	285530)	/									22	× × 23 35 52 3
1		1400	285691		373									19	× × 19 21 23 1
1					604,000 TOT	AALLF			/					-	
1	1-8-16		285700	245748						_	_		TULLAT	485 3	2 29.5 6.01 1,761,05 1.
	10 10		23 100	000710									TAMALIMA	100)	4 41.7 0.01 11.70 1.65

Well: ASRZ

ASR Period INJ

Sheet 1

MONTEREY PENINSULA
T E R
MANAGEMENT DISTRICT

Test: ZND INJ CYCLE

Weather COOL SON

of 1

	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comn	nents		
	1.8.16	1230	25525	139379	285798	300	86	Ø	1600	381413	-	Ø	18038	Ø	NEW IA	J) (40	UE.		
ŀ					282801					~~~					FLUSH.			ING	
	1-8-16	1245	25525	139379	285801	203	69	25	1550	_	_	1490							
1	1-8-16	1630				209						1540			1540-				
															#1014 neve)	30; +	und f	wy	to
	1		25525	141273	282801	209	53	37	1401	327.21		1630			nere ,	huot a	fler	20 nm	5, 1
P		0905				710	95	12	9000			1630			Mj. rai				
			. 0												sightly	leeve	reel a	++1	10
F	1910	gpm	although	NO 405,	nadi @	#/,	No	furn	er ast	J' ma	ele ou	1-9.				-			
-	wen	Dire	仅40井1	vote ~11	430, 40	s, th	ene	40 n	1340) tol	coep to	otal	below:	5000	gon.	TI	_		
ŀ	10.11		11	ull 157	n 6=0 a t	200	- 3	77	1114-	22.01					- -		+		_
			25325	144 176		217			1450	521.54	59.9				Jo- Bou			C w	
	1-10-16		15175	145 913		215	62	37	ulte	271 20	10.7	1490		-		educe	+100		
	1-11-16	0460	25525	145 713	203001	215	6)	27	1410	74.20	60.2	1970			Jo/TL				_
1																			
f																			
													1						
	Date	Time	Pre Purge	Post Purge	Purge Volume	Temp	Cond	pН	ORP/	[Cl ₂]	DO	H ₂ S	Sampler /		rbidity (N'				
ŀ			Meter Read	Meter Read		(°C)	(µ/cm)		Zobell	10-21	(mg/L)	(mg/L)	Laboratory	10	1 2	5	10	15	20
														++				-	ŧ
														++					1
										_				+				-	1
5																			1
1.3																			1
1									/										
П								-											

Well: ASR 2

ASR Period INJ (2ND CYCLE)

MONTEREY PENINSULA

Test: 2ND IN) CYCLE BF Weather SUN; COOL

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Com	ments		
1-12-16	0830	25525	148069	285801	212	62	37	1450	31615		1807	18287	X	LEFT	Settle	220		
1.12-16	6900		148132		320	91	-	1450			ø					,		
														FLOW	Ber	OW	40	
													/					
1.14.16	1000	25525	148132	285801	330	96	_	1425				18297	4845	SUT T	Soul	INI C	ECTIO	N
	1			285835					458.2		3000			\		,		
				285901				OFF				18308	X	BACK	FLUSH	EVER	77	
						1 = 1							/					
													/	LUBE				
													/	PSV	Cost	EO	N.	
													/					
													/					
													/					
													/					
													/					
													/					
						2							/					
					_					20			/_					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	(°C)	Cond (µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	rbidity (1	1 5	1 10	1 15	1 2
1.14.16	1000	285801	285901	000'00/	_								78.7 4	1.5 12,6	8.5	4.3	2.1	1.9
																7.		
			0					/										
								/	Part I									
								/									9 1	
																_	_	_

BAKFLUSH DMIN

BACKFLUSH

ASR Period WY 2016

Sh	eet	
211	cei	

MONTEREY PENINSULA

MANAGEMENT DISTRICT

	Test:			Weather	SUL	uy.				of			i~	1AN	AGEME	NT DIS	TRICT	
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000		FCV (psi) 262(cl)	Line (psi)	Well Head (psi)	N₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)	Lube Pressu Up/Dov	re	(150)	Commer	nts	
-18-11	1030	25637	148132			64	ø	1375	380.37	0.0	Ø	18308 (011)	L			c(0)-e	d 1 F CV	was
18-16	1200		148133	->(throt	le don						FCV to star	Smo	oth	e Ilon	tra	sition	tow
- 18-16	1230	25637	148161	286049	218	78	35	1410	347-17	33.2	1490		/				rv set pt	
			150070	286049	214	77	GY	1350	313.6	66.7	1620		/					
		0000	150685	286049	217	64	42	1300			1560		/	4	arid 1	NI IN	#3^	12 -(
			150807			64	43	1400		14-	1570		/					
20-16	1015	25637	152537	286049	217	61	43	1425			1725		/					
	100	25637	152980	286049	ZZ4	63	44	1425			1575		/					
	1630				219						1590		/					
	1640				208						1145		/	A	di. ra	the 4 p	Ta	_
21-16	0835	75637	154960	286049	212	57	51	1575			1930		/			,		
	0810	STARTE!	> MW-1@ 11	15=00280A	209	-		1200			1980		/	1	oi va	te mo	, TL	
	1650	25637	155866	286049	220	59	48	1390			1830		/	10	_	V		
	1705				226	64	47				1535		/	10-1	_	dwn	ner Bou	seu.
22-16	0830	75637	157294	286049	225	65	48	1500			1530	,	1/1				1	
23-16	1000	25637		286049	230	70	47	1380	30190	78.47	1240	Jo- Meet W system r	COVE	evu l	last n	aht. A	o adi.	al
24-16		25637	16/075	286049	228	68	47	1350			1360	18308 Tour	/	1	50/4:	Luber	251	
	1050				231	72	47	1356			1235		/	A	05 F	CV 7L	-	
1-25-16	9802	25637	162550	286049	200	71	48	1300	307-6	5727	1105	18613	5/5	151	repta	ej. TL	- SQI	
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell		DO (mg/L)	H ₂ S	Sampler / Sampler /		Furbic	lity (NT	U) mir	after sta	rt
18-16	1115		285961	2.2 100		gpn		Zoben		(mg/L)	(mg/L)	Laboratory			20 2		2,2	-26
			28.6005	01	2500	7 pm	105 ± 4						-			19	0.7	
			2.2 3			JI								,	10			
																_		
																	-	-

		7
Well:	ASR-	6

ASR Period

Sheet

MONTEREY PENINSULA

10-min

MANAGEMENT DISTRICT

	Test:			Weather				-		of			M	ANA	GEMEN	IT DIS	STRIC			
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	TANK N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Meter (gal)	Lube Pressure Up/Down		C	omme	nts			
1-25-16	1125	25637	162753	286049	330	93	40	1400 8	370.4	5	B	18658	54/49	Sh	art dr	un fo	NB	F		
	1145			286 076		HEMAG	nr PSV		463.9	BF=	2700		/	100	in Sol	= 2700	193.5	=28.	9	
	1219	25749	142753	286163	332	85	Ø	1400	489.6		9		/	1	metde					
	1240		162753	286163			0-1		377.00				/	1	gin Zn			•		
	1250		162753	286 189		nr MAG	18		467.7		2600			10-mi	1,50C=	2600	190.7	-28.	7	
	1317	25781		286189					375.6				/	JN	work	304	clay	val		
	1327	25809	162753	216222					469.9			18697 Tube off		Resi	ume in	i	/			
	1405				212	58	41		322.0		1790			10		,				
	1540		162956		214		43		311.7		1795			To						
-26-16	0875	25809	164817	286222	213	56	42	1510	296,22	174.2	1805			TL						
	1050	25809	165 099	286223	215	57	44		295.1	75,3	1915	18697 014	OFF	Jo.	rutac	and u	Pwith	BJW		
	1715	25809	165827	786223	214	537	46	1510			1900	07.4	/		- prole	edf	cvup	ata	d	
-27-16	0900	25809	167586	286223	217	57	47	1350	289.9	80.5		18697-09	OFF		ITC -					
-28-16	0845	25809	170250	286223	217	56	47	1325	285.1	85.3	1865	18697 - 08	OFF		noad		with	BJW		
-29-16	0930	25809	173041	286223	216	56	45	1380	280.2	90.2	1875	18697	OFF	794	road		/===	2.1		
-29-16	1630	25809	173781		223	64	46				1610		/		odjiro		1 545C	w sa	essa	ŧ
-30-16	0828	25809	175305	286223	222	65	47	1300	29/12		1595	and I have	/	7C .	- NO A	6				
-31-16	1050	25809	177852	286223	223	63	48	1300	288.2	82.2	1600	18697 furn	41 39	Jo-	no ad					
2-1-16	0830	25809	179978	286723	223	43	48	1300			1645	19996	2/25		LN					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory			ty (NTU		n after		20	
													8,5 2		59.7 72	7	.36.			_
										*										
											-									
																			1	

MPWMD	ASR	DATA	SHEEL

Well: ASR-Z ASR Period

Sheet

PENINSULA TER MONTEREY

	Test:			Weather						of	r		M	ANAGEMENT DISTRICT
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)		Lube / Skid Meter (gal)	Lube Pressure Up/Down	
2-1-16	1255	15809	180419	286253	223	63	48	1300	281.25	89.15	1686	19657	55/53	Prior to BF
	348			286223	Vaa				368.5	93.				BF 2900/93,8 = 30.9
	1356			286252	201	Spu	1		4624	73.	84			
-	1400			286279					465.3					stop B\$ 0 1410
	1415	25890	180434	286306	333	85	Ø		374.7	B	0	19075-OFF		
	1450	25840	180434	2863%	213	65	38	1300	329,5	45.2	1590			TI/TC Restart inj
	1645	25890	180632	286306	215	66	38	1275			1550			
	1650				213			*			1608	19075 OFF		965, TL
-216	0845	25890	182166	286306	215	64	41	1250			1620	19075 017		1
			182907		215	67	41	1300		h	1670			890+1670 7L
43/16	0825		184508	286306		63	42	1250			1650			8951650=2545 TL
		25890	186742			72	42	1300	310.4		1560		7/	NO AOJ
2.4.16	1600	25890		286506	218	70	42	1320			1603			NOADS
14.16	1730	25890	187586	286306					306.77		1620			INJECTION SHOT DOWN TO
		u	ti	286306	228	85	44		306.77		800			STARTING INJ. TC
15/16	0800	25890	188207	286306	230	86		1200	349,25		690			INJECTION SHUT DOWN IC
-								1 0			-			
								1 - 3			121			
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 L	urbidity (NTU) min after start 1
-1-16	1340	25809	25838							5			2.5 1	181 11.5 33.4 5.01 3.76 3.2
			25 866 ZO.	10 MW (P	Finet	1								
						3)								
				*										
								/						
						1								

10 min BF SPC

* FCV reg was set at 350 psilost and lost 175 psi with tank closed PENINSULA Jug MONTEREY

MPWMD ASR DATA SHEET Well: ASRZ

ASR Period

Sheet

MANAGEMENT DISTRICT

Weather

of

2/23/16 1225 286362 286390 28,000 5.684.02 5.88 6.71 2.77 2123/16 1275 286390 286450 60,000 7.214.18 4.94 5.38 2.14 2.06 2			Test:			Weather						of			_					
12 to 1625 25945 188613 286305 216 52 41 150 170		Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000			Head	(1100)			Inj Rate (GPM)	Meter (gal)	Pressure		Comn	nents		
12 to 1625 25945 188613 286305 216 53 41 1250 17	2-	-18-16	1145	25994	188207	286305	175	90	0	OFF*	377.98	0	0			Jo/TL-	grega	re to	injec	t
2-19-16 08 30 25995 190247 286 305 216 53 44 1200 Another 1600 Standard of the			1210				215	76	38		319.98	58.0	1535				,		0	
2-19-16 08 20 25 99 \$ 1907 17 26 8 20 \$ 216 \$ 53 \$ 44 1200 \$ 1000 \$ 1000 \$ 1100 \$ 219 \$ 1000 \$ 224 \$ 1000 \$ 1000 \$ 1000 \$ 224 \$ 1000 \$			1625	25445	188613	286305	216	53	41	1250			-		/	TL				
1200 125 0s odjan. 192 0	2	2-19-16			190242	286305	216	53	44	1200					/	九				
2-24 0100 2599 192302 274 192302 286305 277 66 44 1210 380.0 0 0 1936 0 0 1 2 1 1 1 1 1 1 1 1		-16	0900				219			1		Addie	1690		/	slyly	14;	te		
2-24 0100 2599 192302 274 192302 286305 277 66 44 1210 380.0 0 0 1936 0 0 1 2 1 1 1 1 1 1 1 1			110									_			/	#10	1380	5000	djaju	in Th
2-24 0100 2599 192302 274 192302 286305 277 66 44 1210 380.0 0 0 1936 0 0 1 1 1 1 1 1 1 1			1200				-					1	1390		/	edja	genth or	Aw I	BP SON	apli
2-6-46 0700 25995 192302 274 192302			1330				1				n 1000 C	1428			/	check	Lap	er sou	My	SM,
2/22/16 1355 25995 192302 286305 277 66 44 1210 380.0 0 0 1936 N 53 51 Prepare to RF 20/72 2/23/16 1155 2/23/16 1205 2/23/16 1205 2/23/16 1340 26171 192302 286485 277 65 0 - 0 19402 Finished -/ BF; close Foldett Date Time Pre Purge Meter Read Meter R	2	-2046	0800	25995	192295		226	6	44	1225	3075				/		7	1		
2 23 16 135 2599 192302 286305 277 66 44 1210 380.0 0 0 1936 0 0 53 1 1 1 1 1 1 1 1 1	L		0903	-off	192302		775		,				ø						16	
2 23 16 1265 286 334 467.2 10.46 26 17 192 30 286 334 467.2 10.46 27 27 27 27 27 27 27 2									ļ.,		-An			10268	63				- /	
Date Time Pre Purge Meter Read Met				25995	192302	286305	277	66	44	1210		0	0	1930 ON	51	Prepas	ie to	BF	Jo/-	TL
Date Time Pre Purge Post Purge Meter Read Met	12	23/16	1155			72.77.1	-	-	-		-				/	10 00:00	- 22	00/0	77=7	2 7
Date Time Pre Purge Meter Read Met	- 2	23/16	1205			-		1-			467.2			19403		1		-		
Date Time Meter Read Meter Read Purge Volume (°C) (µ/cm) PH Zobell CO2 (mg/L) (mg/L) Laboratory 0 1 2 5 10 15 2-19-16 UIS 14-6 14-6 14-6 14-6 14-6 14-6 14-7 14-7 2-19-16 UIS 14-7 15-7 14-7 2-19-16 UIS 14-7 15-7 14-7 2-19-16 UIS 14-7 15-7 2-19-16 UIS 14-7	2/	23/16	1340	26171	192302	286485	2++	6)	0		-	0		1719	//	tinish	dw/t	SF; clo	se fev	# tan
Date Time Meter Read Meter Read Purge Volume (°C) (µ/cm) PH Zobell CO2 (mg/L) (mg/L) Laboratory 0 1 2 5 10 15 2-19-16 U15 14-6 14-6 14-6 14-6 14-6 14-7 14-7 2-19-16 U15 14-6 14-6 14-7 14-7 2-19-16 U15 14-9 16-16 16-16 16-16 2-19-16 U15 14-9 16-16 2-19-16 U15 16-16 16-16 2-19-16 U15 U15	_		3				-		-	-					/	-				
Date Time Meter Read Meter Read Purge Volume (°C) (µ/cm) PH Zobell CO2 (mg/L) (mg/L) Laboratory 0 1 2 5 10 15 2-19-16 UIS 14-6 14-6 14-6 14-6 14-6 14-6 14-7 14-7 2-19-16 UIS 14-7 15-7 14-7 2-19-16 UIS 14-7 15-7 14-7 2-19-16 UIS 14-7 15-7 2-19-16 UIS 14-7	1						-		-	-					//	_				-
Date Time Meter Read Meter Read Purge Volume (°C) (µ/cm) pH Zobell (Cl2) (mg/L) (mg/L) (Laboratory 0 1 2 5 10 15 1 2 4 9 16 1 35 3 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 5 28 6 3 6 6 12 5 8 8 6 3 7 2 2 2 3 16 12 5 8 2 3 2 3 2 4 18 2	-								-			1	-		//	-				_
2-19-16 1115 injectate sampling 14.6 476 7.47 589 0.21 NO TI 2/23/16 1155 286305 286362 57,000 18.5 511 7.07 2.4 0.04 NO TI 2/23/16 1225 286362 286360 28,000 5.684.02 5.81 3.99 5.684.02 5.82 6.71 2.99 5.82 6.71 2.99 5.72 6.72 6.72 6.72 6.72 6.72 6.72 6.72 6	L	Date	Time	Pre Purge	Post Purge Meter Read	Purge Volume			pН	ORP/	[Cl ₂]				0 T	urbidity (1	NTU)	min af	fter star	rt 1 20
2/23/16 1/55 286305 286362 57,000 1815 511 7.077 0.09 2- NO 10 2/23/16 1/25 286305 286362 57,000 4.79 161 35.3 28.6 6.12 5.8] 3 2/23/16 1/225 286362 286390 28,000 5.684.02 5.82 6.71 2.99 2.17 2.06 2 2/23/16 1/275 286340 286450 60,000 7.21 4.18 494 5.38 2.17 2.06 2	E 2:	-19-16	1115				T		7,47		12.6	T				12		100		
2/23/16 1/55 286305 286362 57,000 479 161 35.3 28.6 6.12 5.91 3. 2/23/16 1/25 286362 286390 28,000 5.684.02 5.82 6.71 2.99 2/23/16 1/25 286390 286450 60,000 7.21 4.18 497 5.38 2.14 2.06 2					02084160		-		7,07	2.4	-		NO	Th		1	1 1	11		
2/23/16 1225 286362 286390 28,000 5.684.02 5.82 6.71 2.99 2123/16 1275 286390 28,000 2123/16 1275 286390 286450 60,000	1		1420							/										
2/23/16 1225 286362 286390 28,000 5.684.02 5.88 6.71 2.99 2/23/16 1275 286390 286450 60,000 7.214.18 497 5.38 2.14 2.06 2	2	123/16	1155	286305	286362	57,000									4.79	61 35.3	28.6	6.12	5.81	3,7
2/23/16 12/75 286340 286450 60,000	2	123/16	1225	286362											5.686	1.02 5.8	16.71	2.99	1	_
20 462 (100 276 100	2	2/23/16	1245	286390						/			V= = 1		7,214	1.18 49	75.38	2,14	9,06	2.80
			1315	286450	286484	34,000				/					2.9	1.97 4.10	3.65	195		
																	1			

1 215 psi was on the FCV when 1st opened today. Opened regulator - was set to 285 psi : 70 psi loss since ____ = 3-13-16 Caught mouse in Unit 6 trap. SCANNED TO DROPBOX JO

MPWMD	ASR	DATA	SHEET

-	1600			_
Well:	ASR Z	ASR Period	WY	20/

Sheet of MONTEREY PENINSULA

MANAGEMENT DISTRICT

Test:

Weather

Well **FCV** Line DTW/ Draw Up Inj Rate Date Time Lube / Skid Head N₂ (psi) Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) Up/Down 3-5-16 1045 286485 26171 192302 2151 66 1100 737847 Prepare to inject Jo/TL 3.5-16 1440 192302 286485 26183 281 85 1160 Prior to inject 26183 3-5-16 1530 192381 286485 219 40 1100 351.9 Rote is # - 150 gpm Jo 81 1300 3-6-16 1104 26183 193776 286485 221 30 37 1200 3400 38.4 1270 3-6-16 1315 26183 193938 63 221 1270 no adí 50 3-7-16 0800 26183 195419 286485 1100 328.25 220 58 41 1360 no col: To 26183 195759 58 1215 28485 221 42 1150 1380 ro of 286435 3-8-16 0840 220 26183 197534 53 45 1150 3/9/ 59.3 1515 TL NO GAL-198283 1645 26183 286485 220 57 1180 313.7 64.7 47 1600 TIL No adc. 3-9-16 0900 26183 286485 215 1150 306.7 199888 51 TIL 1210 26183 call from I Natant Stoppy recive 200220 286485 52 214 1200 1710 6 17 1221 26183 56 226 1475 offer odi hue 76183 276 59 44 2004:0 1200 1380 check ofter luch, no Adi 71 1700 26183 286485 76 43 700620 226 £. 3-10-16 0850 26183 201798 321.11 57,29 1245 786485 279 200 710 ASS FCV 0907 Ti 1440 Afteraki. 3-11-16 845 26183 203905 59 286485 222 307-1 1490 tc/11 3-12-16 0830 26153 286485 223 57 206060 47 1125 304.3 741 1570 No FUT TL 3-13-16 0930 208312 286485 77.3 1550 19402 26183 53 1150 301.1 38 no adi, lube DN Pre Purge **Post Purge** Temp Cond Turbidity (NTU) min after start ORP/ DO H₂S Sampler / Date Time Purge Volume $[Cl_2]$ Meter Read Meter Read (µ/cm) Zobell (mg/L) (mg/L) 0 1 1 1 2 1 5 1 10 1 15 1 20 Laboratory

MPWMD ASR DATA SHFFT Well: MSR-Z PENINSULA MONTEREY ASR Period INY ZOL6 Sheet MANAGEMENT DISTRICT Test: Weather of Well Tiger [F] (gal) | Tiger [R] (gal) | BF (gal) ×1000 Line Lube DTW Draw Up Ini Rate Lube / Skid Date Time Head N₂ (psi) Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) Up/Down (cutt) 314160945 26183 210571 286485 222 53 1140 29875 prior to BF TL/TCHO 1540 10 min 1020 26183 210539 286485 300 80 362.5 readings before BF Spc 1030 286514 456.1 Sp C = 2900/93.6 = 31.0 1145 26330 210589 286635 369.3 Finish BF: restant ini 54 110 26330 210610 286635 217 34 1(10 370.15 39.15 14/a5 105- POR INT. 1657 26330 211022 286635 218 3219 MID 1490 NO 105 TL 3-15-16 0815 26330 286635 217 212462 52 43 1625 1050 286635 214 1630 26330 213272 310,2 59,1 Wadi. MW June ON 40 1100 1655 3-16-16 0855 26330 214909 286635 5/4 307-0 62.3 0011 1630 No adl TL 1705 28330 715956 26635 217 62 nio 1770 NO OR -1895 19775 5-17-160815 26330 286635 58 217430 216 47 reduce flow 1100 may need further adj today due to ASR4 initration 0325 64 47 222 1610 46 230 1125 1270 flow rate and line press Dire To 218073 1745 47 26330 70 229 1100 1300 adj to 1300 overnight per JN 50 3-18-16 0815 26330 286635 219273 222 1550 1000 1 from 1350 to 1550 per JN (30) 3-18-16 1100 26330 219525 219 42 37 Rate is temporaril & : 454 fest To 1305 3-18-16 1745 26330 43 219944 216 1475 38 Target NTE = 1500 cm Jo 3-19-16 1025 36 2963 26330 286635 213 47 221478 1050 73 1510 3575 total before di te 164A 1485 216 MJ, TL Pre Purge Post Purge Temp Cond ORP / DO H,S Sampler / Turbidity (NTU) min after start Time Date Purge Volume $[Cl_2]$ Meter Read Meter Read (µ/cm) Zobell (mg/L) (mg/L) Laboratory 2 1 5 1 10 1 15 1 20 3-14-16 1020 286485 Runt 286543 58000 4,32 24 15,637,27,12 3,80 2,32 286588 3-14-16/051 286543 45,000 RUN2 3.83 3.13 5.33 6.85 2.57 1.90 3-14-16 1120 286588 286635 47,000 RUN 3 1,99 288 3.82 4.47 1.70 1.48

ASR-2 Well:

Test:

ASR Period WY 2016

Weather

Sheet of MONTEREY PENINSULA

MANAGEMENT DISTRICT

	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet) 369-3	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal) (cuft)	Lube Pressure Up/Down	
un	32016	0915	26330	223488	286635	217	43	37	1080	295.1	74.2	1450		/	madi Jo
non	3-21-16	0850	26330	225540,	286635	217	44	38	1025	292.8		1440	19775	OFF	no adi To
	M V	1635	26330	226206	286635	2(7	44	38	1100			1445	19775	30/2	van, no adj TL
	3-22-16	0940	26330	227689	286635	217	43	37	6011	2901	79.2	1440	20017 00	535	11/10
T		1020	26330	227730	286635	336	73.	6	1600 8	357/8	Ø	Ø		/	Prior to GF
L		1030	26358							454.3	1			/	Spc = 2000/96.5 = 29.0
5		1050	26387							3633				/	
L		1100	26415					-		458.1				/	Spc = 2800/94.8 = 29.5
		1110	26418							365.€				/	7.60
-		1120	26447		1					463.0				/	5,6=2900/98-0:29.6
		1140	26482	227730	286789	335	74	46	1020	365.8	Ø-Ø	Ø	20047 TURNED	OFF	readings prior to ini resume
		1200	26482	227739	286789	218		40		329,1	36.7	1470	1927	/	reset FCV after BF
		1650	26482	228161	286789	218	46	38	1000	319,10		1450		/	MO ADS. TL
	3-2316		26482	229555	286789	216	45	39	1000					/	NO 105, 70
	3-24-16	0810	26482	231 599	286789	215	39	35	1000	311.22		1400	20047	057	no ad, To
		1505		232158		215	36	31			15	1335		/	no adj To
	3-25-16	0805	26482	233566	286789	24	39	34	1000	306.8	59.0		20047	OFF	no adj Jo
		1620	26482	234257	286789	214	36	30	1025	30516	60.2			04	No ada -TL
	3-26-16	0940	26482	235712	286789	214	36	32		302-1		1390			no all To
	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp.	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO	H ₂ S (mg/L)	Sampler / Laboratory	Tu	urbidity (NTU) min after start
1	3-22-16	1021	26330	26387	57.000	59.8									52 129 53.2 765 371 2
2		1051	26387	26418	31,000	5A.B									39 4.63 6.09 2.33
3		1101	26418	26482	64,000	60.4					~				52 3.45 4.95 2.66 2.43 10
															7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

HSP-2 WY 2016 ASR Period

Sheet

MONTEREY PENINSULA

MANAGEMENT DISTRICT

-		Test:			Weather						of			M	ANAGEMENT DISTRICT
	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Weil Head (psi)	N₂ (psi)	DTW (feet)	Draw Up (feet)		Lube / Skid Meter (gal)	Lube Pressure Up/Down	
3-	-24-16	1045	26482	237882	286789	213	37	32	10-00	299.3	66.5	1375	20047-00	/	madi TL
3.	-28-16	0830	26482	239615	286789	214	38	33	(000)	226.9	68.9	1380	20359-04	53 50	no odj. will BF today J
-		1130	26482	239862	286790	305	66	60 t	1000	356.1	Ø	Ø	20397-01	1	reading prior to BF TL/J
4		1140	26511		286820					455-37	(Dan 199.3			/	SpC = 3000/99.3 = 30.2
-17		1200	26543		186851					360.4				1/	7111
100		1210	26572		286881					459.5	Ddg 99.1			/	SpC = 3000/99.1 = 30.3
1		1230	26588		28689\$					360.₩				1	
4		1240	26635		286926					460.7	And the same of the same of			/	30C = 3000/1000 = 30.0
		1300	26635	239802	286944	305	66	46		361.4		ø	20424-04	/	readings prior to ini resum
		1310	26635	239816	286 944	200	33	76		321.9		1600		/	adi. to 1600 11/10
		1635	26635	240135	286944	198	28	15	950	309,6	51.8	1600	G.F.F	/	wast. Th
3,-	79-16	0965	26635	241777	286944	196	28	71			63.9			/	No cd; th
		1650	26635	242501	286944	197	29	2/				1645	014		No adi TI
3-	30-16	1830	76635	244067	286944	197	29	2.2			75.3	1665			wady th
	ч	1310	26635	244510			29	22				1500		/	no adj To
		1635	76.435	244846	286944	222	59	49	950	278.0		1790			Adi to 236 Rev ~1515
3-	31-16	0830	26635	245885	286944	238	78	49	910	334.4	27.0	685		/	rate declined overnight To
		0900		245916		226	66	49		292.8	68.6	1490			1 flow rate TL/ Jo
		1440	26635	246597	286944	775	5 Y	47	975	286.2	75.2	1520			No ads TL
	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell		DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	arbidity (NTU) min after start
	728	1130	286790	286851	61,000										02 14.8 17.7 4.65 2.27 1.7
2	11	(POD)	286851	286896	45,000									1,73 3	01 3.43 7,99 2.35 1.48
3	ĹX.	NJU	286896	286944	48,000						0			287 2	56 240 3.99 1,99 1.33
	11/														
							.00								

SCANNED	TO	DROPBOK
---------	----	---------

Two

00067100 SKIN (ON)

MPWMD ASR DATA SHEET

Well: ASR-Z **ASR Period**

Sheet

PENINSULA MONTEREY / TFR MANAGEMENT DISTRICT

Test: Weather

Well Tiger [F] (gal) Tiger [R] (gal) ×1000 **FCV** Lube Line DTW Draw Up Inj Rate Lube / Skid Date Time BF (gal) ×1000 Head N₂ (psi) Pressure Comments Meter (gel) (psi) (psi) (feet) (GPM) (feet) Up/Down (psi) 361.4 4-1-16 0830 26635 1550 ZOFT 286945 227 55 248087 925 2822 48 78,7-NO ADJ TL 54 1330 26635 248555 225 47 950 281.1 80.3 1590 Hit 1530 gpm Jo 4-2-16 1100 26635 250541 286944 228 56 48 970 280,5 80.9 OFF 1525 no adi Jo 4-3-16 0940 26635 286944 227 53 752528 920 279.6 81.8 1460 The No odi 1445 20634 252948 286944 232-54 49 950 1366 Na adi TIL 1470 2042 4-4-16 0835 26635 254461 286944 229 57 50 920 277.7 83.7 no adi To 254945 1400 26635 227 54 1475 47 no adj 56 1715 76635 255724 286944 279 5% 52 950 1480 no add 4_ 4-5-16 0910 271.4 49 90.0 228 79 1505 Rior to stop-lowflow JO 20424 0920 26635 256688 286944 306 93 49 Ø OFF Ini stopped 950 362.1 JO 286944 384/ 4-6-16 1045 20704 26635 256688 77 48 910 371.1 Prior to start for BF To 468.8 PDW 97.7 286972 05 Spc = 2800/977 = 28.7 1055 287003 1115 375.2 1125 287030 472.2 SpC = 2700/77.0 = 27.8 97.0 287046 1140 375.9 1150 287 074 474.6 Soc = 2800/98.7 = 28.4 98.7 Ø 20726 OFF Shut FCV tank, up GV, mag 1210 256688 287092 327 79 26781 Ø 950 376.8

132-2 BF	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	$[Cl_2]$	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	٥	Turbio	lity (N	TU)	min af	fter star	
RUN 1	4-6-16	1045	286944,000	287,003,000	59,000				2000.		(g)	(mg E)		7.3	321	11.1	38.8	7.34		2.52
RUN Z	.,	1115	287,007,000	287, 046,000	43,000						-			-	-	-		2.92		
Run3	U	1140	287,046,000	287, 092,000	46,000								SSAP BF Sample							
4																				
- (
																-				
-																				

MPWMD ASR DATA SHEET MONTEREY PENINSULA Well: ASZ-Z ASR Period WY 2016 TER Sheet MANAGEMENT DISTRICT Weather Inde 4-18-16 20726 Well Lube **FCV** Line DTW Draw Up Inj Rate Lube / Skid Date Time Head N₂ (psi) Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) Up/Down 287092 dused 10.mg 4-19-16 0240 26781 256688 20966 925 375.2 BF well today TL/Jo 65 NUV 0850 287120 473.3 310 Soc= 2800 /98:1 = 285 98-1 0910 287,148 378.7 287176 0720 475.6 Soc = 2800 / 96.9 = 28.9 96.9 meter 0930 287179 3791 1+2,-15 0940 287207 SpC = 2800 96.5 = 29.0 475.6 96.5 0955 26933 256688 310 7.09 287247 44 900 380,5 +5714 Stop BF. shut lube closed 68 4-26-16 0845 27125) 256 688 287247 2098子 Turn of TXZ circuit Jo 0 5-6-16 7098± 21058 JEF Turned on wing Luke TI 287247 320 5-24-16 0850 - TX2 breaker off -10 mm SpC 21326 70 Ó 382.7 800 95.7 287 274 0950 478.4 Soc= 2700/95.7= 28.2 287282 0910 385.3 0920 287 310 480.1 SC = 2800/ 94.8 = 29.5 942 21747 Lar. AF 21347 Purge Volume Temp Cond Pre Purge Post Purge Turbidity (NTU) min after start ORP/ DO H₂S Sampler / Date Time $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L)Laboratory 0 1 1 2 1 5 1 10 1 15 1 20 4-19-16 05-80 2571972 49.5 22.9 1.45 1.91 1.22 4.8 287148 RUNI 56,000 RUN2 0910 287148 287179 -1601 C 31,000 4.95 5.73 3,97 2.17 1.14 16.0 445 7.18 - 15-199 0.63 RUNZ 0930 287 179 287-247 68,000 3,20659 2,74 2.06 Blb.5 5.24.16 0850 287247 287282 35,000 RUN11 409 61.9 233 87 1.58 15.7 539 7,4 -97, 10 0.08 2.84 RUNZ 237282 86,000 287368 0910 27.82.65 7.53 297 2.15 1.23 1.67 Evan 22 9min 2 white F-1

AZOSELTEMS ROM PHISTICK

Well:	ASR-2	ASR Period	

PENINSULA MONTEREY Sheet

MANAGEMENT DISTRICT

Test: Weather Well FCV (psi) Lube Line DTW Draw Up Inj Rate Lube / Skid Date Time Head N₂ (psi) Pressure Comments (psi) (feet) (feet) (GPM) Meter (gal) Up/Down (psi) 621-16 1000 -TX2 breaker off - 28-7368 366 9095 TL/JO 385,65 479.50 93.85 SpC = 2800/93, 85 = 29.8 OFF collected filteration frontal 287396 21634 1115 287577 for McCampbell, also SI, 61 Turbidity (NTU) min after start
0 1 2 5 10 15 20 30
617 34.6 33.3 8.95 1.77 1.47 1.49 1.45 ORP/ Pre Purge Post Purge Temp Cond DO H₂S Sampler / Purge Volume Date Time (°C) (µ/cm) Zobell 189 Meter Read Meter Read (mg/L) (mg/L) Laboratory 287368 16,3 540 7.59 209,000 0,2(2) 1.98 6-21-16 MBAS/MAI

10-min Spc

Well: ASR 2

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: MONTHLY FIELD Weather FOG, SMOKE (SUBPRANTES FIRE) of

1	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comme	ents		
7	27.6	1000	27415	256688	287577	320	24		800	388.3		Ø	21952 CF	4848	Reset	PSV	to open	V	1
					287596			20		454,73		2200		/		Quakt			
L					287639	/	/		191			Ø	21962		FCUT	LUBE	OFF		
L																			
														/					4
L														/					4
L														/					_
-															Kr.				4
-																			4
-	-					-								/					-
-		-24												/					4
-														/					4
	6.									-									+
-																			+
-																			+
-					,					-									1
-																			1
1	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Tu 0	rbidity (N	TU) mi	in after st	art	٠,
7:	27.16	1000	287577	287639		15.2	490	7.64	2410/0	NO	2.89	NO	NS JL	359		27.7 9.			
														1	3				
																			1
		7						0.5											
								*											
1			2														- 1		1

Well: ASP # 2 ASR Period RECOUTERY & ASR 1

Test: 47h Quarter SAD Weather SURVY & HOT SMOKE

				BF (gal) ×1000		(psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)	Lube Pressure Up/Down			ments		
1/27/16	0932	29469	256688	287713 287766 287891	334	83	0	2000	394.06		/	22552	4845	- 25	552)6P	M	
1				287766					466.90							,		
		79614	25688	287891								25578		N2+	LUSE	OFF	-16	
		1												_				
													/					
													/					
													/					
													/					_
													/					
													/					
													/					
										-								
													/					
													/					_
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pH	ORP/ Zobell	[Cl ₂]	DO (mg/L)		Sampler / Laboratory	0 1	1 2 0\ 103	NTU)	10	er start	20
1/27/16	1000	287243	287891		18.0	610	6,53	202.5	0.24		0.02	SLTC SAD- MBAS	149 1	01 103	13.1	4,73	7,20	_
//					18.9	519	6.45	1243	NO	0.38	0.61	-	-	_	-			_
1.27.16	1030		9500					/				YE-TC BBP	+	+	-			-
								/							1	\vdash		-
								/							-		-	_
								/					1					
																		_
													1 - 3		1			

Well: ASR Period STORAGE

Sheet 1

Test: PURGE SSAP Weather RAIN; SUN; SUN Well Tiger [F] (gal) | Tiger [R] (gal) | BF (gal) ×1000 FCV Line DTW Draw Up Inj Rate Lube / Skid Head N₂ (psi) Date Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) (psi) 181410 350 82 89 GPM FORWARD DRIFT 11915 1030 70308 21644 4736 1600 365.7 11/10/15 0830 70309 21644 18430 20913 SOME FORWARD DRIFT 5143 82 350 1600 365.6 187910 24441 Some Formad Duft. 11/11/15 0830 5680 Purge Volume Temp Cond Pre Purge Post Purge ORP/ DO H,S Sampler / Turbidity (NTU) min after start Date Time $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) (mg/L) Zobell (mg/L) Laboratory 0 1 1 1 2 1 5 1 10 1 15 1 20 4736 407,000 1195 5143 NONE 11/10/15 5143 5680 537,000

Well: ASR-3

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: SSAP SAMPLING

Weather SUN SHADE

of 1

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Comments	
11-12-15	0900	70309	21644	006108	345	>100	Ø	1700	365.65	_	Ø	19110		
											1250		70 PSI ON VAI	WE FOR
													FILTERING SAM	APLES.
11/12/15	1700	- NC		006576	OFF	>100	ø	1650	_	_	Ø	192050		
1										3				
											1	N. T. G.		
		-									- 1			
								-						
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	SAMPLE VOLUMENTU TURBUNTU TURB	nafer start
1.12.15	945	6108				676	7.89	//	_	NO	(g 25)	10	39.8	
	. 16	600 3000	6110	2000		635	770	1212	_	au			20.9	
		C19 E	6132	24,000		775	7.56	-81,5	_	NO			1.92 (25-500 = 1125 7	4500+1386= 488
			6149	41,000		776	7.65	48.2	_	D			0.90 1150 250 = 1400 3	0× 500+636 = 563
			6187	79,000	22.9	750	747	-96.9	_	M			1.37 Loot 250 = 850 3	9×900+250 = 425
			6265	157,000	18.8	821	770	(3/17	-	NO			0.95 = 51250= 975 =	4500+250+250=
			,		10 -	77.		- FIL. A					111111111111111111111111111111111111111	2 -22-1
			6425	317,000	18,7	774	7.76	-P0.8	-	ND			1.41 -900 +20 = 150 10	250 +325 tak =

0.01

Well: ASR3+SMS(D)

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA TER MANAGEMENT DISTRICT

Test: QUARTERLY DBP

Weather SUN, COLD

		1 est:	GOMICITURE	001	weather	200	1 000		-		01								
	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)			Com	ments	s	
	12-16-15	930	70336	21644	6592	350	92	ø	1650	371,4		ø	14980	90	479	85 PSI	Lu	BE	
10			1		6603		-	-		446.		1600							
			1	7	6653									1					
L												0	95120 37920	Lu	BEO	FF.			
															OFF				
							- 1			-									
			-																
-																			
											1 2 1				-				
																- 4			
						1					-								
								-											V.
						ć													-1
					- 1														
			9																
		-																	
	1					8													
	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	(°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	1		5	10	15 20
ASR3	12.16.15	0930	6592	6653	61,000	20,8	788	7.41	136	ND	ND	0.03	JL-DBP MBAS	153	53,7	423 12	,5 5	5.6 7	,8 3,2
									/					-					
					-								-0						
SMS(D)	12.16.15	0930	13680	14545	865	19.7	775	7.38	142	ND	ND	0.04	JL-DBP MBAS	_			-		_
			-								-						3		
Y						×-													

	ASDZ	
Well:	#353	

ASR Period WY 2016

Sheet	

MONTEREY PENINSULA
T E R
MANAGEMENT DISTRICT

Test:

Weather

of___

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressur Up/Dow	e n	Con	nments		
1-19-16	1100	70342	21644		342 (0)		0		356.4		0	195140	0	TLI	Jo-pre	pare t	oline	flush
	1130-	-> line t	lushi w		PI (see y	otes	at bo	Hom a	+ page)		/					
	1340		21788	67.72									/		HEN			
	1350		21798	6746	215		49		315.48	40.6	900		/	BF	yes here	chie	d	
	1450		2.1856	6796	215	74	50		299.8	56.6	135		/	- (12	sod try	+0 0 1+	· wa	,
	1515				216						890	lube ON	72/66		or FCV			
	1655	70342	71961		212			7			890		/					
1-20-16	1030	70342	22917	6799	218	71	49	1600]			915		/	1				
	1500				218	63	49	~1600			920		/					
1-21-16	0820	20342	24122	6799	218	67	50	~1600			920		/					
1-22-16	0820	70342	25458	6796	221	7-3	50	1600	258.2	98.2	930	202650	/	101	TLIEN	1		
	0930	70342	25515	6797	348	90	Ø	1550	and the				/	Stop	TL/RN	rtB	F	
	945			4.			-		349.7	3	0		/		art 8			1
	955			6815			30		492.0	142.3	0		/		s = 18a		-	
	957												/		3 (54			
	1005			6836					513.3	163.6	0		/	7	5 = 210		-	2.8
	1015								515.7		0		/			1		
	1018			6861									/	SA	p B	=		
											/ <u> </u>		/			SPI)	
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	C°C)	Cond (µ/cm)	pH	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	urbidit	(NTU)	min at	fter sta	rt . 20
1-19-16	1205	6664	6684		~ 1	200	pn		-				340		9 93	4.2		
		6695	6726		~15	000	n						18		50 69		1	
		(729	6754		~15	2005	on	/							8 85		-	
														_	+	-	13	15/20
1-22					Turl	polity	->						3,13	59 2	9.1 50.7	21.7		85/10.
						7												
			L.								_							

Well:	ASR	. 3

ASR Period Wy 2016

Sheet

W T E R MANAGEMENT DISTRICT

PENINSULA

MONTEREY

Test:

	Test:			Weather						of			/~(.	ANAGEMENT DISTRICT
Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down	
1/22/16	10	70342	25515	6861	340	92	0	~1600			1		/	Fill WH Dipina
	1030		25515						356.1				/	Start Ini
	1040		25520		216	80	50		312.7	43,4	760		/	Q/5=500/434=11.5
	1110	70247	25547	6861	218	48	40	1590			890		/	Children Con
-23-16	1020	70342	26812	6861	220	81	49	1550	275,43	80.6	910	Inte OFF	OFF	Jo-hoadi
1-24-1	1020	70342	28134	6861	2/9	78	48	1500	- \		925		/	TL
1-25-16	0800	70342	29337	6861	218	78	50	1530	سند ا		935		/	TL-
1-26-16	0815	70342	30708	6861	217	67	49	1600	260.7	35.4	945		/	TL-6815. JO-1030-WL
1-27-16	0940	70342	32159	6861	219	67	50	1550	256.5	99.6	-960	202820	DFF	Jo/TC-no adi
-28-16	0910	70342	33519	6861	219	67	50	1550	252.6	103.5	975	202820	OFF	Jo - no adi
- 29-16	0900	70342	34926	(water in 1 1)	218	66	50	1550	249.0	107.1	985	202820	62-54	
PUNT	1440	70342	35209	6861	340	88	D	1525	348.0	0.0	0	203470	/	shut in for BF (Jo)
Level 1	1482			6883					503.5		BF 2200		/	14 mm Soc = 2200/1555=14.1
Runtz	1530			6929					354.0				/	
Karra	1540			6949					507.4		2000		/	10-min 500 = 2000/153.4= 13.0
1-29-16	1600	70342	35209	6949	217	79	50		348.0]	0.0	860	203630	03.5	Resume inj (50)
-30-16	0845	70342	36074.	69 84	217	79	50	1500	282,53	65.5	866		/	TC -NO ADT
-31-16	1100	70342	37450	: 6964	219	79	50	1510	277.9	70.1	875	203630	OFF	Ju-no adi
-1-16	845	763-12	38584		218	79	50	1525	273.9	74.1	880	03630 520 87	-	- for smile dre
Date	Time	Pre Purge	Post Purge	Purge Volume	Temp	Cond	рН	ORP/	[Cl ₂]	DO	H ₂ S	Sampler /	_	urbidity (NTU) min after start

17 min

(0 - min BF calc

io-min BF calc

C 1 15	017	1 1	-0		210	71	10	1202	- , > ,	7 171	00	F208	11/	-	2000	Sh	حلك	er de	CLS	
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0		dity (N		min a	fter sta	ırt	
1-29-16	RUN	6861	6929	68000									2,68	41.2	26.6	82.7		5.53		
1-29-16	RUNZ	6929	6964	35000														3.21		
														7 7			-			
																			1	
1-														1						

	SCANNED TO	DROPBOX
MPWMD ASR DATA SHEET		70

Well: ASR3

Test:

ASR Period WY 2016

Weather

Sheet 1

MONTEREY PENINSULA
TER

MANAGEMENT DISTRICT

16-min BF SpC

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down	
2-7-16	0735	70342	39845		218	73	52	1500			885		/	vach the
1	1605	70342	40245		720	73	51	1500		1	890	2036305	/	fundiuse on TL
2-3-6	0815	70342	41107		218	73	49	1500			895		/	
	1505	70342	41478	006964	223	77	50	1550	266.8		900		/	Start-sluddown
	1512	70342	41479	006964	343	91	Ø	SHUT	345.8		Ø		/	OFF
2-28							10.00		~~~			2061901	/	tom where the
2-291	6 1830	70362	41483	506964	305	72	Ø	5	359.5	Ø	Ø °	2087/057/00	/	The section of
2-29-16	1135	7		6986	-0		7		510.0					10-mm Sp(= 2200/1505=14.6
2-29-16	1245	70362	41483	7073	345 close)	72	0	1550	364.0		6	209010		Finish BF; stop lube line
2111	17.00	2-27/0	(1445)	7 - 7	241	dt		- American	^^^	2	,		/	lá.s.
3-6-16	-		41483	7073	FC020d)	85	0	1500	:355.6	5 8		2090101	7	Prior to flush to
	1220	70362	41494	7082	350	83	96		355.5	Ø	25		/	Post LF, pre inj
	1240	70362	41500	7082	245	77	80		308.0		850			Note high well head press
3-7-16		70362	42502	7082	245	67	45		286.0	69.6	840		/	no adi TL/30
3-8-16	0250	70362	43699	7082	PY5	GY	72	1500			780	57400		No adi TL
11-0	1535	70367	44097	7087	244	64	74	15/0	285.99	69.61	770		/	405 to ~242 out CV TL
3-9-16		7-6362	44.828	7082	242	61	74	1490	2840	71.6	765	57480	/	NO ADS. car Am to close
30.13	hss	70362	44979	7082	243	63	72	1510	-	-	780		/	NO ADJICH ROW JN - T
my	1350	70362	45077	7082	246	68	77	1510			840		/	Check offer lively. Humel For
Date	Time	Pre Purge	Post Purge	Purge Volume	Temp	Cond	пН	ORP/	[CL]	DO	H ₂ S	Sampler /	Tu	rbidity (NTU) min after start

Turbidity (NTU) min after start 1 2 5 10 15 20 Purge Volume Zobell BF pН $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) (mg/L) (mg/L) Laboratory \$31000 RUN 6984 367 32 6 16.2 25.7 7.81 6.13 399 7007 RUN Z 7007 7028 21,000 P.66 R2.5 8.49 7.83 3.75 RUN 3 45,000 7028 327 8.92 8.06 6.86 404 245 2.03

* # SRY LUZCON = 00360800 3/15/161700hm

SCANNED TO DEOPROX

MPWMD ASR DATA SHEET

ASR-3

Well:

16- MIN BF SpC

3RD BF

SMS-D

ASR Period WY 2016

Sheet

MONTEREY PENINSULA

	Test:			Weather						of			M	ANAGE	MENT DIS	TRICT
Date	Time	×1000	×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Lube / Skid Meter (gal)	Lube Pressur Up/Dow		Commer	ts
3-9-16	CCYI	70362	45084	7082	247	68	78	1510	-	-	805		/	after	radific	1 72
Stafell.	1713		45173		247		51	0021	334	716	14 4 1. V	t	/	WHE	(Line lave.	sono TI
3	1735	70362	45179	7082	2/9	-	20		-	51.2	740		/			100 mm
5-100-16	0830	70362	45862	7082	220	_	20		2 83,35	72.25	775	0209010	63/60	1 4	A DJ	J. J.
	1420		46134	7082	221	67	50	1550	281.51		775	0209646	69 65	prior	to shut f	or BF Jo/7
	1450	70362	46142	7082	300	83	0		345.7		0		/	Stop in	i (close P	evtostop)
3-10-16				7102					486.D	w/			/	1/5= 2	000/140.2	= 14.2
16 (1	16 45		46142	7182	218	80	50	1550	3556	Krisma Kingfur	800		/	15F+	esyme	ナレノか
3-11-16			46910	7182	219	68	50	1450			ઉટ્ટ			ram		TL
-	0810		48097	7182	219	67	51	1475	*		835	7 (3)	/		FUXON	7_
3-14-16			49356		219	63	50		281.2			32092 584 60	OFF	Noa	d;	Jo
3-14-16		70362	50368	7182	219	89	49	1500			870		/	no ac	dį	Jo
H 11	1710	70362	50959	2182	219	63	50	1490		78.3	876		/	Noa	di	TT
		. , , , ,	57755	7182	219	62	49			81.15	870	209920			ali	TL
11 11	1645	70362	52195		220	58	51	1490		22.5	880	2099 58400	1	-	86208*	T
	5945		53094	7182	220	73	51		27/6	84.6		59400	/	NO WE	ot TL ~	W=00263
4 (1	1650	70362	53477	7182	220	69	33	1500			500		/		TL	
3-17-16	0905	70362	54356	7182	219	74	33	1475			910			no ad	-	
3-18-16 Date	arcd)	70362 Pre Purge	55639 Post Purge	7182	220	78	34	1456			930			Will !	3F & resu	mc today []
Date	Time	Meter Read	Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory			NTU) mir	
3-10-1	6						1						3,69 3	3.49 90	44,054.	7 1.5
3-10-16				ě									3.5 1	7.5 5.3	5 4.85	2.01
								/								
3-16-1	1400		0027804		19.6*	507	7.35	265	0.93	2,43						
														-		
															1 =	

*Tapfor c/pH weter OVp butto needs 250°C, 24,8°C on Do nater

Jus

MPWMD ASR DATA SHEET

Weather

ASRB ASR Period July 2016

Test:

Sheet of___ MONTEREY PENINSULA

MANAGEMENT DISTRICT

	Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal) 2-2 gan	Lube Pressure Up/Down	Comments
1	3-18-16	0900	70362	55660	7184	350	88	0		245.0	00~	Ø	L.C gph		Stoping for BF JO/R
1	1	910			7203		34				(143.9)			/	9/5=1900/143.9-13.2
L		920			7221									/	stop pump
r		930			7221					350.8	200			/	Restart (54.1 HZ, 6nte
H		940			7241		30				(144.6)			/	Q/5=200/144.6= 13.8
4		945			7250						- 9			/	Ston
H		955			7250				1	352.1	000			/	Restart (a/a)
H		1005			7270						(144.0)			/	Q15=2000/1440= 139]
Ц		1007			7273									/	Stup
															C. Lanke = "
		1015	70362	55660	7273	355	89	0	1400	352.5	5	Ø			Resume Inj
		1025				218	78	34		304.7		840		/	
		1155				218	78	34				885		/	No Adj (RM)
		14 55				217	33	30				865			ASR-4 Inj. Q
1	3-18-16			55990	7273	219	60	33	Targe	+ NTE=	900gan	890	66800		ASR-4 ini di @ 1630 hr + (Jo
#	3-19-16	1900	70362	56912	7273	218	52	33	1400	4		890	56800 51155 864	05	No edf TL
124	3-20-16	0940	70362	58193	7273	219	52	32	1450	269.2	83.3	915	211990 66800	OFF	no adi Jo
By 3	3-21-16	0810	70362	59 452	7273	218	54	34	1450	264.3		935			no adi Jo
F	Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory		urbidity (NTU) min after start
Ī	3/18/16		7221	7250			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Lobeil		()	(mg/L)	Datoratory	U	1 2 5 10 15 20

ASR3 B	F Date	Time	Meter Read	Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	$[Cl_2]$	DO (==(I)	H ₂ S	Sampler /		Turbid	ity (N	TU)	min afi	ter star	t
	To to a				1	()	(preui)		Zobell		(mg/L)	(mg/L)	Laboratory	0		2	1 5	10	15 1	20
RUN Z	3/18/16	-	7221	7250	1									3,54	z4.1	11.1	7.44	4.16	2.42	
Run 3	"		7250	7273														3.58		
																	- A			
															II.					
																	(= 1			

TWO

MPWMD ASR DATA SHFFT

Well: ASR-3

Test:

ASR Period WY 2016

Weather

Sheet

of

MONTEREY PENINSULA
T E R

MANAGEMENT DISTRICT

Well Tiger [F] (gal) Tiger [R] (gal) **FCV** Line DTW Draw Up Inj Rate Lube Lube / Skid Date Time BF (gal) ×1000 Head N2 (psi) ×1000 ×1000 Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) Up/Down (psi) 352.5 322-16 0825 218 70367 60810 7273 53 1400 33 261.8 90.7 155 No codi. TI 61310 70362 7273 1700 214 54 33 970 1400 No our to 211990 323-16 0805 70362 62187 217 54 255.7 7773 34 97.3 950 1400 No ads. The 3-23-16 1645 219 915 sttly reduce rate ST/Jo 211990 3-24-16 0835 70362 63575 7273 49 33 219 1400 257.7 94.8 925 no adi To 63937 1210 49 925 219 32 turn on lube & 1510hr Jo 213920 3-25-16 0815 64899 7273 219 47 70362 253.4 99.1 33 1400 930 66800 no adj - will BF today 3-25 65038 7273 994 24182 1055 70362 218 32 253,1 935 1450 Pre-BF 1130 7273 315 338.2 1140 7293 488.9 150.7 SpC= 2000/150.7=13.3 1225 7342 345.3 143.1 1235 7362 488.9 SpC = 2000/143.1 = 14.0 214449 1300 70362 60 38 346.5 Ø 65058 7383 315 OFF Pre-in, resume 67100 1320 217 45 34 900 1645 70362 65256 218 45 7383 33 400 900 NO ad TI 3-26-16 1000 70362 274.0 72.5 66189 7383 219 46 32 1450 910 67100 no odi To 3-27-16 1120 70302 268.5 russed reader 67575 7383 218 46 33 1400 78.0 word The waster vers 920 3-28-16 0815 70362 68737 7383 218 47 33 1400 264.8 81.7 925 no ad; TL/Jo 1650 70362 69210 218 400 off 7383 264.6 81.9 920 No adj TI Pre Purge Post Purge Cond Temp ORP/ DO H₂S Sampler / Turbidity (NTU) min after start Date Time Purge Volume pΗ $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory 0 1 1 2 1 5 1 10 15 20

45R3	
RUN	3
Ruh Z	
Reh 3	
	L

RUNI

10-100

Spc

RUNS

10.min

						E C C C C C C C C C C C C C C C C C C C	(B - / (mg L)	 ·		4	2	10	1 10	20
N	3-25-16	1130	7273		61,000			16,7	6.33	38.8	27,8	9,93	3,99	2.35
51		1200	7312est	7342	30,000			5.24	30.5	3,99	4.6b		3.3	
3		1582	2342	7383	41,000			1.97	3.58	3.61	370	534	1.68	
								-						
				1										
		1												

SCANNED	TO	DROPBOX	
---------	----	---------	--

Jovo

MPWMD ASR DATA SHEET

Test:

WY 2016 ASR Period

Weather

Sheet

of

MONTEREY PENINSULA

MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)		N ₂ (psi)	DTW (feet)	Draw Up	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressu	ILO		Comi	ments		
1	200					1	(psi)		3465)				Up/Do	wn					
3/196	-	70362	70071	7383	218	38	33	1400	2603		920	05	/		VC 0	21	+1		
	1715	70382	70564	7383	218	37				8819	925	014	/			A 1			
3/30 (0850	70362	71411	7383	218	37	33	1400	254.9	91.6	940		/	1.	m n	11-	77		
	1300	70362	71676	7383	219	33	31	1450			975		/	1 1	ner r	220	PSI T	5 G-PM	To
	1700		71902	7383	270	73	33	1450	2541		965	11100	/	A	DJ.	102	2/=	950) –
31/KE	0825	70362	72688	7383	222	88	34	GOY	Z68,3	77.8	830	67:00	/	A.	di FC	voxit	18	9	255,
	1700	70362	73176	7383	220	64	33	1400	254.5	92:0	950		/			me = 0	7-6-	1 +1 -	- 1/
4-1-16	08/0	70362	74044	7383	518	65	33	1400	250,2	95.8	970	off	/	W	امحا-	7Z 45	رسار 3° 00	ž. y	
1	1345	20362	74377	7383	219	63	32	1450	2484	98.1	990		/						ò
4-2-16	1030	70362	75466 (F)	7383	221	70	33	1460	258.3	88.2	875	021444	OFF	Sto	p ini	950 g	flow-	trisaer	Jo
4-3-16	1510									/	#	02/444	OH	Tu	irn lu	be m	2	TI	
4-4-16	1220	70362	75466	7384	328	64	Ø	1450	343.8		Ø	02:7032	64 61	Re	odings	Sefore	BF	1	
13/2	1230			7405					504.4	160.6			/	So	C =	21100	/160	6 =	13.1
	1250			7426					348.3				/				•		
	1300			7447					507.3	159.0			/	So	C ~	2100/	159.	0 = 1	13.2
	1310	- >-		7452					349.3				/	1		- 7		-	
	1320			7473					507.4	158.1			/	Sol	C = :	2100/	158.	1 = 1	3.3
V	1340	70362	75466	7489	329	64	23*		347.8		Ø	6217230	OFF	2		k flu		-	To
		NOTE . T	x-1 breaker	on MCC pan	LOFF	to de-	energi	e MAG.				100	/				•	•	
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	Cl ₂ 2	(mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0	Turbio	dity (N	TU)	min at	ter sta	rt - 20
4-1-16	1600	0027800	0034900	7100	17:3	580	7.3 3	5 7 23	0.70	_	_	TI							
4-4-16	1720	7384000	7426000	42,000									52.1	19.4	27.8	31.4	12.9	3.74	2.5
- 11	1250	7426000	7452000	26,000											-	3.96			-
þ	1310	7452000	7489000	37,000									-			3.75	-	_	-

5p C

SWS WW

RUNI RUN2

RWN3

ASP3 wellhad press gauge may be stuck; should be Opsi (To).

MPWMD ASR DATA SHEET PENINSULA MONTEREY / Well: ASR-3 ASR Period INS/Storage TFR Sheet MANAGEMENT DISTRICT Weather Survey Test: Well Skerd we 000 7000 FCV Line DTW Draw Up Inj Rate Lube / Skid Lube Date Time Head N₂ (psi) Pressure (psi) (psi) (feet) (feet) (GPM) Meter (gal) Luize 021 728107 4/14 Up/Down (psi) 07191212 TEG Prior to BF 4-15-16 10:05 70362 75466 77 007489 311 MIM-OF 4450 356.7 SOC 7510 512.5 156.3 Soc = 2100/156.3= 13.4 1015 7531 360.5 516.5 1560 1035 7552 1045 SpC = 2100/156-0 = 13-5 7556 1055 360% 517.4 156.8 02198200 7576 1105 Sac = 2000/156.8 = 12.8 1130 70362 75466 7605 325 77 \$ 1400 363.1 TL / JO 0222142 00083600 100 10-min 5pc -5-18-16 0943 TX2 breaker off 7605 276 100+ 1450 357.5 512.4 DDN 154.9 7627 0753 SoC = 2200/154.9 = 14.2 7638 361.3 1010 514.6 DDN 153.3 7659 1020 Soc= 2100/153.3 = 13.7 7661 1030 362.5 DON 513.3 150.8 1040 7681 Soc= 2000/150.9 = 13.3 7697 327 V 222330 1045 Shut FCV lube To/TI Pre Purge Post Purge Temp Cond DO H₂S ORP/ Turbidity (NTU) min after start Sampler / Date Time Purge Volume $[Cl_2]$ Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L)Laboratory 0 1 1 1 2 1 5 1 10 1 15 1 20 4-15-16 1005 7489000 7531600 RUN! 42000 151 181622 3.89 2.67 1.21 1.22 2 16.54.4 3 PUN Z 1035 7531 000 7556 000 426 3.25 1.48 1.72 1.33 15,000 JO-SSAP MAI -147 0.06 7605000 16.6 519 6.9 RUN3 1055 7556000 49 000 1.62 1.30 1.76 1.37 0.74 TOTAL - 116,000 5-18-16 945 7605 33,000 RUNT 7638 165 210 17.0 3.2 1.66 250 7 8 16.7 RUNZ 1010 7628 7661 4.66 15.4 1.9 1.78 1.08 23,000 -253 514.5 0.03 17.2 466 6.94 1030 7661 7697 36,000 2.34 2.15 1.8 2.8 1.63 2.1 TOTAL -> 92,000

-			ASR-3		APWMD A ASR Period Weather	WY			Т		Shee		booster skid	ONTE	REY	4	PEN T	IINSL E	R	
	Date	Time	Tiger [F] (gal) * ×1000 のリエアリア 』ん		BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressur Up/Dow	re m		Comr	ments		/TL
	5-21-16					100				Lube 1	ne O	N ->		/					l	
1-6	-22-16	1025	70362*	75466 ×	7697	285 shut 329	54	٥	1400	367.50		- 1	224820	66 64	1					
5					7718	329 open	5.	0	(A)	516.70	149.2			/		C=	2100	5/14	9.2 =	14.
		1120	70362	75466	7804								225000	OFF	PI	DUM	ove o- eri	rvol	tage	
					4									/		1		113		
														/						
														/						
														/						
														/						
														/	1					
1														/						
11														/						
1														/					-	
1																				
1																				
11																			_	
11	-																			
1+					2						250									
L			Pre Purge	Post Purge		Tamp	Cond		ODD (D.r	185V	TI C	6		1	11. 4				
-	Date	Time	Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	(µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	urbic	iity (N	1TU) 5 3.23	min at	ter sta	20
	6-2216	1025	7697	7804	107 (00)	16.3	486	7.61	16920	012.	272	-	MBAS MAI	112	192	18-1	3.23	2.93	1.95	1.20
-									/				,							
							11.0													
									/											
									/											
-																				
								1												

Well: ASR 3 ASR Period STORAGE

Sheet 1

Test: MONTHY FIELD SAMPLE Weather FOG; SMOKE

MONTEREY PENINSULA ' MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressur Up/Dow	re		Comn	nents		
7.28.16	0900	70362	75466	7804	350	17	_	1400	369,91	-	Ø	22220	5860	Se	TP	SU P	FOR		
				7826				1	513.13		1900		/				MIC	7.	
		y		7864				1400			Ø	227320	/			Nz			
				·							/		/						
													1	1					
													/						
													/						
													/						
													/						
												*	/						
						- "							/						
		E															-		
													/						
													/						
													/						
				-									/						
									- 1				/		-1				
													/						
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	1	2	5 1	min af	15	20
.28.16	0900	7804	7864	60,000	15.2	473	7.6	-107.9 KB	ND	3.77	ND	THE FLEND	58	14.4	71.8	48.4	4.78	4.1	1,82
											1								
								/											
	-			-					7 45	9									7

Well: ASR # 3

ASR Period STURAGE

Sheet.

PENINSULA

Test: FIBLID PARAMETERS MANTEN COOL FORCY

of

TER MANAGEMENT DISTRICT

MONTEREY

				1		1	700	1		1			1			
Date	Time		9-11	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)		(GPM)	Meter (gal)	Lube Pressure Up/Down		nments	
9/1/16	9:45	70392	75571	7865	320	110	0	1400	371,34		2	230020 1008	9895	7.250	USOGO	1
9/1/16	1040			7879					4585	ь	1150	230050		TURNG	UBE OFF	-
9/1/16	1115		p 1	7914								100				
11/10				1												
								1								
										-	F-1					
								7.								
													/			
1																
			~				1-									
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	HICI21	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Tu 0	rbidity (NTU) 1 2 5 3,2 10 5 17,9	min after star	t 20
7/1/16	1050	7865	7914		17.6	551	7.06	792.1	NO	2.21	ND	TC F1660	599 1	3,2 10,5 17,9	2,62 3,66	6.8
,			,													

20 MW

Well: ASR3

ASR Period STORAGE

Sheet 1

MONTEREY PENINSULA

Test: STORAGE STIGT DBP

Weather SUN

MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comm	ents	
9.21.16	1230	70427	755.72	7915	320	45	B	1400	379.21		×	232720	60/58	S1,G	I, DBF	الد ح	TC
	1			7927		1, 1			464.13		1	232720					
9/21/16	1348			7962		-					6		/				
													/				
													/				
												, , , , , , , , , , , , , , , , , , ,	/		-		
													/				
													/				
													/				
													/		7		
													/				
													/				
													/				
													/				
							l'annu						/				
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	(°C)	Cond (µ/cm)	рН	ORP/ Zobell	Cl ₂	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 T	rbidity (1	NTU) n	nin after st 10 15 7, 2 300	art 20
9.21.16	1300	7915	7962	47,000	17.3	588	7,07	-171	ND	4.67	ND	S1,61,081	120 3	145 14,	8,501	7,2306	2.45
								/									
								/		ŵ.							
-								/									
								/									
	-			(- 1		- 1	

Well: ASR4

ASR Period STORAGE

Sheet 1

PENINSULA MONTEREY

Test: SSAP SAMPLING

001 0,0167 0.1

Weather SUN COLD

Well

MANAGEMENT DISTRICT

VOLUME VOLUME

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Meter (gal)	Comments
-17-15	0930	22684	103526	001933	360	100+	ø	1300		ø	ø	00286410161	1086 a
						7							
1-17-15	1605	_	_	2408	OFF	100+	Ø	1250	_	_	-	0029400	BEGANCE 1500
													CHOKED DOWN TO 1350
													@ Smin
						2 4							XD IS NOT RECOPPING
													Coelectry - NEED TO POLL
													AND SOND BACK FOR REPAIR.
	7	,											
			-										
	1		1										
					-								
		D D	Do at Down		T	Cond		ODD		DO	H.C.	Samples /	SAMPLE VOLUME
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pH	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Turbidity (NTU) min after start
·17·15	0930	1933	+		15.9	814	7.66		-	NO	-	SCITCHO MICHIGER	27.5
		1933	1947	K1,000	16.1	936	7.74	luo	-	NO	-	5	16.8
		1947	1973	40,000	16.4	807	7,75	144	-	NO	-		2,49 9,500+00+760=4850 5,69 0+1586=
		1973	2015	82,000	19.4	928	7.67	213	-	OU	-		1.36 CHSOCH 550 = 3550 64 10+1086=
		2015	2092	159,000	22.4	978	7,77	-235	-	NO			1.41 5x50+400=2900 101750+250=1
		2092	2255	322,000	23.5	954	7.81	-901	-	ND	-	1.	190 2490 + 250 2740 Ex500 + 100+ 250 =
		2255	2398	465,000	22.1	988	7.76	-101	-	ND	-	1	1.42 6,500+350=3350 9,500+25+586= 5
		2398			22.9	979	7.67	-194	-	ND	-	4	1.59 8×500+450=4450 4500+75+250 = 4
				7		,					1		

Well: ASR-4

ASR Period

WY 2015

Sheet

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Test: Weather Well Tiger [F] (gal) Tiger [R] (gal) BF (gal) ×1000 Lube FCV Line DTW Draw Up Ini Rate Lube / Skid Head N₂ (psi) Date Time Pressure Comments Meter (gal) (psi) (feet) (feet) (GPM) (psi) Up/Down 29465 1-20-16,0830 22881 105723 1408 prior to line flushing to prior h inj testing 105872 22886 1150 1-21-16 0830 12886 105890 347 63 \$ 1650 22886 50 59 Beg day from RM 50 106072 2973 361 \$ \$ 72 1-22-16 0830 22886 106072 2973 355 35085 74 \$ 347.9 925 1650 22886 106290 3212 360 82 850 108412* 3-14-16 1115 22950 3212 344.9 1 No activity - note meter drift 40450 3-17-16 0845 22950 108474 readings before BF 3212 700 347.1 352 57 56 readings before inj cond. Is 43080 3-18-16 0750 22950 108976 3461 350 Ø 343.9 77 580 360 tank off 3-18-16 1650 washed out in pm OFF eend of last BF of day Jo 44100 3597 60 Ø 345.5 Ø 3-19-16 1005 22950 109323 3597 no activity 0 TL 350 tanh off 3-20-16 0945 22950 109462* 3597 \$ Ø no activity 340.3 50 Jo O GPM 3-21-16 0820 22953 \$ 109613 \$ 342 tank off MAG = 130 GPA 3597 49 d no activity Ja - MAG = - 126 GPM 3-23-16 0830 22953 * 109811* 3597 no activity 0 53 B 50 3.26.16 1200 - washed out --0044100 3597 62 O no activity 0 TO Pre Purge Post Purge Temp Cond ORP/ DO H2S Sampler/

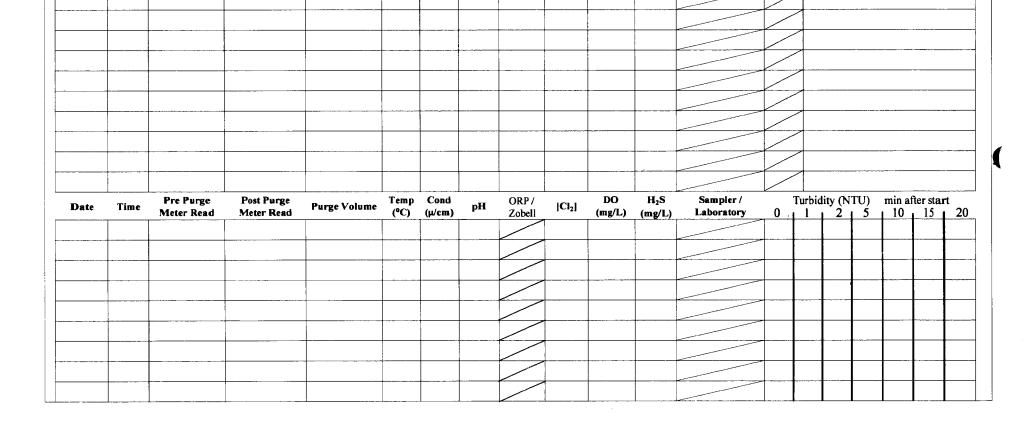
Time Pre Purge Meter Read Purge Volume (°C) (µ/em) pH ORP/ Zobell [Cl₂] DO H₂S Sampler / Laboratory 0 1 2 5 10 15 20

* Indicates likely meter drift.

	Well:	ASR-4	oning" (Day	ASR Period)	Sheet		~		V (S	T	VINSI E Distr	R	
Date			Tiger [R] (gal) ×1000		FCV	Line (psi)		N ₂ (psi)		of Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressur Up/Dow	•			ments		2
3/17/16	900	22950	108424	3212	350	72		700	3421		Ø	40456	5656	-	Star Star	+ 2	SFA	900	
4.7.	910			3243				, ,	481.1	(39.0)				1,0	2-m	:_ @	/5:	<u>,</u> 3/æ	1,
	920			3280				1	, ,,,,					5	too	 >	7	122	3
	930	22950	108474		350	54	0	700	348.3		ø			-	>tar	+ 4:	- ~ F	-lust	_
	935		108477	_	362		20	· · · -			1			1 ~	115	00 4	٥٠٠٦		_
	940			3271										-	عري	// رون			
	100	22950	108542	3322	364	78	68							4	tos	<i>" ()'</i> >	om om Fnj.		
	1020								343.8	1				_5	star	+ 1	Fai.		
	1025	22950	108545	3322	220	46	46				1775			1					
	10 30								297.9	45.9	1800			ی [1/5	2/9	500/4	5.9=	39
	1035													د [ίσρ	In	ر.		
	1045	22950	108564	3322	355	40	0			ىمەن	ø			<u>.s</u>	tm -1	+ B	F.		
	1055			5353					480.7	(34.5)	·			J a	/s =	310	v/13	8.57	ندک
	1056			3357										5	top				
														\perp					
										-				ļ					
							-	ļ		-				_		. E7			
		D D	Dood Doors		Т	C4		OPP (DO.	11.6	611		5	PI.	(Šei	ss) mina	0 1	. 19
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H₂S (mg/L)	Sampler / Laboratory	0	1	2	5	min a	ner sta 15	ırı+
3/17	950												18	_	-	21	10	33	a
,																			
																	<u> </u>		
								//									<u> </u>		_
																ļ 	<u> </u>		
								//									<u> </u>		L
	1									1	1				ı	l	1	ł	1
								/ 		-	 						 	<u> </u>	╆

					APWMD A								٨	AONTE I	REY	Per	VINSU	ILA	
		Well:	ASR-	4	ASR Period	Fn	لمصعو	-: Jan	(wy16)	Sheet				√	T	E	R	
		Test:	"Condit	4 :oning"(D	7) Weather	اے	ear		_		of	3		. M.	ANAGE	MENT	DISTR	ICT	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Date	Time	Tiger [F] (gal)	Tiger [R] (gal)	BF (gal) ×1000	FCV	Line	Well	N ₂ (psi)	DTW	Draw Up	Inj Rate	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Com	ments	R	- N
	3/17/16	1105	22950	108564	3357	360	82	d	700	346,0		Ø			Sta	r+ 1			
ľ	1	115				218	43	44		294.5	47.5				Ca /4	rt I 2 3	97		
		,,35								290.1	669				3/0	~ <u>~</u> ~	···		
ŀ		//							1	70.1	72.1				10,0				
		,45	22060	108621	3262	251	44		 	2416					~L	+ 31	= ((٦,
	_	1.55	~~430	10800	3357 3388))b		0		4030	000								
		1156								7,7.7	(52.4)				9/5	= 3/	WIS	1.7 <u>7</u>	20.
		11			3391										310	P	1	′, ,	
1		-40	2004	1	- 0.4	- 4 4	Δ.,	_				-/			1,90	A 10 10	الماط	wash	ن کمے
-		1250	77450	108621	3341	358	77	0		344.6		Ø			Star Star a/s:	- F F	\ <u>\</u>		
ŀ		120		1 14		220	49	45			48.1	1850					1.5		
-	-	137	Dusplay	washed"						284.6	60.0	-			Sto	>			
-		45	/	to read															
Γ		13	ukinble	to read	3391	35%	४५	0		341.7					Star	+ BF			
H		1400			3423					501.0	(159.3)				७/५	= 320	s/,59.	3-12	ورا
4	_	1406	*	11	3426										0/5 5to;				
															'				
		1415	11		3426	358	82	0		345.8					Star	ナエ	•		
		14 25				220	43	45		293.3	52.5	1850			9/5	<u> 2</u> 35	.2		
		1613								2775									
		Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / (Laboratory	5265)	rbidity (NTLI)	min af	ler star	+-= 2(
	3/17	1540												17		- 19	22	26	2.
ľ																			
														11					
-																1			
														1			 		
														1 1					
														+ +					
.			 				 				 								\vdash

	Well: Test:	ASR-4 "condition	oning" (Day	ASR Period Weather	-Fn	sect	~`` o ^	(wy16	·)	Sheet of	3		V V M	V (AGEM	ENT	E Distr	R	
Date			V Tiger [R] (gal) ×1000			ł	Well	N ₂ (psi)		Draw Up (feet)	Inj Rate	Lube / Skid Meter (gal)	Lube Pressur Up/Dow			Com	ments	ı	
17/16	1645	Display	washed ut to Read	3426	360	84	0	580	341.8	pen	ø			ح ا	tar t	- B	F		
· · · · · · · · · · · · · · · · · · ·	1655	un 6/e	to Read	3458					50 5.9	00N (164.1)	<u></u>			ब	/5 =	. 32u	2/164.	1=1	7.5
	1656			3461										ّ ا	100		•	1=[1	
								ļ						\perp					
														\perp					
								-						\perp					
														\perp					
									,		-			_					
														_					
· - · · · · · · · · · · · · · · · · · ·														_					
														-					
														+					
													/	_					
														+					
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	T	⊥ urbid 1	lity (N	TU)	min a	fter star	rt
																			Γ
		1	1	1	1	1	I	1	1	1	1	***************************************	1 1	,					4


PENINSULA

MONTEREY

Well: ASR-4 ASR Period Injection (wy 16)
Test: Asr Period Injection (wy 16)
Weather Overcast

	T	est:	Conon	Tioning (D	Weather	000	uca	<u>\$ 7</u>	-		of								
Date	e Tin	ne	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	(GPM)	Meter (gal)	Lube Pressur Up/Dow	Y ⊕		Comm	nents	(m)
3/18	116 75	O	22950	108976	3461	350	77	0	580	343.9	200	_	43080	57/56	5	ter t	BF	-	
	ન્દ્ર લ	20			3491					509.9	(166.0)					15 :	30w	/166.	0= 18.
	80	اد			3494										ے [+00			
																,			
	10	45	22950	108977	3494	352	75	0		346.7					15	fart	+ In	, a	
	10	55				230	48	51		303.4	43.3	1525			Q	/s =	+ In 35.	2	
	11'	15								299.8	46.9					tup			
	11	35	22950	109025	3494	360	78	0		344.1	000						+ 13		
-	1,1	75			3525					50.9	(156.4)				G	1/5 =	3/cc	156.9	1-A.8
	1,	46			3528				. *						_	top			
																•		,	
	12	æ	22950	109025	3528	360	78	0		346.8					<u>\</u>	turt	Ing		
	12	10				231	63	52		304.6	42.2	1510			િય	15=	工心 35.8	3	
	13	w								298.1			`		2	tup			
	13	,'O	22950	109113	3528	360	78	0		3H2,1	00~				\ S	for.	t Br		
	13	<u>ک</u> ک			3560					498.9	(156.8)				ပြ	/s =	320	1/156	85/20
	13	וב			3564										<u>_</u>	hp		<u></u>	
																	2- 65		
Dat		me	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP/ Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	عد> <u>]</u> 0	urbit 1	Hty (14 1 2	TU) → 1 ⁵ 1	10 L	15 3
3/18	12	15												17	\times	\times	18	19 .	20 (1.0
			>																

MPWMD ASR DATA SHEET MONTEREY PENINSULA Well: ASR-4 ASR Period Injection (wy/6) Sheet 2 Test: "Conditioning" (Dog 8) Weather overcast of 2 Well Date Time Tiger [F] (gal) x1000 BF (gal) x1000 FCV Line (psi) Head (psi) N2 (psi) DTW Draw Up Inj Rate (GPM) Lube / Skid Meter (gal) (psi) 3/14/16 14²⁰ 22950 109113 3564 361 67 0 500 344.7 14²⁰ 220 36 38 302.3 15⁰⁰ 297.1 302.3 42.4 1515 1530 2935 1635 chable to read 3564 361 63 0 1645 "washed out" 3595 1646 3597 340.5 00N 506.5 (166.0)

TER

Start BF Q/s = 3100/100.0= 18.7 Stup

Comments (RM

MANAGEMENT DISTRICT

Start Inj Q/s = 35.7 No Ado'.

Stop

Lube

Pressure

Up/Down

Well: ASR-4 ASR Period WY 2016

Sheet

MONTEREY PENINSULA

Time (105 1115 1135 1145 1159 1205	22753	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW	Draw Up		Lube / Skid	Lube	, '	20.1			00	010
1115 1135 1145 1145 1205	-	11064		211		(psi)		(feet)	(feet)	(GPM)	Meter (gal)	Up/Dov	vn		Com	ments	i	
1135 1145 1155 1205			7/70	closed	67	0	420	354.8			1047230	73	Pr	ior t	BI	-	Jo	
1145 1155 1205			3630	350				502,0	147.2			1					17.2=	= 22
1205			3660					359.3				/	1					-
1205			3691					506.2	146.9.				So	C = 7	5100	1,46	.9 =	21.
1205			3697					359.5	11007			1	1 "					-
1300			3739						147.8			//	S	2 = 2	7 1775	7,47	8=1	71.0
	Fodad	out	3768	350 Ux-D	76			356.02				//	P	_ >				
1300		200	7100	1 82-11	1~			13670				-	1	uke				
045	_	-	3768	349	7:4	Ø	400	355.2			0047780	74				-45	t I	0/11
1055			3798	1		1	-	502.4	0 DN 1427			1					2.2 = 2	
1195			3832					359.1	141.2			-	700		7000	114	.0- 1	20.9
1125			3864					505.7	Y DN	-			Sol		7.001	141	6 = 2	716
1135			3867				1	359.8	176.6				1		1	7/0		-1-0
1145			3899						147.1)			/	0.0	- 7.	7 /	1117	1 = 2	71 7
1215			3984					700.1	144.11		2050219	OFF	7		-			_
-13			7101									1	vel	loft.	shut f	PCV		0/7
									1				+					
												/	-					
												/	-					
Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	pН	ORP / Zobell	[Cl ₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	0 1	Turbic	lity (N	TU)	min a	ifter sta	irt
1105	3597	3660	63,000					0	24.8°C		•			43.0	128	199	2.05	1,3
1135	3660	3697	37,000					10	P50-			2,91	122	3.5	1,05	1.45	7.07	1
1155	3697	3768		8.75	740	7.4-	234	NS							1.99			
	3768	3832	64,000					St				2.60	519	165	10.5	1.21	1.90	0,0
1045	3832	3864	32,000						D 19.2°C									
1045	3867	3984		23.8	752	7.5	227.4	MD	1.9			2.89	1.82	2.85	0.94	0.74		
	5	5 3832	5 3832 3864	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000 - 019.2°C	5 3832 3864 32,000	5 3832 3864 32,000	5 3832 3864 32,000 1.19 Dib	5 3832 3864 32,000 -019.200 1.19 22.63.60	5 3832 3864 32,000 1.19 22.63 1.10	5 3832 3864 32,000	5 3832 3864 32,000 1.19 22 b 3.60 1.10 0.74

SCANNED TO DROPTSOX JONG

MPWMD	ASR	DATA	SHEET
--------------	------------	-------------	-------

Well: ASR-4

ASR Period WY 2016

press was 310 psi, so

MONTEREY PENINSULA
TER

MANAGEMENT DISTRICT

Weather Psi loss since

Well Tiger [F] (gal) | Tiger [R] (gal) | BF (gal) ×1000 Line DTW Draw Up Inj Rate Lube Lube / Skid Time Date Head N₂ (psi) Pressure Comments (psi) (psi) (feet) (feet) (GPM) Meter (gal) Up/Down (psi) 0052560 6-1-16 1700 lube line on 338 6-2.16 0950 Tx2 break woff 0054619 3984 100+ 85 2100 362.31 BF well; collect continuous ORP 472.8 DON 110.5 SpC = 2600/110.5 = 23.5 4010 1000 At 25 mm, check PSV - not fully engaged. Rate went from 2500 to 300 apm on dial after. 4050 1015 35 1050 4156 514.5 34wt 332 1054829 4215 115 adjustment. pH 23.7 ORP/ Turbidity (NTU) min after start
0 1 2 5 10 15 20 30 60
OR 2 0 5 59.6 42.7 2.87 1.76 1.57 2.0 0.79 Temp Cond DO Pre-Purge Post Purge H₂S Sampler / Time Purge Volume Date Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory 23.9 704 7.61 6-2-16 3984 4215 1100 231,000 MD 1.09

OR = Outside Range of meter

Well: ASRY

S-1,G1,DBP,F

ASR Period STORAGE

Test: QUACTORY SAMPLE SAP Weather FOG PARTIAL SUN

Sheet 4

Well Lube FCV Line DTW Draw Up Inj Rate Lube / Skid Date Time Head N₂ (psi) Comments Pressure (psi) (feet) (psi) (feet) (GPM) Meter (gal) Up/Down (psi) 0057020 00 4215 11526 100+ 12 TLIJL 22953 7.13.16 6917 1850 365.68 4243 48538 SPECIFIC CAPACITY 57160 SAMPLEDO SOMIN 9309 LUBE CO.7 Gpm FOUDFF LURFOSF 1024. You on switch |Cl2| 2/.BO ORP/ Turbidity (NTU) min after start Pre Purge Post Purge Temp Cond H,S Sampler / Date Time Purge Volume pH Meter Read Meter Read (°C) (µ/cm) Zobell (mg/L) (mg/L) Laboratory 1 1 2 1 5 1 10 1 15 1 20 3 JC MBAS OR 121 11.52.6 4215 94,000 13.16 9309 21.4 476 8.06 1.75 1000

SE

Well: ASR # 4 ASR Period STORAGE

Sheet

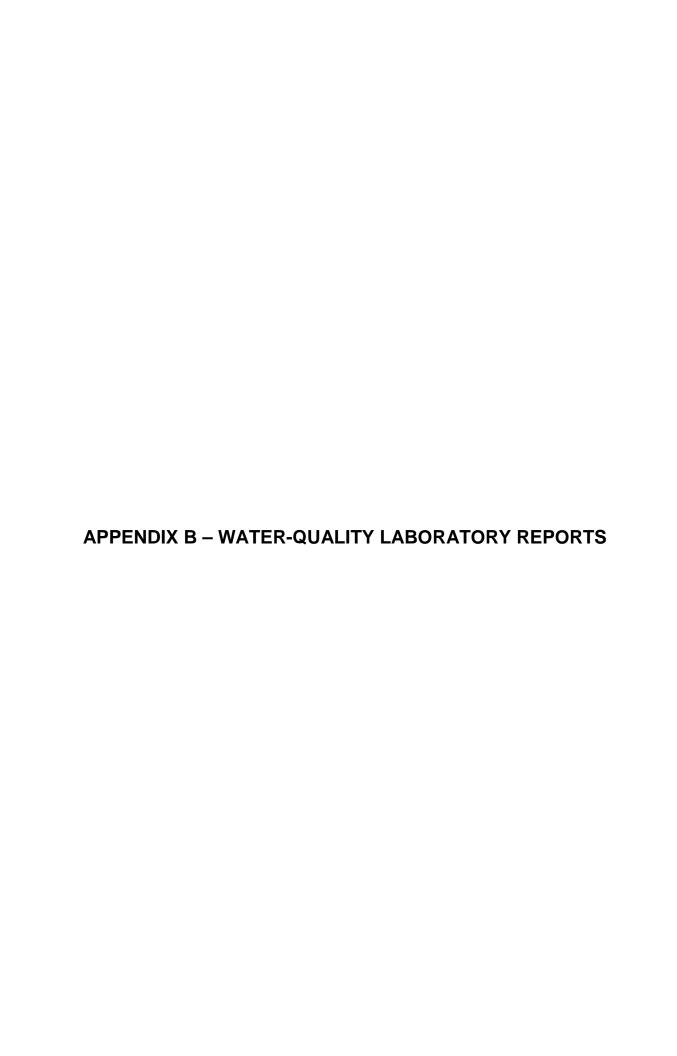
MONTEREY PENINSULA

Test: FIGUS PANAMETTERS

Weather COOL

MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal) ×1000	Tiger [R] (gal) ×1000	BF (gal) ×1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Lube / Skid Meter (gal)	Lube Pressure Up/Down		Comme	nts	
11/11	92/03	23039	112380	4309	340	116	0	2000	368.7			59748	119/10				
1/1/16	177			4337					486,39		2650			2650	0 6PM	4 6,	PIT
9/1/16	1300			4390								59840 101300		TURNI	0001	F Luis	ETC
1-11-												101			- 2	6	
					,												
														-			
															-		
										- 10							
Date	Time	Pre Purge Meter Read	Post Purge Meter Read	Purge Volume	Temp (°C)	Cond (µ/cm)	рН	ORP/ Zobell	5° [Cl₂]	DO (mg/L)	H ₂ S (mg/L)	Sampler / Laboratory	Tu 0	rbidity (N	ΓU) m	in after sta	rt 1 20
1/1/16	1230	4309	4390		239	852	7.18	-2661.8	ND	0,56	0.02	TC FIELD	191 4	90 118	17.2 4	,82 3,11	2,90
-/																	
		11 35		-													
				(
			d .		-1												
	1																


Well: ASR 4

ASR Period STURAGE

Test: 4Th OTE S4,61,08P Weather FOS/SON

Well Lube Lube / Skid FCV Line DTW Draw Up Inj Rate Comments Time Head N₂ (psi) Pressure Date (feet) (GPM) Meter (gal) (psi) (psi) (feet) Up/Down (psi) 58 TC, SL, QUARTERY SAMPLE. 374.25 -4390 345 40 0 2000 23039 112895 9-21-16 2700 GP4 4418 2700 GPM BF 495.68 61960 NZ OFF LUBEOFF. 4502 1130 2000 ORP/18.5° [Cl₂]
Zobell 1 Turbidity (NTU) min after start H₂S Sampler / Temp Cond DO Pre Purge Post Purge Purge Volume Time Date (mg/L) (mg/L) Laboratory (°C) (µ/cm) Meter Read Meter Read 0,01 51,91 MBAS 220 126 60.8 11 112000 564 16 1030 4390 4502

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Monday, January 04, 2016

Lab Number: AB39634

Collection Date/Time: 12/15/2015 10:30 Sample Collector: LEAR J Client Sample #: Sample ID Submittal Date/Time: 12/18/2015 8:45 Coliform Designation:

Odomina Dato, mino	=,	- Cap.c				000	00.9	
		Samp	le Description: /	ASR2				
Analyte	Method	Unit	Result (Qual	PQL	MCL	Date Analyzed	Analyst:
Chloramines	SM4500-CI G	mg/L	Not Detected	Н	0.05		12/18/2015	LJ
Chloride	EPA300.0	mg/L	126		1	250	12/18/2015	MW
Haloacetic Acids	EPA552	μg/L	Not Detected	E		60	12/29/2015	BSK
Trihalomethanes	EPA524.2	μg/L	Not Detected	E		80	12/23/2015	BSK

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Monday, January 04, 2016

Lab Number: AB39635

Collection Date/Time: 12/16/2015 10:30 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 12/18/2015 Sample ID Coliform Designation: 8:45

		Sampl	e Description:	SMS(D)				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Chloramines	SM4500-CI G	mg/L	Not Detected	Н	0.05		12/18/2015	LJ
Chloride	EPA300.0	mg/L	123		1	250	12/18/2015	MW
Haloacetic Acids	EPA552	μg/L	Not Detected	E		60	12/29/2015	BSK
Trihalomethanes	EPA524.2	μg/L	Not Detected	E		80	12/23/2015	BSK

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Monday, January 04, 2016

Lab Number: AB39636

Collection Date/Time: 12/16/2015 10:30 Sample Collector: LEAR J Client Sample #: Sample ID Submittal Date/Time: 12/18/2015 8:45 Coliform Designation:

Cabillitia Date, Illioi	_,				200.gae				
Sample Description: ASR3									
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:	
Chloramines	SM4500-CI G	mg/L	Not Detected	Н	0.05		12/18/2015	LJ	
Chloride	EPA300.0	mg/L	95		1	250	12/18/2015	MW	
Haloacetic Acids	EPA552	μg/L	Not Detected	E		60	12/29/2015	BSK	
Trihalomethanes	EPA524.2	μg/L	21	E		80	12/23/2015	BSK	

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Monday, January 04, 2016

Lab Number: AB39637

Collection Date/Time: 12/15/2015 11:00 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 12/18/2015 8:45 Sample ID Coliform Designation:

		Samp	ole Description	: MW1				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Chloramines	SM4500-CI G	mg/L	Not Detected	Н	0.05		12/18/2015	LJ
Chloride	EPA300.0	mg/L	161		1	250	12/18/2015	MW
Haloacetic Acids	EPA552	μg/L	Not Detected	Е		60	12/29/2015	BSK
Trihalomethanes	EPA524.2	μg/L	Not Detected	Е		80	12/23/2015	BSK

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

A5L2014 1/04/2016

Invoice: A600072

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940

RE: Report for A5L2014 MPWMD

Dear David Holland,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 12/22/2015. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, John Montierth, at (800) 877-8310 or (559) 497-2888 x201.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

John Montierth, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

Case Narrative

Invoice Details

Project and Report Details

Client: Monterey Bay Analytical Invoice To: Monterey Bay Analytical

Report To: David Holland Invoice Attn: David Holland

Project #: - Project PO#: -

Received: 12/22/2015 - 15:02

Report Due: 1/06/2016

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 4.4 COC/Labels Agree
Received On Wet Ice

Received On Wet Ice Received On Blue Ice

Packing Material - Bubble Wrap

Packing Material - Paper

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

Report Distribution

Recipient(s) Report Format CC:

David Holland FINAL.RPT

Mason Weidner FINAL.RPT

^{***}None applied***

Certificate of Analysis

Sample ID: A5L2014-01 **Sample Date - Time:** 12/15/15 - 10:30

Sampled By:Jonathan LearMatrix:WaterSample Description:ASR2 // AB39634Sample Type:Grab

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Surrogate: Bromofluorobenzene	EPA 524.2	98 %	Acceptable	e range: 7	0-130 %				
Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	C-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A515258	12/28/15	12/29/15	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	97 %	Acceptable	e range: 7	0-130 %				
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

Certificate of Analysis

Sample ID: A5L2014-02 **Sample Date - Time:** 12/16/15 - 10:30

Sampled By:Jonathan LearMatrix:WaterSample Description:SMS (D) // AB39635Sample Type:Grab

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Surrogate: Bromofluorobenzene	EPA 524.2	100 %	Acceptable	e range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	GC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A515258	12/28/15	12/29/15	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	97 %	Acceptable	e range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

Sample Description: ASR3 // AB39636

Certificate of Analysis

Sample ID: A5L2014-03
Sampled By: Jonathan Lear
Sampled By: Water

Matrix: Water Sample Type: Grab

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	6.2	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Chloroform	EPA 524.2	11	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Dibromochloromethane	EPA 524.2	3.7	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %	Acceptable	e range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		21	0.50	ug/L					
Haloacetic Acids by GC-ECD, C	GC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A515258	12/28/15	12/29/15	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	98 %	Acceptable	e range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

Certificate of Analysis

Sample ID: A5L2014-04 **Sample Date - Time:** 12/15/15 - 11:00

Sampled By:Jonathan LearMatrix:WaterSample Description:MW1 // AB39637Sample Type:Grab

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A515034	12/23/15	12/23/15	
Surrogate: Bromofluorobenzene	EPA 524.2	97 %	Acceptable	e range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	GC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A515258	12/28/15	12/29/15	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A515258	12/28/15	12/29/15	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	97 %	Acceptable	e range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 5	24.2 - Q	uality Co	ntrol						
Batch: A515034										Prepared	: 12/23/201
Prep Method: EPA 524.2										Α	nalyst: AN
Blank (A515034-BLK1)											
Bromodichloromethane	ND	0.50	ug/L							12/23/15	
Bromoform	ND	0.50	ug/L							12/23/15	
Chloroform	ND	0.50	ug/L							12/23/15	
Dibromochloromethane	ND	0.50	ug/L							12/23/15	
Surrogate: Bromofluorobenzene	48			50		97	70-130			12/23/15	
Blank Spike (A515034-BS1)											
romodichloromethane	10	0.50	ug/L	10		104	70-130			12/23/15	
Bromoform	12	0.50	ug/L	10		116	70-130			12/23/15	
Chloroform	10	0.50	ug/L	10		102	70-130			12/23/15	
Dibromochloromethane	10	0.50	ug/L	10		105	70-130			12/23/15	
Surrogate: Bromofluorobenzene	49			50		98	70-130			12/23/15	
Blank Spike Dup (A515034-BSD1)											
Bromodichloromethane	10	0.50	ug/L	10		105	70-130	1	30	12/23/15	
Bromoform	11	0.50	ug/L	10		113	70-130	3	30	12/23/15	
Chloroform	10	0.50	ug/L	10		103	70-130	1	30	12/23/15	
Dibromochloromethane	10	0.50	ug/L	10		104	70-130	1	30	12/23/15	
Surrogate: Bromofluorobenzene	50			50		100	70-130			12/23/15	
Matrix Spike (A515034-MS1), Source: A	A5L2014-01										
Bromodichloromethane	12	0.50	ug/L	10	ND	115	47-151			12/23/15	
Bromoform	13	0.50	ug/L	10	ND	128	29-162			12/23/15	
Chloroform	12	0.50	ug/L	10	ND	116	52-148			12/23/15	
Dibromochloromethane	11	0.50	ug/L	10	ND	115	44-149			12/23/15	
Surrogate: Bromofluorobenzene	49			50		98	70-130			12/23/15	
		EPA 5	52.3 - Q	uality Co	ntrol						
Batch: A515258										Prepared	: 12/28/201
Prep Method: EPA 552.3										Aı	nalyst: MT
Blank (A515258-BLK1)											
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							12/29/15	
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							12/29/15	
Ionobromoacetic Acid (MBAA)	ND	1.0	ug/L							12/29/15	
Ionochloroacetic Acid (MCAA)	ND	2.0	ug/L							12/29/15	
richloroacetic Acid (TCAA)	ND	1.0	ug/L							12/29/15	
Surrogate: 2-Bromobutanoic Acid	27			25		108	70-130			12/29/15	
Blank Spike (A515258-BS1)											
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		104	70-130			12/29/15	
Pichloroacetic Acid (DCAA)	11	1.0	ug/L	10		108	70-130			12/29/15	
Ionobromoacetic Acid (MBAA)	11	1.0	ug/L	10		109	70-130			12/29/15	
Ionochloroacetic Acid (MCAA)	23	2.0	ug/L	20		114	70-130			12/29/15	
richloroacetic Acid (TCAA)	11	1.0	ug/L	10		106	70-130			12/29/15	
A5L2014 FINAL 01042016 1128											
Printed: 1/4/2016										Do	ge 7 of 12
QA-RP-0001-10 Final.rpt		— www.	BSKAs	sociates.	.com —			_		Гa(J C / UI 12

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
				uality Co							
Batch: A515258		EFA 5	12.3 - Q	uanty CO	1111 01					Dronored	10/00/004
										•	12/28/201
Prep Method: EPA 552.3										Ar	alyst: MTN
Blank Spike (A515258-BS1)											
Surrogate: 2-Bromobutanoic Acid	25			25		100	70-130			12/29/15	
Blank Spike Dup (A515258-BSD1)											
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		103	70-130	1	30	12/29/15	
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10		108	70-130	0	30	12/29/15	
Monobromoacetic Acid (MBAA)	11	1.0	ug/L	10		106	70-130	3	30	12/29/15	
Monochloroacetic Acid (MCAA)	22	2.0	ug/L	20		108	70-130	5	30	12/29/15	
Trichloroacetic Acid (TCAA)	11	1.0	ug/L	10		105	70-130	1	30	12/29/15	
Surrogate: 2-Bromobutanoic Acid	25			25		101	70-130			12/29/15	
Duplicate (A515258-DUP1), Source: A5	5L2187-03										
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L		ND				30	12/29/15	
Dichloroacetic Acid (DCAA)	7.4	1.0	ug/L		7.2			3	30	12/29/15	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	12/29/15	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	12/29/15	
Trichloroacetic Acid (TCAA)	6.5	1.0	ug/L		6.4			3	30	12/29/15	
Surrogate: 2-Bromobutanoic Acid	24			25		98	70-130			12/29/15	
Matrix Spike (A515258-MS1), Source: A	A5L1839-01										
Dibromoacetic Acid (DBAA)	29	1.0	ug/L	10	17	112	70-130			12/29/15	
Dichloroacetic Acid (DCAA)	15	1.0	ug/L	10	6.2	93	70-130			12/29/15	
Monobromoacetic Acid (MBAA)	13	1.0	ug/L	10	1.9	107	70-130			12/29/15	
Monochloroacetic Acid (MCAA)	23	2.0	ug/L	20	ND	110	70-130			12/29/15	
Trichloroacetic Acid (TCAA)	12	1.0	ug/L	10	1.6	108	70-130			12/29/15	
Surrogate: 2-Bromobutanoic Acid	25			25		102	70-130			12/29/15	

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters:

NA

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno

State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
EPA - UCMR3	CA00079	State of Washington	C997-15

Sacramento

State of California - ELAP 2435

Vancouver

State of Oregon - NELAC WA100008-007 State of Washington C824-14a

12222015

Monte6227

Turnaround: Standard

Due Date: 1/6/2016

Monterey Bay Analytical

Printed: 12/22/2015 5:28:28PM

Page 10 of 12

	rit.	Received for Lab by: (Signature and Printed Name) Received for Lab by: (Signature and Printed Name) Company Company	PIA#:	Beggg	Arnount: Custody Seal: Y(M) Chilling Process Begu	Qu Ch	Received by: (Signature and Printed Name) Payment Received at Delivery: Date:	Payment Received at Date:	Time	Date Date Courier:	FED EX	in balances are	WALK-IN WALK-IN	GSO GSO	UPS None None	ed Name) Of the same due in full with the s	Received for Lab by: (Signature and Printed Name) Received for Lab by: (Signature and Printed Name) Shipping Method: Cooling Method: Typnent for services rendered as noted Mark fire due in	r Lab by: (Signature) (Signatu	Received for Lab b Received for Lab b Rhipping Method: Cooling Method: Payment for services
*		Company				i Name)	Received by, (Signature and Printed Name)	Received by: (Si		Date 12/2144			Company	2	M. Holland		re apprinted N	ined by: (Signal	Relinquished by: (Sign
<u> </u>					+++/														
<u> </u>															→				
					$\times \times $			36	AB39636 AB39637	GW GW	1100	12/16/15 12/15/15						MW1	4 . 3 A
					\times			35		GW		12/16/15						SMS(D)	
					X			34	AB39634	GW		12/15/15	,					ASR2	1. AS
				****	ТТН	HAA	Comments / Station Code / WTRAX	ments / Statio		— Matrix*	pled* Time	Sam Date			Sample Description* Sampled* Matrix*	ampie De	s		#
						15	Solid	Geotracker #: DW=Drinking Water SO=Solid	Geo	/=Storm Wal	Water STV	Other:	Ground Water	ਲ Water GW=	ater BW=Bottle	W=Surface Wa	trix ⊺ypes:	Jonathan Lear	Jonati
								System Number*:		Fresno Co		Merced Co Madera Co					Sampler Name (Printed/Signature)*:	Name (Prin	Sampler
		· · · · · · · · · · · · · · · · · · ·				Water)	Regulatory Compliance EDT to California SWRCB (Drinking Water)	Regulatory To California S		pies	Regulatory Carbon Copies (RCB (Drinking Water)	Regulatory Carbon Co SWRCB (Drinking Water)			TEDD Type:	7	Swamp	Reporting Options: Trace (J-Flag)	Reporting
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	ted results ?*	How would you like to receive your completed results?* X E-Mail Fax Mail	would you like to recei	How wo			77	Project #:					MD	MPWMD
							zip*: 93940	State*: CA				terey	city⁺: Monterey				t, Suite D	Address*: 4 Justin Court, Suite	Address*: 4 Justin
4 /	734 ıd@mbasi n	Phone: Fax: 831-375-6227 831-641-0734 E-mail: mweidner@mbasinc.com, dholland@mbasing)mbasinı	6227 eidner@	Phone*: 831-375-6227 E-mail*: mweidne	ш. 6 8 да		Invoice To*: David Holland PO#:	Invoice To* David H Po#:		olland	eidner-H and	Report Attention*: Mason Weidner-Holland Additional cc's: David Holland	1 S S S S S S S S S S S S S S S S S S S	SS	al Service	Monterey Bay Analytical Services	Monterey Bay A	Monte
	And a state of the							- 12-13-13-13-13-13-13-13-13-13-13-13-13-13-		īģ.	Temp:				*Required Fields			ی	5
Page 11 of 12	DY	12/22/2015		014 96227	A5L2014 Monte6227		ess days ay apply)	Turnaround Time Request Standard - 10 business days Rush (Surcharge may apply) Date needed:	Turnaround Tir Standard - 10 Rush (Surcha Date needed:			93706	resno, CA (559) 497-; ɔm	slaus St., F 2888 - Fax ssociates.co	1414 Stanislaus St., Fresno, CA 93706 (559) 497-2888 · Fax (559) 497-2893 www.bskassociates.com		SCIAtes Abboritories		Ass.
2																			

BSK Associates SR-FL-0002-15

Sample Integrity

BSK Bottles: / Yes of No Page Were correct containers and preservatives Was temperature within range? Yes No NA No NA 'Yes received for the tests requested? Chemistry ≤ 6°C Micro < 10°C Were there bubbles in the VOA vials? If samples were taken today, is there evidence Yes No (NA Yes No (NA (Volatiles Only) that chilling has begun? Was a sufficient amount of sample received? Yes Qes Did all bottles arrive unbroken and intact? No Do samples have a hold time <72 hours? (Yes No Did all bottle labels agree with COC? Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) Yes Yes No NA By/Time: until chlorine was no longer present? Passed? Checks 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Bacti Na₂S₂O₃ None (P)White Cap Cr6 (P) Br. Green Label/Blue Cap NH4OH(NH4)2SO4 DW CI, pH > 8 Cr6 (P) Pink Label/Blue Cap Ν pH 9.3-9.7 NH4OH(NH4)2SO4 WW Cr6 (P) Black Label/Blue Cap NH40H(NH4)2S04 7199 pH 9.0-9.5 ***24 HOUR HOLD TIME*** HNO₃ (P) Red Cap pH < 2 Yellow Cap/Label H₂SO₄ (P) or (AG) NaOH (P) Green Cap Υ Cl, pH >10 pH > 9 Y N NaOH + ZnAc (P) Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, Received HCI (AG)Lt. Blue Label O&G, Diesel Na₂O₃S+HCl (AG)^{Lt Pink Label} 525 Na₂S₂O₃ 1 Liter (Brown P) 549 Bottles Na₂S₂O₃ (AG)^{Blue Label} 547,515,548,THM,524 Na₂S₂O₃ (CG) Blue Label 504, 505 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 Υ Ν pH < 3A NH₄CI (AG)^{Purple Label} 552 EDA (AG)Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) None (CG) H₃PO₄ (CG)^{Salmon Label} Other: Asbestos 1Liter Plastic w/ Foil Low Level Hg / Metals Double Baggie Bottled Water Clear Glass Jar: 250 / 500 / 1 Liter Soil Tube Brass / Steel / Plastic Tedlar Bag / Plastic Bag Date/Time/Initials Preservative Container Preservative Date/Time/Initials Container Spit SP S P SP SP Comments Labels checked by: A @ 16.48 RUSH Paged by:_

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

Monterey Bay Analytical Services 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385 Tuesday, February 02, 2016

Page 1 of 2

Lab Number:

Collection Date/Time:

AB40665

1/11/2016 13:30 Sample Collector:

LINDBERG T

Client Sample #:

			•				•		
Submittal Date/Time:	1/11/2016	14:45	Sample ID			Co	liform Desiç	gnation:	
		Samp	le Descrip	otion: ASR-1	INJECT	ATE			
Analyte		Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaC	O3)	SM2320B	mg/L	153		10		1/15/2016	BS/LRH
Aluminum, Total		EPA200.8	μg/L	Not Detected		10	1000	1/14/2016	SM
Ammonia-N		SM4500NH3 D	mg/L	Not Detected		0.05		1/24/2016	DH
Arsenic, Total		EPA200.8	μg/L	1		1	10	1/14/2016	SM
Barium, Total		EPA200.8	μg/L	70		10	1000	1/14/2016	SM
Bicarbonate (as HCO3-)		SM2320B	mg/L	187		10		1/15/2016	LRH
Boron		EPA200.7	mg/L	Not detected		0.05		1/18/2016	MW
Bromide		EPA300.0	mg/L	0.1		0.1		1/12/2016	НМ
Calcium		EPA200.7	mg/L	47		0.5		1/18/2016	MW
Carbonate as CaCO3		SM2320B	mg/L	Not Detected		10		1/15/2016	LRH
Chloramines		SM4500-CI G	mg/L	0.19		0.05		1/11/2016	SM
Chloride		EPA300.0	mg/L	34		1	250	1/12/2016	НМ
DOC		SM5310C	mg/L	1.4		0.2		1/15/2016	MW
Fluoride		EPA300.0	mg/L	0.3		0.1	2.0	1/12/2016	НМ
Gross Alpha		EPA900.0	pCi/L	1.72 ± 1.65	E		15	1/21/2016	FGL
Haloacetic Acids		EPA552	μg/L	12	E		60	1/18/2016	BSK
Iron		EPA200.7	μg/L	Not Detected		10	300	1/18/2016	MW
Iron, Dissolved		EPA200.7	μg/L	Not Detected		10	300	1/18/2016	MW
Kjehldahl Nitrogen		SM4500-NH3 B,	mg/L	Not Detected		0.5		1/20/2016	LRH
Lithium		EPA200.8	μg/L	7		1		1/14/2016	SM
Magnesium		EPA200.7	mg/L	15		0.5		1/18/2016	MW
Manganese, Dissolved		EPA200.7	μg/L	Not Detected		10	50	1/18/2016	MW
Manganese, Total		EPA200.7	μg/L	Not Detected		10	50	1/18/2016	MW
Mercury, Total		EPA200.8	μg/L	1		0.5	2	1/14/2016	SM
Methane		EPA174/175	μg/L	0.59	E	0.1		1/14/2016	MCCAM
Molybdenum, Total		EPA200.8	μg/L	3		1	1000	1/14/2016	SM
Nickel, Total		EPA200.8	μg/L	Not Detected		10	100	1/14/2016	SM
Nitrate as NO3		EPA300.0	mg/L	1		1	45	1/12/2016	НМ
Nitrate as NO3-N		EPA300.0	mg/L	0.2		0.1	10	1/12/2016	НМ
Nitrate+Nitrite as N		EPA300.0	mg/L	0.5		0.1		1/12/2016	НМ
Nitrite as NO2-N		EPA300.0	mg/L	0.3		0.1	1.0	1/12/2016	НМ
o-Phosphate-P		EPA300.0	mg/L	0.3		0.1		1/12/2016	НМ

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance Lab Number:AB40665Collection Date/Time:1/11/201613:30Sample Collector:LINDBERG TClient Sample #:Submittal Date/Time:1/11/201614:45Sample IDColliform Designation:

	'				0	
Sam	ple Descrip	tion: ASR-1 INJ	ECTATE			
Method	Unit	Result Qu	al PQL	MCL	Date Analyzed	Analyst:
SM4500-H+B	pH (H)	7.6	0.1		1/11/2016	LRH
HACH 8190	mg/L	0.47	0.03		1/12/2016	LRH
EPA200.7	mg/L	3.2	0.5		1/18/2016	MW
Calculation	%	98%			1/15/2016	LRH
Calculation	%	0			1/19/2016	MW
Calculation	%	98%			1/19/2016	MW
Calculation		0.63			1/15/2016	НМ
EPA200.8	μg/L	4	2	50	1/14/2016	SM
EPA200.7	mg/L	23	0.5		1/18/2016	MW
EPA200.7	mg/L	52	0.5		1/18/2016	MW
SM2510B	µmhos/cm	603	1	900	1/14/2016	НМ
EPA200.8	μg/L	263	5		1/14/2016	SM
EPA300.0	mg/L	91	1	250	1/12/2016	НМ
SM5310C	mg/L	1.4	0.2		1/15/2016	MW
SM2540C	mg/L	380	10	500	1/13/2016	MP
Calculation	mg/L	0.5	0.5		1/20/2016	LRH
EPA903.0	pCi/L	0.036 ± 0.159 E		3	1/27/2016	FGL
EPA524.2	μg/L	26 E		80	1/15/2016	BSK
EPA200.8	μg/L	1	1	30	1/14/2016	SM
EPA200.8	μg/L	Not Detected	5	1000	1/14/2016	SM
EPA200.8	μg/L	318	20	5000	1/14/2016	SM
	Method SM4500-H+B HACH 8190 EPA200.7 Calculation Calculation Calculation EPA200.8 EPA200.7 EPA200.7 SM2510B EPA200.8 EPA300.0 SM5310C SM2540C Calculation EPA903.0 EPA524.2 EPA200.8 EPA200.8	Method Unit SM4500-H+B pH (H) HACH 8190 mg/L EPA200.7 mg/L Calculation % Calculation % Calculation pg/L EPA200.8 μg/L EPA200.7 mg/L EPA200.7 mg/L EPA200.8 μg/L EPA300.0 mg/L SM5310C mg/L SM2540C mg/L Calculation mg/L EPA903.0 pCi/L EPA524.2 μg/L EPA200.8 μg/L EPA200.8 μg/L	Method Unit Result Qu SM4500-H+B pH (H) 7.6 HACH 8190 mg/L 0.47 EPA200.7 mg/L 3.2 Calculation % 98% Calculation % 98% Calculation % 98% Calculation 0.63 EPA200.8 EPA200.8 μg/L 4 EPA200.7 mg/L 52 SM2510B μmhos/cm 603 EPA200.8 μg/L 263 EPA300.0 mg/L 91 SM5310C mg/L 1.4 SM2540C mg/L 380 Calculation mg/L 0.5 EPA903.0 pCi/L 0.036 ± 0.159 E EPA200.8 μg/L 26 E EPA200.8 μg/L Not Detected	SM4500-H+B pH (H) 7.6 0.1 HACH 8190 mg/L 0.47 0.03 EPA200.7 mg/L 3.2 0.5 Calculation % 98% 98% Calculation % 98% 98% Calculation 0.63 EPA200.8 μg/L 4 2 EPA200.8 μg/L 4 2 2 EPA200.7 mg/L 23 0.5 5 EPA200.7 mg/L 52 0.5 0.5 SM2510B μmhos/cm 603 1 1 EPA200.8 μg/L 263 5 5 EPA300.0 mg/L 91 1 1 SM2540C mg/L 380 10 0.2 SM2540C mg/L 380 10 0.5 EPA903.0 pCi/L 0.036 ± 0.159 E EPA524.2 μg/L 26 E EPA200.8 μg/L Not Detected	Method Unit Result Qual PQL MCL SM4500-H+B pH (H) 7.6 0.1 HACH 8190 mg/L 0.47 0.03 EPA200.7 mg/L 3.2 0.5 Calculation % 98%	Method Unit Result Qual PQL MCL Date Analyzed SM4500-H+B pH (H) 7.6 0.1 1/11/2016 HACH 8190 mg/L 0.47 0.03 1/12/2016 EPA200.7 mg/L 3.2 0.5 1/18/2016 Calculation % 98% 1/19/2016 Calculation % 98% 1/19/2016 Calculation % 98% 1/19/2016 Calculation % 98% 1/19/2016 Calculation 0.63 1/15/2016 EPA200.8 μg/L 4 2 50 1/14/2016 EPA200.7 mg/L 23 0.5 1/18/2016 EPA200.7 mg/L 52 0.5 1/18/2016 SM2510B μmhos/cm 603 1 900 1/14/2016 EPA200.8 μg/L 263 5 1/14/2016 EPA300.0 mg/L 380 10 500 1/15/2016

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

A6A1050 1/21/2016

Invoice: A601339

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940

RE: Report for A6A1050 MPWMD

Dear David Holland,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 1/13/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, John Montierth, at (800) 877-8310 or (559) 497-2888 x201.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

John Montierth, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

Client:

Report Due:

Case Narrative

Invoice Details

Project and Report Details

Monterey Bay Analytical Invoice To: Monterey Bay Analytical

Report To: David Holland Invoice Attn: David Holland

Project #: MPWMD Project PO#: -

Received: 1/13/2016 - 12:00

Sample Receipt Conditions

1/27/2016

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 4.8

COC/Labels Agree

Received On West In

Received On Wet Ice Received On Blue Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

Report Distribution

Recipient(s)	Report Format	CC:	
David Holland	FINAL.RPT		
Mason Weidner	FINAL.RPT		

^{***}None applied***

Sample Description: ASR-1-Injectate // AB40665

MPWMD MPWMD

Certificate of Analysis

Sample ID: A6A1050-01 **Sample Date - Time:** 01/11/16 - 13:30 Sampled By: T Lindberg

Matrix: Ground Water

Sample Type: Grab

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	8.8	0.50	ug/L	1	A600497	01/14/16	01/15/16	
Bromoform	EPA 524.2	1.7	0.50	ug/L	1	A600497	01/14/16	01/15/16	
Chloroform	EPA 524.2	6.9	0.50	ug/L	1	A600497	01/14/16	01/15/16	
Dibromochloromethane	EPA 524.2	8.4	0.50	ug/L	1	A600497	01/14/16	01/15/16	
Surrogate: Bromofluorobenzene	EPA 524.2	102 %	Acceptable	e range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		26	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	SC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	3.1	1.0	ug/L	1	A600554	01/15/16	01/18/16	
Dichloroacetic Acid (DCAA)	EPA 552.3	5.2	1.0	ug/L	1	A600554	01/15/16	01/18/16	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A600554	01/15/16	01/18/16	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A600554	01/15/16	01/18/16	
Trichloroacetic Acid (TCAA)	EPA 552.3	3.2	1.0	ug/L	1	A600554	01/15/16	01/18/16	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	104 %	Acceptable	e range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		12	2.0	ug/L					

BSK Associates Fresno Organics Quality Control Report

A	Dec. 10		11.26	Spike	Source	0/550	%REC		RPD	Date
Analyte	Result		Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 52	24.2 - Q	uality Co	ntrol					
Batch: A600497										Prepared: 1/14/20
Prep Method: EPA 524.2										Analyst: AN
Blank (A600497-BLK1)										
Bromodichloromethane	ND	0.50	ug/L							01/15/16
Bromoform	ND	0.50	ug/L							01/15/16
Chloroform	ND	0.50	ug/L							01/15/16
Dibromochloromethane	ND	0.50	ug/L							01/15/16
Surrogate: Bromofluorobenzene	45			50		91	70-130			01/15/16
Blank Spike (A600497-BS1)										
Bromodichloromethane	9.4	0.50	ug/L	10		94	70-130			01/14/16
Bromoform	9.9	0.50	ug/L	10		99	70-130			01/14/16
Chloroform	9.4	0.50	ug/L	10		94	70-130			01/14/16
Dibromochloromethane	9.7	0.50	ug/L	10		97	70-130			01/14/16
Surrogate: Bromofluorobenzene	53			50		107	70-130			01/14/16
Blank Spike Dup (A600497-BSD1)										
Bromodichloromethane	9.0	0.50	ug/L	10		90	70-130	3	30	01/15/16
Bromoform	8.2	0.50	ug/L	10		82	70-130	18	30	01/15/16
Chloroform	8.4	0.50	ug/L	10		84	70-130	12	30	01/15/16
Dibromochloromethane	9.0	0.50	ug/L	10		90	70-130	7	30	01/15/16
Surrogate: Bromofluorobenzene	45		_	50		90	70-130			01/15/16
Matrix Spike (A600497-MS1), Source:	A6A0945-01									
Bromodichloromethane	10	0.50	ug/L	10	0.51	96	47-151			01/15/16
Bromoform	9.5	0.50	ug/L	10	ND	91	29-162			01/15/16
Chloroform	9.8	0.50	ug/L	10	0.69	92	52-148			01/15/16
Dibromochloromethane	10	0.50	ug/L	10	ND	97	44-149			01/15/16
Surrogate: Bromofluorobenzene	45			50		90	70-130			01/15/16
		EPA 5	52.3 - Q	uality Co	ntrol					
Batch: A600554										Prepared: 1/15/20
Prep Method: EPA 552.3										Analyst: AA
Blank (A600554-BLK1)										
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							01/18/16
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							01/18/16
Ionobromoacetic Acid (MBAA)	ND	1.0	ug/L							01/18/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							01/18/16
richloroacetic Acid (TCAA)	ND	1.0	ug/L							01/18/16
Surrogate: 2-Bromobutanoic Acid	25			25		102	70-130			01/18/16
Blank Spike (A600554-BS1)										
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		100	70-130			01/18/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		102	70-130			01/18/16
Nonobromoacetic Acid (MBAA)	9.9	1.0	ug/L	10		99	70-130			01/18/16
Monochloroacetic Acid (MCAA)	19	2.0	ug/L	20		96	70-130			01/18/16
richloroacetic Acid (TCAA)	10	1.0	ug/L	10		100	70-130			01/18/16
A6A1050 FINAL 01212016 0951										
Printed: 1/21/2016										D
QA-RP-0001-10 Final.rpt		— www.	BSKAs	sociates.	com —			_		Page 4 of 9

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
				uality Co						- August - A
Batch: A600554		EFA 3	J2.J - Q	uanty CO	111101					Propored: 1/1E/2016
										Prepared: 1/15/2010
Prep Method: EPA 552.3										Analyst: AAF
Blank Spike (A600554-BS1)										
Surrogate: 2-Bromobutanoic Acid	26			25		103	70-130			01/18/16
Blank Spike Dup (A600554-BSD1)										
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		101	70-130	1	30	01/18/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		103	70-130	1	30	01/18/16
Monobromoacetic Acid (MBAA)	9.7	1.0	ug/L	10		97	70-130	1	30	01/18/16
Monochloroacetic Acid (MCAA)	19	2.0	ug/L	20		96	70-130	0	30	01/18/16
Trichloroacetic Acid (TCAA)	10	1.0	ug/L	10		102	70-130	2	30	01/18/16
Surrogate: 2-Bromobutanoic Acid	26			25		103	70-130			01/18/16
Duplicate (A600554-DUP1), Source: A6	6A1253-04									
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L		ND				30	01/18/16
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L		ND				30	01/18/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	01/18/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	01/18/16
Trichloroacetic Acid (TCAA)	ND	1.0	ug/L		ND				30	01/18/16
Surrogate: 2-Bromobutanoic Acid	26			25		102	70-130			01/18/16
Matrix Spike (A600554-MS1), Source: A	A6A0945-01									
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10	ND	103	70-130			01/18/16
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10	ND	104	70-130			01/18/16
Monobromoacetic Acid (MBAA)	9.8	1.0	ug/L	10	ND	98	70-130			01/18/16
Monochloroacetic Acid (MCAA)	19	2.0	ug/L	20	ND	96	70-130			01/18/16
Trichloroacetic Acid (TCAA)	10	1.0	ug/L	10	ND	103	70-130			01/18/16
Surrogate: 2-Bromobutanoic Acid	25			25		102	70-130			01/18/16

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters:

NA

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno

State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
EPA - UCMR3	CA00079	State of Washington	C997-15

Sacramento

State of California - ELAP 2435

Vancouver

State of Oregon - NELAC WA100008-007 State of Washington C824-14a

QA-RP-0001-10 Final.rpt

01132016

Monte6227

Turnaround: Standard

Due Date: 1/27/2016

Monterey Bay Analytical

Printed: 1/13/2016 4-48-48 PM Page 7 of 9

Asse	D
~ 20	S
iates aboratories	不

(559) 497-2888 · Fax (559) 497-2893 1414 Stanislaus St., Fresno, CA 93706

Turnaround Time Request

X Standard - 10 business days

game	www.	inned, 1995	20.11.0 ₀ .0 ₀ .	
Thirty is seen, read, proposition, proposition or proposition of the control of t			Monte6227	A6A1050
			10	01/13/2016

Page 8 of 9

Payment for services rendered as noted heritinate due in full within 30 days from the date involved. If not so paid, account balances are deemed delinquent. Delinquent balances are subject to monthly service charges and interest specified in BSK's current standard earlier and Conditions for Laboratory Services. The person signing for the Clientic Company acknowledges that they are either the Client or an authorized agent to the Client, that the Client agrees to be responsible for payment for the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services unless contractually bound otherwise. BSK's current terms and conditions can be bound at www.bs.kassociates.com/BSKLabTermsConditions.pdf

A6A1050 Monte6227 01/13/2016 10

Sample Integrity

Ou	ıııpı	e integri	• 9								THE ILLES IN SHEET SERVICES			
BSI		ttles: (Yes		Page	of	: <u>[</u>			·					
	Chemis	mperature within r stry ≤ 6°C Micr	o < 10°C		Yes No	NA		e correct co eived for the				· Ye	s No	NA
COC Info		oles were taken too	day, is there evide	nce	Yes No	(NA)		e there bubl	oles in t	the VOA	vials?	Ye	s (No)	NA
		illing has begun? bottles arrive unbr	oken and intact?		(fes)	No	'	atiles Only) s a sufficient	amour	nt of sam	nle receive	nd2 \	_	No
Ŏ		bottle labels agree		-	Yes	No	-	samples hav						No.
	Was so	odium thiosulfate a	idded to CN samp	le(s)	Yes No			s PM notified	d of disc			Ye	,	
		(A) 500ml(B) 1Lite			Checks	Pas	ssed?	(]		
	Bacti N	Va ₂ S ₂ O ₃				-	_							
	None	(P) ^{White Cap}			_	-	_							
	Cr6 (P) Br. Green Label/Blue (^{Sap} NH4OH(NH4)2SO4	DW	Cl, pH >	8 Y	N	7.5			·			e to recent
	Cr6 (P) Pink Label/Blue Cap	NH4OH(NH4)2SO4	ww	pH 9.3-9.	7 Y	N							
in the lab	Cr6 (P	Black Label/Blue Cap		7199	pH 9.0-9.	5 Y	N				\setminus	1.5		
n Ħ	HNO ₃	(P) Red Cap			_	-	_							
		(P) or (AG) Yellow Cap/Label		pH < 2	Y	N							
performed		(P) Green Cap			CI, pH >1	0 Y	N							
per		+ ZnAc (P)			pH > 9	Y	N							
are		ved Oxygen 300	ıml (g)		_	-	_				7	1/13/1	U	
either N/A or		(AG) 608/8081/808		151,			_				/	87	7	
ker Fer	HCI (A	AG) ^{Lt. Blue Label} 08	G, Diesel			-								
Received are either N	Na ₂ O ₃	S+HCI (AG) ^{Lt. Pin}	k Label 525											
	Na ₂ S ₂	O ₃ 1 Liter (Brown	n P) 549		_	-	_							
leck	Na ₂ S ₂	O ₃ (AG) ^{Blue Label} 5 ²	47,515,548,THM,524	4				3						
Bottles ne checks	Na ₂ S ₂ (O ₃ (CG) ^{Blue Label}	504, 505			-					\			
	Na ₂ S ₂	O ₃ + MCAA (CG) ^{Orange Label} 531		pH < 3	Y	N							
ation/chlor	NH₄CI	(AG) ^{Purple Label} 5	552		_	-	_	ı						
atio	EDA (AG) ^{Brown Label} DI	3Ps											
sen	HCL (CG) 524.2,BTEX,G	as, MTBE, 8260/624	ı		-	_							
pre	Buffer	pH 4 (CG)										1		
eans	None	(CG)			_	-								
Ĕ	200000000000000000000000000000000000000	4 (CG)Salmon Label	100000000000000000000000000000000000000		-4-		3 m on s							
اليا	Other:		4									\perp		
	Asbes	itos 1Liter Pla: evel Hg / Metals												
		d Water	Double Baggle			-						+		
		Glass Jar: 250	/ 500 / 1 Liter	r		1.	_							
		The second secon	Steel / Plastic	3			_				_			
	Tedlar		tic Bag	D-1	—	.		Cambai			on office	Data	Time //s:	itiolo
Split	SP	Container	Preservative	Date/	Time/Init		S P	Contai	ner	Pres	ervative	Date/	Time/Ini	iliais
S	SP						S P							CONTRACTOR AND
	- ' 1	L	L	1			- '	L						·
Comments														
l mr														
ō														
၂ ပ														

February 1, 2016

Lab ID : SP 1600393 **Monterey Bay Analytical Services** 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

(1 page): Results for each sample submitted. Sample Results

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR-1-Injectate	01/11/2016	01/13/2016	SP 1600393-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at room temperature. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	01/21/2016:201206 All analysis quality controls are within established criteria.
	01/20/2016:200656 All preparation quality controls are within established criteria, except: The following note applies to Gross Alpha: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
903.0	01/27/2016:201240 All analysis quality controls are within established criteria.
	01/24/2016:200830 All preparation quality controls are within established criteria.

February 1, 2016 Lab ID : SP 1600393 Monterey Bay Analytical Services Customer : 2-19144

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

February 1, 2016 Lab ID : SP 1600393-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : January 11, 2016-13:30

Monterey, CA 93940 Sampled By : T Lindberg

Received On : January 13, 2016-11:30

: Ground Water Matrix

Description : ASR-1-Injectate

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Effor	MDA	Omts	WICL/AL	Method	Date/ID	Date/ID Method	
Radio Chemistry ^{P:1}								
Gross Alpha	1.72 ± 1.65	1.81	pCi/L		900.0	01/20/16-07:30 2P1600656	900.0	01/21/16-11:00 2A1601206
Total Alpha Radium (226)	0.036 ± 0.159	0.470	pCi/L		903.0	01/24/16-12:00 2P1600830	903.0	01/27/16-09:40 2A1601240

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

February 1, 2016 Lab ID : SP 1600393 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Radio

Radio Alpha Gross Alpha Alpha Total Alpha Radium Definition CCV :		900.0	01/21/16:201206caa 01/20/16:200656elc	CCB	cpm cpm	8757	41.5 %	38 - 46			
Gross Alpha Alpha Total Alpha Radium Definition				CCB		8757	41.5 %	20 16			
Alpha Total Alpha Radium Definition		900.0	01/20/16:200656elc		cnm			38 - 40			
Alpha Total Alpha Radium Definition		900.0	01/20/16:200656elc		cpin		0.100	0.18			
Total Alpha Radium Definition				Blank	pCi/L		0.17	3			
Total Alpha Radium Definition				LCS	pCi/L	107.4	118 %	75-125			
Total Alpha Radium Definition				MS	pCi/L	107.4	154 %	60-140	435		
Total Alpha Radium Definition			(SP 1600393-001)	MSD	pCi/L	107.4	152 %	60-140	435		
Total Alpha Radium Definition				MSRPD	pCi/L	107.4	1.3%	≤30			
Definition		903.0	01/27/16:201240caa	CCV	cpm	8753	41.4 %	38 - 46			
Definition				CCB	cpm		0.100	0.19			
	(226)	903.0	01/24/16:200830caa	RgBlk	pCi/L		0.01	2			
				LCS	pCi/L	21.59	102 %	52-107			
				BS	pCi/L	21.59	94.7 %	43-111			
				BSD	pCi/L	21.59	93.3 %	43-111			
				BSRPD	pCi/L	21.59	1.5%	≤35.5			
CCV .											
			ation - Analyzed to verif				criteria.				
CCB :	Continuing Calib	oration Blank -	Analyzed to verify the	instrument b	aseline is witl	nin criteria.					
Blank :	Method Blank -	Prepared to ver	rify that the preparation	process is no	ot contributing	g contaminat	ion to the sam	ples.			
			red to correct for any rea								
			ample - Prepared to veri								
	: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample										
n	matrix affects analyte recovery.										
	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries										
a			ple matrix affects analy								
			d with a known amount	t of analyte.	It is prepared	to verify tha	t the preparatio	on process is	not		
a	ffecting analyte r										
BSD :	Blank Spike Dup	olicate of BS/B	SD pair - A blank dupli	cate is spike	d with a know	n amount of	analyte. It is p	prepared to v	erify that		

DQO Explanation and analysis.

and analysis.

MSRPD

BSRPD

435

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

: Data Quality Objective - This is the criteria against which the quality control data is compared.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

the preparation process is not affecting analyte recovery.

ENVIRONMENTAL

Analytical Chemists

www.FGLinc.com

Renurks: AB40665 Sampleris: T Lindberg Contact Person: David Holland Address: 4 Justin Court Ste D Clirni: Monterey Bay Analytical Services Inc. Compositor Setup Date: Furchuse Order Number: Project Name: MPWMD Phone: 831-375-6227 Lab Number: ASR-1-Injectate Corporate Offices a Laboratory
P.O. Box 272 / 853 Corporation Street
Garba Paula. CA 93961-0272
TEL: 815-250-2010
FAX: 805-252-4772
CA RGLAP CERTIFICATION No. 01110CA
CA GLAP CERTIFICATION No. 1573 Monterey, CA 93940 Location Description ř 831-641-0734 Sampled 1/11/16 X 1600 Sampled 1330 . **.** David Holland Type: Composite(C) Grab(G) Reserved By Relinqui-thed G Number of Containers Containers: (G)Glass (P)Plastic(V)VOA (MT)Metal Tube G Office & Laboratory
2500 glogecoach Road
aborthon, CA 95215
Tgl.: 209942-0182
FAV: 219942-0423
CA gr.AP Certification No. 1563 (P)Potable (NP)Non-Potable (SW)SurfaceWater (MW)MonitoringWall (GW)GroundWater (TB)TravelBank (WW)WasteWater (DW)Drinking Water gw **建**契16 2 TEST DESCRIPTION (S)Soil(SLG)Sludge (SLD)Solid (O)Oil 1600 BacT: (Sys) System (Src)Source - m-Tinx: (W) Waste Received BacT: Routine(ROUT) Repeat(RPT) Kelinquished Other(OTH) Replace(RPL) Ší. Agrince & Laboratory
553 g. Lindo Awenue
Critico, CA 95205
Tigl: 5310743-5819
FAX: 5310743-5819
CA gLAP Certification No. 1562 Reverse sick for Continuer. (LT)Leaf Tissue (PET)Petiole Tissue (PRD)Produce Preservetive: (1)NaOH+ZnAc (2)NaOH,(3)HCL,(4)H2\$O4(5)HNO3, (6)Na2S203,(7)Other Gross Alpha Preservative and Sampling E E × Radium 226 Recented Relinquished រូវាចំនាក់ស្លាំ ស្រា FigLD OFFICE Visalia California Tel: (559)734-9473 Modife: (559)737-239 FAX: (559)734-9435 Date: X : me:

TRUTH FROM 18 STABLES STABLES TO THE STABLES S TLIN OF (USTOD) FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1	_					
2. Shipper tracking numbers —————							
3. Were samples received in a chilled condition? Temps:	RRT	/	/	/	/	/	/
Surface water (SWTR) bact samples: A sample th should be flagged unless the time since sample co						whether id	ced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A]			
Sample Verification, Labeling and Distribution:				-			
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A] FGL			
4. VOAs checked for Headspace?	Yes	No	N/A]			
5. Were all analyses within holding times at time of reciept?	Yes	No		-			
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A]			
Include a copy of the COC for lab delivery. (Bacti. Inc	organics	and Ra	adio)				
Sample Receipt, Login and Verification completed b	•		Reviewed a Approved		le Parsoi	n 💷 Title: S	lly signed by Nicole Parson Sample Receiving 01/13/2016-11:50:51
Discrepency Documentation:							
Any items above which are "No" or do not meet spec	cifications	s (i.e. te	emps) mu	st be resc	lved.		
1. Person Contacted:			lumber: _				
Initiated By:	D	ate:	_				
Problem:							
Resolution:							
2. Person Contacted:	P	hone N	lumber: _				
Initiated By:		ate:	_				
Problem:							
Resolution:					(201	9144)	

(2019144)
Monterey Bay Analytical Services
SP 1600393

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1601448

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 01/13/2016

Analytical Report reviewed & approved for release on 01/20/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1601448

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:Monterey Bay AnalyticalWorkOrder:1601448Date Received:1/13/16 20:03Extraction Method:RSK175Date Prepared:1/14/16Analytical Method:RSK175Project:MPWMDUnit:μg/L

Light Gases											
Client ID	Lab ID	Matrix	Date Col	llected Instrume	nt Batch ID						
ASR-1-Injectate	1601448-001A	Water	01/11/201	6 13:30 GC26	115384						
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Date Analyzed</u>						
Methane	0.59		0.10	1	01/14/2016 12:58						

Analyst(s): AK

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: Monterey Bay Analytical WorkOrder: 1601448 **Date Prepared:** 1/14/16 **BatchID:** 115384 **Date Analyzed:** 1/14/16 **Extraction Method: RSK175 Instrument:** GC26 **Analytical Method:** RSK175 **Matrix:** Air Unit: $\mu L/L$

Project: MPWMD Sample ID: MB/LCS-115384

QC Summary Report for RSK175											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
Methane	ND	9.00	0.50	10	-	90	70-130				

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 1601448 ClientCode: MBAS

(923) 2	232-9202																
		WaterTrax	WriteOn	EDF		Excel		EQuIS	✓	Email		HardC	ору [ThirdF	arty	☐ J-fla	.g
Report to: David Hollar	nd	Email: n	nweidner@mba	ısinc.com; Dholla	nd@m		Bill to:	ınts Pay	/able				Reques	sted TAT	¯: 5	ō days;	
Monterey Ba 4 Justin Cou Monterey, C 831-375-6227	ay Analytical ırt, Suite D A 93940	cc/3rd Party: PO: ProjectNo: N		ŕ	0		Monte 4 Just	erey Bay tin Cour	y Analyti t, Suite ∖ 93940					Received Logged:		01/13/2 01/13/2	
									Red	questec	d Tests	(See leg	end be	ow)			
Lab ID	Client II)	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1601448-001	ASR-1-Injec	tate	Water	1/11/2016 13:30		Α									T	T	
Test Legend:																	
1	RSK175_W	2				3						4					
5		6			L	7						8					
9		10			•	11						12					

Prepared by: Briana Cutino

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	: MONTEREY	BAY ANALYTICA	ΛL	QC Level: LEVEL 2								1601448
Project:	MPWMD				Client Contact:	David Ho	olland			Date 1	Logged:	1/13/2016
Comments:				Contact's Email:	Contact's Email: mweidner@mbasinc.com; Dholland@mbasinc.com; 4mbas@sbcglobal.net							
		☐ WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppy ThirdParty	J-	flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Compos		e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1601448-001A	ASR-1-Injectate	Water	RSK175 <m< td=""><td>ethane_4></td><td>3</td><td></td><td>VOA w/ HCl</td><td></td><td>1/11/2016 13:30</td><td>5 days</td><td>None</td><td></td></m<>	ethane_4>	3		VOA w/ HCl		1/11/2016 13:30	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD 10012448 CHAIN OF CUSTODY RECORD D TURN AROUND TIME PITTSBURG, CA 94565-1701 72 HR RUSH 24 HR 48 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com □ PDF □ Excel ☐ Write On (DW) ☐ GeoTracker EDF Telephone: (877) 252-9262 Fax: (925) 252-9269 Report To: David Holland Bill To: **Analysis Request** Other Comments Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: mweidner@mbasinc.com Gas (602 / 8021 + CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: EPA 502.2 / 601 / 8010 / 8021 (HVOCs) EPA 515 / 8151 (Acidic Cl Herbicides) Total Petroleum Hydrocarbons (418.1) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: Project Name: Yes / No EPA 505/ 608 / 8081 (CI Pesticides) Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) Project Location: MPWMD EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: T Lindberg METHOD MTBE / BTEX & TPH MATRIX SAMPLING Type Containers PRESERVED # Containers SAMPLE ID LOCATION/ Field Point Name Sludge Methane Water Date Time HNO3 Other Other HCL ICE Soil 1/11/16 XX X AB40665 ASR-1-Injectate 1330 ICE/to COMMENTS: Relinquished By: Time: Received By: Date: GOOD CONDITION David Holland 1/11/16 1600 HEAD SPACE ABSENT seceived by: DECHLORINATED IN LAB nemogasaca by: Date: ııme: APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Time: Received By: Date: VOAS O&G METALS OTHER PRESERVATION pH<2

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Project Name:	Monterey Bay Analytical MPWMD			Date Logged:	1/13/2016 10:00 1/13/2016
WorkOrder №: Carrier:	1601448 Matrix: Water Golden State Overnight			Received by: Logged by:	Briana Cutino Briana Cutino
	Chain of C	ustadı	, (COC) I	oformation.	
Chain of custody		Yes	<u>/ (COC) II</u>	No 🗆	
			✓	No 🗆	
	signed when relinquished and received?	Yes	✓	No 🗌	
	agrees with sample labels?	Yes	✓		
	d by Client on COC?	Yes		No 🗆	
	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
	Sampl	e Rece	eipt Inforr	mation	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	•	No 🗌	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Tin	ne (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:	1.2°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes	✓	No 🗌	
	(Ice Type	e: WE	TICE)		
UCMR3 Samples Total Chlorine t	s: tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗸
Free Chlorine to 300.1, 537, 539	rested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗹
* NOTE: If the "N	lo" box is checked, see comments below.				
Comments:					

1/13/2016 Package Details

Track Shipment

From Zip Code:

To Zip Code:

Zip Code:

GSO Home Contact Us 1-800-322-5555

Shipping Tracking Services Solutions Resources About Us Support

Start Shipping Today

Delivery Rates & Times

Open an Account

Shipment Details

MCCAMPBELL ANALYTICAL INC. Ship To Name: Ship To Location: PITTSBURG, CALIFORNIA

Delivery Status: DELIVERED Tracking Number: 530554312

Ship Date: 1/12/2016 Reference:

Shipment Tracking Results

1/13/2016 Delivery Date: Service: PDS

Delivery Time: 12:55 PM Signed For By: Maria View Signature

Transit Notes

BACK

GO

GO

GO

Date/Time 01/12/16 09:08 PM ARRIVAL SCAN - DELIVERY SCHED FOR 01/13/2016 01/13/16 07:44 AM ON ROUTE FOR DELIVERY SHIPMENT DELIVERED 01/13/16 12:55 PM

View Transit Maps

Drop Box Locator

Zip Code:

© 1995-2016 Golden State Overnight Delivery Service Inc.

Subscribe

Privacy Policy

Terms of Use

Site Map

Monterey Bay Analytical Services
4 Justin Court Suite D, Monterey, CA 93940
831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Page 1 of 2 Wednesday, March 16, 2016

Lab Number: AB41671

Collection Date/Time: 1/12/2016 11:00 Sample Collector: LEAR J Client Sample #:
Submittal Date/Time: 1/29/2016 11:30 Sample ID Coliform Designation:

Odbinittal Date/Time. 1/25/2010	11.50	Campic IL			Collio	iiii besignation.				
Sample Description: SM MW-1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:			
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	175	10		2/3/2016	LRH			
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	2/17/2016	SM			
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		2/11/2016	MW			
Arsenic, Total	EPA200.8	μg/L	2	1	10	2/17/2016	SM			
Barium, Total	EPA200.8	μg/L	37	10	1000	2/17/2016	SM			
Bicarbonate (as HCO3-)	SM2320B	mg/L	214	10		2/3/2016	LRH			
Boron	EPA200.7	mg/L	0.06	0.05		2/3/2016	MW			
Bromide	EPA300.0	mg/L	0.2	0.1		1/29/2016	НМ			
Calcium	EPA200.7	mg/L	61	0.5		2/3/2016	MW			
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		2/3/2016	LRH			
Chloramines	SM4500-CI G	mg/L	Not Detected H	0.05		1/29/2016	LJ			
Chloride	EPA300.0	mg/L	63	1	250	1/29/2016	НМ			
Dissolved Organic Carbon	SM5310-C	mg/L	0.67 E			2/5/2016	BSK			
DOC	SM5310C	mg/L	1.0	0.2		2/15/2016	MW			
Fluoride	EPA300.0	mg/L	0.2	0.1	2.0	1/29/2016	НМ			
Gross Alpha	EPA900.0	pCi/L	2.53 ± 1.27 E		15	2/16/2016	FGL			
Haloacetic Acids	EPA552	μg/L	Not Detected E		60	2/8/2016	BSK			
Iron	EPA200.7	μg/L	Not Detected	10	300	2/3/2016	MW			
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	2/3/2016	MW			
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.5		2/10/2016	LRH			
Lithium	EPA200.8	μg/L	19	1		2/17/2016	SM			
Magnesium	EPA200.7	mg/L	14	0.5		2/3/2016	MW			
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	2/3/2016	MW			
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	2/3/2016	MW			
Mercury, Total	EPA200.8	μg/L	Not Detected	0.5	2	2/17/2016	SM			
Methane	EPA174/175	μg/L	1.0 E H	0.1		2/9/2016	MCCAM			
Molybdenum, Total	EPA200.8	μg/L	6	1	1000	2/17/2016	SM			
Nickel, Total	EPA200.8	μg/L	Not Detected	10	100	2/17/2016	SM			
Nitrate as NO3	EPA300.0	mg/L	1	1	45	1/29/2016	НМ			
Nitrate as NO3-N	EPA300.0	mg/L	0.2	0.1	10	1/29/2016	НМ			
Nitrate+Nitrite as N	EPA300.0	mg/L	0.5	0.1		1/29/2016	НМ			
Nitrite as NO2-N	EPA300.0	mg/L	0.3	0.1	1.0	1/29/2016	НМ			

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance

Lab Number:AB41671Collection Date/Time:1/12/201611:00Sample Collector:LEAR JClient Sample #:Submittal Date/Time:1/29/201611:30Sample IDColiform Designation:

2 2.2 2 2 2 2 11101 1/20/2010						001110	= 00.g.lation.		
Sample Description: SM MW-1									
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:	
o-Phosphate-P	EPA300.0	mg/L	Not Detected		0.1		1/29/2016	НМ	
pH (Laboratory)	SM4500-H+B	pH (H)	7.5		0.1		1/29/2016	LRH	
Phosphorus, Total	HACH 8190	mg/L	0.05	HP	0.03		2/3/2016	LRH	
Potassium	EPA200.7	mg/L	3.5		0.5		2/3/2016	MW	
QC Anion Sum x 100	Calculation	%	98%				2/3/2016	LRH	
QC Anion-Cation Balance	Calculation	%	-2				2/3/2016	MW	
QC Cation Sum x 100	Calculation	%	95%				2/3/2016	MW	
QC Ratio TDS/SEC	Calculation		0.62				2/3/2016	НМ	
Selenium, Total	EPA200.8	μg/L	2		2	50	2/17/2016	SM	
Silica as SiO2, Total	EPA200.7	mg/L	29		0.5		2/3/2016	MW	
Sodium	EPA200.7	mg/L	57		0.5		2/3/2016	MW	
Specific Conductance (E.C)	SM2510B	µmhos/cm	715		1	900	2/2/2016	LJ	
Strontium, Total	EPA200.8	μg/L	226		5		2/17/2016	SM	
Sulfate	EPA300.0	mg/L	83		1	250	1/29/2016	НМ	
TOC	SM5310C	mg/L	0.9		0.2		2/15/2016	MW	
Total Diss. Solids	SM2540C	mg/L	446		10	500	2/1/2016	MP	
Total Nitrogen	Calculation	mg/L	0.5		0.5		2/10/2016	НМ	
Total Organic Carbon	SM5310C	mg/L	0.67	E	0.20		2/4/2016	BSK	
Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.393	E		3	2/11/2016	FGL	
Trihalomethanes	EPA524.2	μg/L	59	E		80	2/3/2016	BSK	
Uranium by ICP/MS	EPA200.8	μg/L	2		1	30	2/17/2016	SM	
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	2/17/2016	SM	
Zinc, Total	EPA200.8	μg/L	23		20	5000	2/17/2016	SM	

Sample Comments: HP: Out of Hold time due preservative. Sample was preserved more than 48 hours a

Report Approved by:

David Holland, Laboratory Director

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

A6B0113 2/09/2016

Invoice: A602600

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940

RE: Report for A6B0113 MPWMD

Dear David Holland,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 2/2/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, John Montierth, at (800) 877-8310 or (559) 497-2888 x201.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

John Montierth, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

QA-RP-0001-10 Final.rpt

Case Narrative

Invoice Details

Project and Report Details

Monterey Bay Analytical Invoice To: Monterey Bay Analytical

Report To: David Holland Invoice Attn: David Holland

Project #: - Project PO#: -

Received: 2/02/2016 - 11:13 **Report Due:** 2/17/2016

Client:

Sample Receipt Conditions

Cooler:Default CoolerContainers IntactTemperature on Receipt °C: 4.4COC/Labels Agree

Received On Wet Ice Received On Blue Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

B2.0 Analyte present in the method blank above the method detection limit (MDL). Laboratory does not determine batch

acceptance on detections below the reporting limit (RL).

HT1.0 Holding time exceeded. Sample was received at the lab past holding time.

Report Distribution

Recipient(s)	Report Format	CC:	
David Holland	FINAL.RPT		
Mason Weidner	FINAL.RPT		

Certificate of Analysis

Sample ID: A6B0113-01
Sampled By: Joe Oliver

Sample Date - Time: 01/12/16 - 11:00

Matrix: Ground Water

Sample Type: Grab

Sample Description: SM MW-1 // AB41671

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310C	0.67	0.20	mg/L	1	A601308	02/05/16	02/05/16	
Total Organic Carbon	SM 5310C	0.67	0.20	mg/L	1	A601307	02/04/16	02/04/16	

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS							Analys	is Qualifier(s):	HT1.0
Bromodichloromethane	EPA 524.2	15	0.50	ug/L	1	A601227	02/02/16	02/03/16	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A601227	02/02/16	02/03/16	
Chloroform	EPA 524.2	41	0.50	ug/L	1	A601227	02/02/16	02/03/16	
Dibromochloromethane	EPA 524.2	2.8	0.50	ug/L	1	A601227	02/02/16	02/03/16	
Surrogate: Bromofluorobenzene	EPA 524.2	105 %	Acceptable	e range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		59	0.50	ug/L					
Haloacetic Acids by GC-ECD, C	GC-MS						Analys	is Qualifier(s):	HT1.0
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A601391	02/06/16	02/08/16	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A601391	02/06/16	02/08/16	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A601391	02/06/16	02/08/16	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A601391	02/06/16	02/08/16	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A601391	02/06/16	02/08/16	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	102 %	Acceptable	e range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

BSK Associates Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 53	10C - Q	uality Co	ntrol					
Batch: A601307 Prep Method: Method Specific Prepa	ration									Prepared: 2/4/2016 Analyst: CEG
Blank (A601307-BLK1)										
Total Organic Carbon	ND	0.20	mg/L							02/04/16
Blank Spike (A601307-BS1)										
Total Organic Carbon	10	0.20	mg/L	10		102	80-120			02/04/16
Blank Spike Dup (A601307-BSD1)										
Total Organic Carbon	10	0.20	mg/L	10		103	80-120	1	20	02/04/16
Matrix Spike (A601307-MS1), Source:	A6B0216-02									
Total Organic Carbon	12	0.20	mg/L	10	1.4	102	80-120			02/04/16
Matrix Spike (A601307-MS2), Source:	A6B0360-04									
Total Organic Carbon	12	0.20	mg/L	10	1.4	101	80-120			02/05/16
Matrix Spike Dup (A601307-MSD1), So	ource: A6B0216-02									
Total Organic Carbon	12	0.20	mg/L	10	1.4	102	80-120	0	20	02/04/16
Matrix Spike Dup (A601307-MSD2), So	ource: A6B0360-04									
Total Organic Carbon	12	0.20	mg/L	10	1.4	102	80-120	1	20	02/05/16
		SM 53	10C - Q	uality Co	ntrol					
Batch: A601308				•						Prepared: 2/5/2016
Prep Method: Method Specific Prepa	ration									Analyst: CEG
Blank (A601308-BLK1)										
Dissolved Organic Carbon	ND	0.20	mg/L							02/05/16 B2.0
Blank Spike (A601308-BS1)										
Dissolved Organic Carbon	10	0.20	mg/L	10		103	80-120			02/05/16
Blank Spike Dup (A601308-BSD1)										
Dissolved Organic Carbon	10	0.20	mg/L	10		101	80-120	2	20	02/05/16
Matrix Spike (A601308-MS1), Source:	A6B0113-01									
Dissolved Organic Carbon	11	0.20	mg/L	10	0.67	100	80-120			02/05/16
Matrix Spike Dup (A601308-MSD1), Se	ource: A6B0113-01									
Dissolved Organic Carbon	11	0.20	mg/L	10	0.67	100	80-120	0	20	02/05/16

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
				uality Co		701120				,, <u></u>	
Batch: A601227		LIAU		dunty 50	11.101					Prenare	ed: 2/3/201
Prep Method: EPA 524.2											
Frep Method. EFA 524.2										AI	nalyst: ANI
Blank (A601227-BLK1)											
Bromodichloromethane	ND	0.50	ug/L							02/03/16	
Bromoform	ND	0.50	ug/L							02/03/16	
Chloroform	ND	0.50	ug/L							02/03/16	
Dibromochloromethane	ND 50	0.50	ug/L	50		400	70.400			02/03/16	
Surrogate: Bromofluorobenzene	50			50		100	70-130			02/03/16	
Blank Spike (A601227-BS1)											
Bromodichloromethane	12	0.50	ug/L	10		117	70-130			02/03/16	
Bromoform	11	0.50	ug/L	10		110	70-130			02/03/16	
Chloroform	12	0.50	ug/L	10		117	70-130			02/03/16	
Dibromochloromethane	11	0.50	ug/L	10		115	70-130			02/03/16	
Surrogate: Bromofluorobenzene	55			50		110	70-130			02/03/16	
Blank Spike Dup (A601227-BSD1)											
Bromodichloromethane	11	0.50	ug/L	10		107	70-130	9	30	02/03/16	
Bromoform	10	0.50	ug/L	10		103	70-130	7	30	02/03/16	
Chloroform	11	0.50	ug/L	10		107	70-130	9	30	02/03/16	
Dibromochloromethane	11	0.50	ug/L	10		105	70-130	9	30	02/03/16	
Surrogate: Bromofluorobenzene	51			50		102	70-130			02/03/16	
Matrix Spike (A601227-MS1), Source:	: A6B0082-01										
Bromodichloromethane	10	0.50	ug/L	10		101	47-151			02/03/16	
Bromoform	9.1	0.50	ug/L	10		91	29-162			02/03/16	
Chloroform	11	0.50	ug/L	10		106	52-148			02/03/16	
Dibromochloromethane	9.6	0.50	ug/L	10		96	44-149			02/03/16	
Surrogate: Bromofluorobenzene	50			50		101	70-130			02/03/16	
		EPA 5	52.3 - Q	uality Co	ntrol						
Batch: A601391										Prepare	ed: 2/6/201
Prep Method: EPA 552.3										Α	nalyst: AAF
Blank (A601391-BLK1)											
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							02/08/16	
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							02/08/16	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L							02/08/16	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							02/08/16	
richloroacetic Acid (TCAA)	ND	1.0	ug/L							02/08/16	
Surrogate: 2-Bromobutanoic Acid	25			25		99	70-130			02/08/16	
Blank Spike (A601391-BS1)											
Dibromoacetic Acid (DBAA)	9.7	1.0	ug/L	10		97	70-130			02/08/16	
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		101	70-130			02/08/16	
nonobromoacetic Acid (MBAA)	10	1.0	ug/L	10		101	70-130			02/08/16	
Monochloroacetic Acid (MCAA)	20	2.0	ug/L	20		102	70-130			02/08/16	
richloroacetic Acid (TCAA)	10	1.0	ug/L	10		100	70-130			02/08/16	
A6B0113 FINAL 02092016 1403											
Printed: 2/9/2016										D-	
QA-RP-0001-10 Final.rpt		— www.	BSKAs	sociates.	com —			_		Pag	e 5 of 10

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RI	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
	- Nooun			uality Co			Emilo	-111 5		
Batch: A601391		EFA 3	J2.J - Q	uanty CO	1111 01					Prepared: 2/6/2016
Prep Method: EPA 552.3										Analyst: AAR
Trep Metriou. Li A 332.3										Allalyst. AAI
Blank Spike (A601391-BS1)										
Surrogate: 2-Bromobutanoic Acid	25			25		102	70-130			02/08/16
Blank Spike Dup (A601391-BSD1)										
Dibromoacetic Acid (DBAA)	9.8	1.0	ug/L	10		98	70-130	1	30	02/08/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		101	70-130	1	30	02/08/16
Monobromoacetic Acid (MBAA)	10	1.0	ug/L	10		101	70-130	1	30	02/08/16
Monochloroacetic Acid (MCAA)	20	2.0	ug/L	20		102	70-130	0	30	02/08/16
Trichloroacetic Acid (TCAA)	10	1.0	ug/L	10		100	70-130	0	30	02/08/16
Surrogate: 2-Bromobutanoic Acid	25			25		101	70-130			02/08/16
Duplicate (A601391-DUP1), Source: A6	B0461-01									
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L		ND				30	02/08/16
Dichloroacetic Acid (DCAA)	12	1.0	ug/L		12			0	30	02/08/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	02/08/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	02/08/16
Trichloroacetic Acid (TCAA)	11	1.0	ug/L		11			0	30	02/08/16
Surrogate: 2-Bromobutanoic Acid	26			25		102	70-130			02/08/16
Matrix Spike (A601391-MS1), Source: A	A6A2238-01									
Dibromoacetic Acid (DBAA)	12	1.0	ug/L	10	1.9	101	70-130			02/08/16
Dichloroacetic Acid (DCAA)	45	1.0	ug/L	10	35	95	70-130			02/08/16
Monobromoacetic Acid (MBAA)	11	1.0	ug/L	10	ND	100	70-130			02/08/16
Monochloroacetic Acid (MCAA)	23	2.0	ug/L	20	2.8	102	70-130			02/08/16
Trichloroacetic Acid (TCAA)	46	1.0	ug/L	10	36	99	70-130			02/08/16
Surrogate: 2-Bromobutanoic Acid	26			25		102	70-130			02/08/16

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters:

NA

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno	F	res	sn	o
--------	---	-----	----	---

State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
FPA - UCMR3	CA00079	State of Washington	C997-15

Sacramento

State of California - ELAP 2435

Vancouver

State of Oregon - NELAC WA100008-007 State of Washington C824-14a

02022016

Monte6227

Turnaround: Standard Due Date: 2/17/2016

Monterey Bay Analytical

Printed: 2/2/201

Page 8 of 10

Associates Engineers/Taboratories

(559) 497-2888 · Fax (559) 497-2893 1414 Stanislaus St., Fresno, CA 93706

www.bskassociates.com

X Standard - 10 business days **Turnaround Time Request** Rush (Surcharge may apply) Date needed:

> Monte6227 A6B0113

> > 02/02/2016

Page 9 of 10

	BW	1	Custody Seal: Y/(V) Chilling Process Begun:(Y)/ N	Custody Seal: Y/(V) Chilling Process Begu	Cust				Courier:	FED EX	Z	WALK-IN			ONTRAD Me Blue		Shipping Method: Cooling Method:	Co
ck / Cash Init.	Check		Amount:	Am		Payment Received at Delivery: Date:		Time 	2/11/6				Him.	Name)	Received for Lab by: (Signature and Printed Name	Lab by: (Sign	ceived for	70
	+						$\frac{1}{1}$	+							A SOURCE AND PROPERTY OF THE P			
	Company				ne)	Received by: (Signature and Printed Name)	Received by:	Time	Date		IV	Company	Andrew Commence and Commence an	ē)	Relinquished by: (Signature and Printed Name)	by: (Signatur	linquished	Rei
	Company				10,			6 1600	2/1/16		ώ,	MBAS	VA (A	David Holland	avid F	O
	Company		-	-	_	Received by (Signature and Printed Name)	Deceived by	T T	Deta			Compar		e	Relinquished by: (Signature and Printed Name)	by: (Signatur	linquished	2
			-	-														Т
																		T
																	<u> </u> 	П
												:		J. A. C.				Π
		-		+	1		Carlotte and Carlotte School Street	and the property and the		1	,					 		
)				Company of the Compan							and the second section of the second					Τ
												Action and complete and complet	المواتد المالية المراجع المراج				ļ	T
			\dashv	-														
		χ	X	X			AB41671		GW		1/12/16					SM MW-1	1. SN	Τ.
		DO	TO	TTŀ	HA/	Comments / Station Code / WTRAX	omments / St	x * c	Matrix*	Sampled* ate Time	San Date		cription*	Sample Description*	Sa		#	Τ.
		L			\ \ 5	SO=Solid	rinking Water (ter DW=D	V=Storm Wa	e Water STV	er WW=Wast	W=Ground Wate	Matrix Types: SW=Surface Water BW=Bottled Water GW=Gound Water WW-Waste Water STW=Storm Water DW-Drinking Water SO=Solic	Surface Water	ıtrix Types: SW=			П
					<u> </u>		Geotracker #:	J	[Other					iver	Joe Oliver	_
						er*	System Number*: _		Fresno Co		Merced Co Madera Co				Sampler Name (Printed/Signature)*:	lame (Print	ampler N	ý
					eg.	EDT to California SWRCB (Drinking Water)	EDT to Californi			inking Water)	SWRC8 (Drinking Water)		EDD Type:		Swamp	Trace (J-Flag)	∏Trac	
						Mail Fax Mail Regulatory Compliance	Regulat		pies	Regulatory Carbon Copies	Regulato					Options:	Reporting Options:	찌
		-				T perfect	would you like to	Нож			#	Project #:	-			ð	Project: MPWMD	> ▽
						zip*: 93940	State*:				^{Dity*:} Monterey	City*: Mo			Address*: 4 Justin Court, Suite D	n Court	Address": 4 Justii	44
E-mailr: mweidner@mbasinc.com, dholland@mbasin	sinc.com, dh	er@mbas	weidne	mail": M	E-n			FO:			olland	David Holland		oel vices	womeney bay Analytical Services	cy Day	אוס וופן אוס וופן	1 =
831-641-0734	831-6	•	831-375-6227	831-37	8 3	_	David Holland	Dav		folland	Veidner-H	Mason Weidner-Holland	•		> not #inod	Monterey Bay A	don't	
			ĺ				!		np: 7 . 9	Temp			*Required Fields	ž	*	Clinat Name	Omnany	51

BSK Associates	SR-FL-0002-15

A6B0113 Monte6227

02/02/2016

10

Page 10 of 10

Sample Integrity

No. 1 Page of |

BS	K Bottles: (Yes) (No ? Page	e	of			\ <u></u>					
	Was temperature within range? Chemistry ≤ 6°C Micro < 10°C		No	NA		correct contain wed for the test			(es	No	NA
Info	If samples were taken today, is there evidence that chilling has begun?		No	(A)	(Vola	e there bubbles itiles Only)			Yes	No	(A)
၁၀၁	Did all bottles arrive unbroken and intact?	Ve		No		a sufficient amo					No No
ŭ	Did all bottle labels agree with COC?	(ve	<u> </u>	No		amples have a PM notified of o			Yes	<u> </u>	^
	Was sodium thiosulfate added to CN sample(s) until chlorine was no longer present?	Yes			PM:		By/Time:	75 :	Yes	No	NA
	250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V)	Ch	ecks	Pas	ssed?	(
	Bacti Na ₂ S ₂ O ₃	•									
	None (P) ^{White Cap}		_		_						
	Cr6 (P) Br. Green Label/Blue Cap NH40H(NH4)2SO4 DW		H > 8					$ \langle$			
	Cr6 (P) Pink Label/Blue Cap NH40H(NH4)2SO4 WW	pH 9	.3-9.7	7 Y	N					4	4
H HH H	Cr6 (P) Best Later the Cre sample and provide 7159 ***YA HOUR HOLD TAME*** HNO3 (P) Red Cap	591 6			. j						
T	HiSCA (P) or (AG) Yellow Court size		41		. H						
<u>₽</u>	NaOH (P) Green Cap		H >1(N		7,1				
) erf			1>9	Y			1		-1		
9	NaOH + ZnAc (P)	pr	1 7 8	— 1	IV		111	6	-/-		
o a	Dissolved Oxygen 300ml (g)								_/_		
¥ و	None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270					12.0			1 minutes		
le Ke	HCI (AG) ^{Lt. Blue Label} O&G, Diesel		_		_				<u>/</u>		
Received	Na ₂ O ₃ S+HCI (AG) ^{Lt Pink Label} 525						-		**************************************		
Re	Na ₂ S ₂ O ₃ 1 Liter (Brown P) 549				_			/			
	Na ₂ S ₂ O ₃ (AG) ^{Blue} Label 547, 515, 548, THM, 524					3 V		/			
Bottles	Na ₂ S ₂ O ₃ (CG) ^{Blue Label} 504, 505		_		_						
⊞ in	Na ₂ S ₂ O ₃ + MCAA (CG) ^{Orange Label} 531	pF	1<3	Y	N		2				
10/2	NH4CI (AG)Purple Label 552					IA					
die	EDA (AG)Brown Label DBPs						1				
ļ Š	HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624				_						
l	Buffer pH 4 (CG)										
l su	200,900			-		2V*	/ * -	VAT			
l ea	None (CG)		_				100	V 94-1			
ן ו	H ₃ PO ₄ (CG) ^{Salmon Label} Other:					24*					
3	Asbestos 1Liter Plastic w/ Foil		-								
	Low Level Hg / Metals Double Baggie		_			,					
	Bottled Water									1	
	Clear Glass Jar: 250 / 500 / 1 Liter										
	Soil Tube Brass 1 Steel 1 Plastic										
	Tedlar Bag / Plastic Bag	1 7:				Co-t-i	<u> </u>	onvativo	Date/Ti	me/l:	nitiale
≡		te/Tim	e/Initi	ais	<u> </u>	Container	Pres	ervative	Date/11	111 C /11	แนสเร
Split	S P S P				S P						
	Lance										
nts	& DOC VOAS FIHER ROTTIC	cd o	z nd	pr	eser	ved					
Comments	علام علام	5	ī,	亡							
E O	7 5017 10		4	1							
Ö											
Lahe	eled by: @ Labels ch	necked	bv:	MY	@	1950	RUSH F	aged by:		ര	
			, -	٧.٠						Pag	e 10

February 23, 2016

Lab ID : SP 1601180 **Monterey Bay Analytical Services** 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

(1 page): Results for each sample submitted. Sample Results

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
SM MW-1	01/12/2016	02/02/2016	SP 1601180-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at room temperature. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	02/16/2016:202402 All analysis quality controls are within established criteria.
	02/15/2016:201742 All preparation quality controls are within established criteria, except: The following note applies to Gross Alpha: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
903.0	02/11/2016:201979 All analysis quality controls are within established criteria.
	02/08/2016:201483 All preparation quality controls are within established criteria.

February 23, 2016 Lab ID : SP 1601180

Monterey Bay Analytical Services Customer : 2-19144

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists

February 23, 2016 Lab ID : SP 1601180-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : January 12, 2016-11:00

: Joe Oliver Monterey, CA 93940 Sampled By

Received On: February 2, 2016-13:00

: Ground Water Matrix

Description : SM MW-1 **Project** : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	2.53 ± 1.27	1.21	pCi/L		900.0	02/15/16-07:50 2P1601742	900.0	02/16/16-13:00 2A1602402
Total Alpha Radium (226)	0.000 ± 0.393	0.752	pCi/L		903.0	02/08/16-19:30 2P1601483	903.0	02/11/16-11:00 2A1601979

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

February 23, 2016 Lab ID : SP 1601180 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Radio

Constituent		Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	02/16/16:202402caa	CCV CCB	cpm cpm	8738	41.4 % 0.100	38 - 46 0.18	
Gross Alpha		900.0	02/15/16:201742caa (SP 1601159-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	1.55 112 % 151 % 129 % 15.3%	3 75-125 60-140 60-140 ≤30	435
Alpha		903.0	02/11/16:201979caa	CCV CCB	cpm cpm	8742	41.3 % 0.100	38 - 46 0.19	
Total Alpha Ra	dium (226)	903.0	02/08/16:201483emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.59 21.59 21.59 21.59	0.17 76.1 % 59.4 % 59.6 % 0.2%	2 52-107 43-111 43-111 ≤35.5	
Definition CCV CCB Blank RgBlk LCS MS	: Continuing Cali : Method Blank - : Method Reagen : Laboratory Con : Matrix Spikes - matrix affects and : Matrix Spike Duare an indication : Blank Spikes - A	bration Blank - Prepared to ver t Blank - Prepare trol Standard/St A random samp tlyte recovery. uplicate of MS/ of how that sam A blank is spike	ation - Analyzed to verify the analyzed to verify the rify that the preparation red to correct for any reample - Prepared to verible is spiked with a known SD pair - A random supple matrix affects analyd with a known amount	process is not agent contribution of that the pown amount completed ample duplicates are covery.	paseline is with out contributing outions to same reparation proof analyte. The cate is spiked	hin criteria. g contaminate uple result. ocess is not a e recoveries with a know	ffecting analyter an indication	e recovery. on of how the	recoveries
BSD MSRPD	the preparation pr	plicate of BS/B cocess is not aff	SD pair - A blank dupli- ecting analyte recovery. Ference (RPD) - The MS						

Explanation

BSRPD DQO

435

and analysis.

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

: Data Quality Objective - This is the criteria against which the quality control data is compared.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

ENVIRONMENTAL

Analytical Chemists

www.FGLinc.com

CHAIN OF CUSTODY

AND ANALISIS REQUEST DOCCATING

· · · · · · · · · · · · · · · · · · ·			-				TEST DE	SCRIPTIC	N - Sect	leverse sid	k for Cont	iner, Pres	en altre ai	ով Տարգենոչ	informuti	(III	
Client: Monterey Bay Analytical Services Inc. Address: 4 Justin Court Ste D Monterey, CA 93940 Prone: 831-375-6227 Fax: 831-641-0 Contact Person: David Holland Proyect Name: MPWMD Purchase Order Number: Quate Number: Sampleris: Joe Oliver Sampleris: Joe Oliver Lab Number: Indee:	1600 ,	Type: Composite(C) Grab(G)	Number of Containers	Cortainers: (G)Glass (P)Plastic(V)VOA (MT)Metai Tube	(P)Potable (NP)Non-Potable	(SW)SurfaceWater (MW)MonitoringWall (GW)GroundWater (TB)TravelBank (WW)WasteWater (DW)Drinking Water		BacT: (Sys) System (Src)Source (W) Waste	BacT: Routing(ROUT) Repeat(RPT) Other(OTH) Replace(RPL)	(LT)Leaf Tissue (PET)Petiole Tissue	Preservative: (1)NaOH+ZnAc (2)NaOH,(3)HCL,(4)H2SO4(5)HNO3, (6)Na2S203,(7)Other	Gross Alpha	Radium 226	iii 3) rigulu;	(morno)		
SM MW-1 1/12/1		-	1	\vdash	Р	GW						X	X				
	-	┝	<u> </u>	H													
		-		H													
			\vdash	H													
Remarks: AB41671 630763012-/120	David Hollar Received By:			lollar Jak	D	2/1/1	Date: 6 Date	Time: 1600 Time:	Relacuis	0	_ (_ (D	anel	Time:	Retinquishe Received B		Da Da	Time:

Corporate Offices a Laboratory
P.O. Goz 272 / 853 Corporation Street
Souta Paula. CA 93051-0272
Tel: 8057352-2000
FAX: 8057352-2000
FAX: 8057352-4172
CA NGLAP Certification No. 01110CA
CA GLAP Certification No. 1573

Office & Laboratory 2500 stagecoach Road stoction, CA 95215 Tigl.: 209942-0182 FAX: 209942-0423 CA BLAP Certification No. 1553

Office & Laboratory 563 & Lindo Avenue Chico, CA 95926 Tel: 530/343-5818 FAX: 530/343-3807 CA ELAP Certification No. 1562

FigLD OFFICE Visalia California Tel: (559)734-9473 Mobile: (559)737-2399 FAX: (559)734-8435

FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers —————							
3. Were samples received in a chilled condition? Temps:	RRT	/	/	/	/	/	/
Surface water (SWTR) bact samples: A sample th should be flagged unless the time since sample co						whether id	ed or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A	7			
5. Were all analyses within holding times at time of reciept?	Yes	No		_			
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inc	organics a	and Ra	adio)				
Sample Receipt, Login and Verification completed b	•	Revie	ewed and oved By	Alyssa P.	Bavero	Title: Sam	igned by Alyssa P. Bavero uple Receiving 02/2016-13:15:49
Discrepency Documentation:							
Any items above which are "No" or do not meet spec		•	• •	ust be resc	lved.		
1. Person Contacted:			umber:				
Initiated By:	Da	ate:					
Problem:							
Resolution:							
2. Person Contacted:	Pr	none N	umber:				
Initiated By:	Da	ate:					
Problem:							
Resolution:					(201	9144)	

(2019144)
Monterey Bay Analytical Services
SP 1601180

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1602047

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 02/02/2016

Analytical Report reviewed & approved for release on 02/09/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1602047

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H samples were analyzed out of holding time

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

1602047

Analytical Report

Client: Monterey Bay Analytical WorkOrder: **Date Received:** 2/2/16 10:41 **Extraction Method:** RSK175 **Date Prepared:** 2/9/16 **Analytical Method:** RSK175

Project: Unit: **MPWMD** $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SM MW-1	1602047-001A	Water	01/12/2016 11:00	GC26	116435
<u>Analytes</u>	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>		Date Analyzed
Methane	1.0	Н	0.10 1		02/09/2016 10:08

Analyst(s): MW

Angela Rydelius, Lab Manager

Matrix:

Air

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

 $\mu L/L$

Quality Control Report

Unit:

Client:Monterey Bay AnalyticalWorkOrder:1602047Date Prepared:2/9/16BatchID:116435Date Analyzed:2/9/16Extraction Method:RSK175Instrument:GC26Analytical Method:RSK175

Project: MPWMD Sample ID: MB/LCS-116435

	QC Sumn	nary Report for R	SK175				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Methane	ND	10.8	0.50	10	-	108	70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

			WorkOrder	: 1602047	ClientCo	ode: MBAS		
☐ WaterTrax	☐ WriteOn	EDF	Excel	EQuIS	✓ Email	∏HardCopy	☐ThirdParty	☐J-flag

Report to: Bill to: Requested TAT: 5 days;

David Holland Email: mweidner@mbasinc.com; Dholland@mbas Accounts Payable

Monterey Bay Analytical cc/3rd Party: Monterey Bay Analytical

4 Justin Court, Suite D PO: 4 Justin Court, Suite D Date Received: 02/02/2016

Monterey, CA 93940 ProjectNo: MPWMD Monterey, CA 93940 Date Logged: 02/02/2016 831-375-6227 FAX: 831-641-0734

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1602047-001	SM MW-1	Water	1/12/2016 11:00	Α											

Test Legend:

1 RSK175_W	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name	: MONTEREY	BAY ANALYTICA	L		QC Level:	LEVEL	2			Work Orde	r: 1602047
Project:	MPWMD				Client Contact:	David H	Iolland			Date Logge	d: 2/2/2016
Comments:					Contact's Email:		er@mbasinc.com; sbcglobal.net	Dholland@n	nbasinc.com;		
		☐ WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppyThirdParty	J-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		tle & Preservative	De- chlorinated	Collection Date & Time	TAT Sedim Cont	ent Hold SubOut ent
1602047-001A	SM MW-1	Water	RSK175 <me< th=""><th>hane_4></th><th>3</th><th></th><th>VOA w/ HCl</th><th></th><th>1/12/2016 11:00</th><th>5 days Non</th><th>e</th></me<>	hane_4>	3		VOA w/ HCl		1/12/2016 11:00	5 days Non	e

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1602047

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. M 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 72 HR 5 DAY RUSH 24 HR 48 HR Website: www.mccampbell.com Email: main@mccampbell.com □ PDF □ Excel ☐ GeoTracker EDF ☐ Write On (DW) Fax: (925) 252-9269 Telephone: (877) 252-9262 Other Comments Report To: David Holland Bill To: **Analysis Request** Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: mweidner@mbasinc.com Gas (602 / 8021 + CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: Total Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: Project Name: Yes / No EPA 505/ 608 / 8081 (Cl Pesticides) TPH as Diesel / Motor Oil (8015) Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) Project Location: MPWMD EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: Joe Oliver MTBE / BTEX & TPH as METHOD SAMPLING MATRIX Type Containers PRESERVED Containers SAMPLE ID LOCATION/ Methane Field Point Name Sludge Water HNO3 Date Time Other Other HCL ICE Soil AB41671 SM MW-1 1/12/16 1100 G XX X ICE/t° Relinquished By Received By COMMENTS: Time: Date: GOOD CONDITION David Holland 2/1/16 1600 HEAD SPACE ABSENT Received By? DECHLORINATED IN LAB Relinquished By: Time: Date: APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Date: Time: VOAS O&G METALS OTHER PRESERVATION pH<2

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project Name:	Monterey Bay A	Analytical			Date and Time Received: Date Logged:	2/2/2016 10:24 2/2/2016
WorkOrder №:	1602047	Matrix: Water			Received by:	Maria Venegas
Carrier:	Golden State O	<u>vernight</u>			Logged by:	Maria Venegas
		Chain of C	ustod	y (COC) I	<u>nformation</u>	
Chain of custody	present?		Yes	•	No 🗌	
Chain of custody	signed when reli	nquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sam	ple labels?	Yes	•	No 🗌	
Sample IDs note	d by Client on CC	OC?	Yes	•	No 🗌	
Date and Time o	f collection noted	by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
		<u>Sampl</u>	le Rece	eipt Infor	<u>mation</u>	
Custody seals in	tact on shipping c	container/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in good	condition?	Yes	•	No 🗌	
Samples in prope	er containers/bott	les?	Yes	•	No 🗌	
Sample containe	ers intact?		Yes	•	No 🗌	
Sufficient sample	e volume for indica	ated test?	Yes	•	No 🗌	
		Sample Preservation	on and	l Hold Tir	me (HT) Information	
All samples rece	ived within holding	g time?	Yes		No 🗸	
Sample/Temp Bl	ank temperature			Temp:	4.7°C	NA 🗌
Water - VOA via	ls have zero head	space / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct	preservation?	Yes	✓	No 🗌	
pH acceptable up	pon receipt (Meta	1: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Type	e: WE	T/BLU)	
UCMR3 Samples Total Chlorine	<u></u>	table upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine t 300.1, 537, 53		table upon receipt for EPA 218.7,	Yes		No 🗌	NA ✓
* NOTE: If the "N	No" box is checke	d, see comments below.				
Commercial	othod DSI/475	as received passed its 14 day hel			=======	

831.375.MBAS www.MBASinc.com **ELAP Certification Number: 2385**

Monday, March 14, 2016

Lab Number: AB42699

LINDBERG T Collection Date/Time: 2/19/2016 Sample Collector: Client Sample #: 11:30 Submittal Date/Time: 2/19/2016 Sample ID Coliform Designation: 13:55

	5	Sample Des	cription: AS	R-1 Injed	ctate			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Chloramines	SM4500-CI G	mg/L	0.11		0.05		2/19/2016	LJ
Haloacetic Acids	EPA552	μg/L	14	E		60	2/27/2016	BSK
Trihalomethanes	EPA524.2	μg/L	30	E		80	3/1/2016	BSK

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

831.375.MBAS www.MBASinc.com **ELAP Certification Number: 2385**

Monday, March 14, 2016

Lab Number: AB42700

LINDBERG T Collection Date/Time: 2/19/2016 Sample Collector: Client Sample #: 12:30 Submittal Date/Time: 2/19/2016 Comple ID Coliform Designation:

Submittal Date/Time: 2/19/2	016 13:55	Sample I	D		(Coliform D	esignation:	
	Sa	ample D	escription: SMS	deep	MW			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	142		10		2/25/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected		10	1000	2/26/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected		0.05		2/23/2016	MW
Arsenic, Total	EPA200.8	μg/L	16		1	10	2/26/2016	SM
Barium, Total	EPA200.8	μg/L	31		10	1000	2/26/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	173		10		2/26/2016	LRH
Boron	EPA200.7	mg/L	Not Detected		0.05		3/1/2016	MW
Bromide	EPA300.0	mg/L	0.1		0.1		2/20/2016	НМ
Calcium	EPA200.7	mg/L	46		0.5		3/1/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		2/26/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		2/19/2016	LJ
Chloride	EPA300.0	mg/L	31		1	250	2/20/2016	НМ
Dissolved Organic Carbon	SM5310-C	mg/L	1.3	E			3/1/2016	BSK
DOC	SM5310C	mg/L	1.1		0.2		2/24/2016	MW
Fluoride	EPA300.0	mg/L	0.3		0.1	2.0	2/20/2016	НМ
Gross Alpha	EPA900.0	pCi/L	1.97 ± 1.64	E		15	3/9/2016	FGL
Haloacetic Acids	EPA552	μg/L	17	E		60	3/2/2016	BSK
Iron	EPA200.7	μg/L	Not Detected		10	300	3/1/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	3/1/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,C.		Not Detected		0.5		2/29/2016	LRH
Lithium	EPA200.8	μg/L	6		1		2/26/2016	SM
Magnesium	EPA200.7	mg/L	11		0.5		3/1/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected		10	50	3/1/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected		10	50	3/1/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected		0.5	2	2/26/2016	SM
Methane	EPA174/175	μg/L	0.52	E	0.1		2/26/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	39		1	1000	2/26/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected		10	100	2/26/2016	SM
Nitrate as NO3	EPA300.0	mg/L	1		1	45	2/20/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.2		0.1	10	2/20/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.5		0.1		2/20/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	0.3		0.1	1.0	2/20/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected		0.1		2/20/2016	НМ
pH (Laboratory)	SM4500-H+B	pH (H)	7.6		0.1		2/19/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.12		0.03		2/25/2016	LRH
Potassium	EPA200.7	mg/L	2.8		0.5		3/1/2016	MW
QC Anion Sum x 100	Calculation	%	98%				2/26/2016	LRH
QC Anion-Cation Balance	Calculation	%	-2				3/2/2016	MW
QC Cation Sum x 100	Calculation	%	94%				3/2/2016	MW
QC Ratio TDS/SEC	Calculation		0.66				2/25/2016	LRH
Selenium, Total	EPA200.8	μg/L	12		2	50	2/26/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	23		0.5		3/1/2016	MW
,	- ***	<i>y</i> -	_ 		- *			

mg/L: Milligrams per liter (=ppm) H = Analyzed ouside of hold time ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

831.375.MBAS www.MBASinc.com **ELAP Certification Number: 2385**

Monday, March 14, 2016

Lab Number: AB42700

LINDBERG T Collection Date/Time: 2/19/2016 Sample Collector: Client Sample #: 12:30 Submittal Date/Time: 2/19/2016 Sample ID Coliform Designation: 13:55

		Sample Des	cription: SM	S deep	MW			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Sodium	EPA200.7	mg/L	45		0.5		3/1/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	554		1	900	2/22/2016	HM
Strontium, Total	EPA200.8	μg/L	287		5		2/26/2016	SM
Sulfate	EPA300.0	mg/L	81		1	250	2/20/2016	HM
TOC	SM5310C	mg/L	1.4		0.2		2/24/2016	MW
Total Diss. Solids	SM2540C	mg/L	366		10	500	2/23/2016	MP
Total Nitrogen	Calculation	mg/L	0.5		0.5		3/1/2016	LRH
Total Organic Carbon	SM5310C	mg/L	1.2	E	0.20		3/1/2016	BSK
Total Radium 226	EPA903.0	pCi/L	0.067± 0.228	E		3	3/7/2016	FGL
Trihalomethanes	EPA524.2	μg/L	100	E		80	3/1/2016	BSK
Uranium by ICP/MS	EPA200.8	μg/L	2		1	30	2/26/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	2/26/2016	SM
Zinc, Total	EPA200.8	μg/L	Not Detected		20	5000	2/26/2016	SM

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Sample Description: ASR-1 Injectate // AB42699

Certificate of Analysis

Sample ID: A6B2056-01 **Sample Date - Time:** 02/19/16 - 11:30 Sampled By: T Lindberg

Matrix: Ground Water

Sample Type: Grab

BSK Associates Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	11	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Bromoform	EPA 524.2	0.99	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Chloroform	EPA 524.2	11	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Dibromochloromethane	EPA 524.2	7.4	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Surrogate: Bromofluorobenzene	EPA 524.2	106 %	Acceptable	range: 7	70-130 %				
Total Trihalomethanes, EPA 524.2		30	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	GC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	2.6	1.0	ug/L	1	A602219	02/25/16	02/27/16	
Dichloroacetic Acid (DCAA)	EPA 552.3	6.8	1.0	ug/L	1	A602219	02/25/16	02/27/16	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A602219	02/25/16	02/27/16	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A602219	02/25/16	02/27/16	
Trichloroacetic Acid (TCAA)	EPA 552.3	4.5	1.0	ug/L	1	A602219	02/25/16	02/27/16	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	111 %	Acceptable	range: 7	70-130 %				
Total Haloacetic Acids, EPA 552.3		14	2.0	ug/L					

Sample Description: SMS deep MW // AB42700

Certificate of Analysis

Sample ID: A6B2056-02 **Sample Date - Time:** 02/19/16 - 12:30 Sampled By: T Lindberg

Matrix: Ground Water

Sample Type: Grab

BSK Associates Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	31	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Bromoform	EPA 524.2	1.5	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Chloroform	EPA 524.2	57	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Dibromochloromethane	EPA 524.2	15	0.50	ug/L	1	A602292	02/29/16	03/01/16	
Surrogate: Bromofluorobenzene	EPA 524.2	107 %	Acceptable	e range: T	70-130 %				
Total Trihalomethanes, EPA 524.2		100	0.50	ug/L					
Haloacetic Acids by GC-ECD, G	GC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	1.1	1.0	ug/L	1	A602385	03/01/16	03/02/16	
Dichloroacetic Acid (DCAA)	EPA 552.3	4.3	1.0	ug/L	1	A602385	03/01/16	03/02/16	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A602385	03/01/16	03/02/16	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A602385	03/01/16	03/02/16	
Trichloroacetic Acid (TCAA)	EPA 552.3	12	1.0	ug/L	1	A602385	03/01/16	03/02/16	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	101 %	Acceptable	e range: 7	70-130 %				
Total Haloacetic Acids, EPA 552.3		17	2.0	ug/L					

Certificate of Analysis

Sample ID: A6B2258-01 **Sample Date - Time:** 02/19/16 - 12:30 Sampled By: T Lindberg

Matrix: Ground Water

Sample Description: SMS deep MW // AB42700 Sample Type: Grab

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310C	1.3	0.20	mg/L	1	A602411	03/01/16	03/01/16	DQ1.1
Total Organic Carbon	SM 5310C	1.2	0.20	mg/L	1	A602410	03/01/16	03/01/16	DQ1.1

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 52	24.2 - Q	uality Co	ntrol						
Batch: A602292										Prepare	d: 2/29/20
Prep Method: EPA 524.2										Α	nalyst: AN
Blank (A602292-BLK1)											
Bromodichloromethane	ND	0.50	ug/L							03/01/16	
Bromoform	ND	0.50	ug/L							03/01/16	
Chloroform	ND	0.50	ug/L							03/01/16	
Dibromochloromethane	ND	0.50	ug/L							03/01/16	
Gurrogate: Bromofluorobenzene	52	0.00	ug/L	50		104	70-130			03/01/16	
Blank Spike (A602292-BS1)											
Bromodichloromethane	11	0.50	ua/l	10		105	70-130			03/01/16	
Bromoform	9.7	0.50	ug/L ug/L	10		97	70-130			03/01/16	
Chloroform	9.7	0.50	ug/L ug/L	10		97 107	70-130			03/01/16	
Dibromochloromethane	10	0.50	ug/L ug/L	10		107	70-130			03/01/16	
Surrogate: Bromofluorobenzene	52	0.50	ug/L	50		100 104	70-130			03/01/16	
surrogate. Bromonuorobenzene	32			50		104	70-130			03/01/10	
Blank Spike Dup (A602292-BSD1)											
Bromodichloromethane	11	0.50	ug/L	10		105	70-130	0	30	03/01/16	
Bromoform	9.5	0.50	ug/L	10		95	70-130	2	30	03/01/16	
Chloroform	11	0.50	ug/L	10		108	70-130	1	30	03/01/16	
Dibromochloromethane	9.8	0.50	ug/L	10		98	70-130	2	30	03/01/16	
Surrogate: Bromofluorobenzene	52			50		104	70-130			03/01/16	
Matrix Spike (A602292-MS1), Source: A	A6B2201-01										
Bromodichloromethane	16	0.50	ug/L	10	5.0	114	47-151			03/01/16	
Bromoform	12	0.50	ug/L	10	ND	118	29-162			03/01/16	
Chloroform	74	0.50	ug/L	10	63	110	52-148			03/01/16	EC1.1
Dibromochloromethane	11	0.50	ug/L	10	ND	111	44-149			03/01/16	
Surrogate: Bromofluorobenzene	52			50		104	70-130			03/01/16	
		EPA 5	52.3 - Q	uality Co	ntrol						
Batch: A602219										Prepare	d: 2/25/20
Prep Method: EPA 552.3										Α	nalyst: MT
Blank (A602219-BLK1)											
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							02/26/16	
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							02/26/16	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L							02/26/16	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							02/26/16	
richloroacetic Acid (TCAA)	ND	1.0	ug/L							02/26/16	
Surrogate: 2-Bromobutanoic Acid	28		-	25		111	70-130			02/26/16	
Blank Spike (A602219-BS1)											
Dibromoacetic Acid (DBAA)	12	1.0	ug/L	10		117	70-130			02/26/16	
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10		112	70-130			02/26/16	
Monobromoacetic Acid (MBAA)	10	1.0	ug/L	10		104	70-130			02/26/16	
nonochloroacetic Acid (MCAA)	19	2.0	ug/L	20		95	70-130			02/26/16	
richloroacetic Acid (TCAA)	12	1.0	ug/L	10		116	70-130			02/26/16	
A6B2056 FINAL 03082016 1435											
Printed: 3/8/2016											
QA-RP-0001-10 Final.rpt			DOM A -	sociates.				_		Pag	ge 5 of 1

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	PI	Units	Spike Level	Source Result	%REC	%REC Limits	PDD	RPD Limit	Date Analyzed Qual
Analyte	Kesuit					70KEC	Limits	ארט	Emilit	Anaryzeu Qual
2-1-1- 4 000040		EPA 5	52.3 - Q	uality Co	ntroi					D 1 0/05/00
Batch: A602219										Prepared: 2/25/201
Prep Method: EPA 552.3										Analyst: MT
Blank Spike (A602219-BS1)										
Surrogate: 2-Bromobutanoic Acid	29			25		115	70-130			02/26/16
Blank Spike Dup (A602219-BSD1)										
Dibromoacetic Acid (DBAA)	11	1.0	ug/L	10		110	70-130	6	30	02/27/16
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10		107	70-130	4	30	02/27/16
Monobromoacetic Acid (MBAA)	9.8	1.0	ug/L	10		98	70-130	5	30	02/27/16
Monochloroacetic Acid (MCAA)	19	2.0	ug/L	20		94	70-130	1	30	02/27/16
Frichloroacetic Acid (TCAA)	11	1.0	ug/L	10		108	70-130	6	30	02/27/16
Surrogate: 2-Bromobutanoic Acid	28			25		113	70-130			02/27/16
Duplicate (A602219-DUP1), Source: A	6B2056-01									
Dibromoacetic Acid (DBAA)	2.6	1.0	ug/L		2.6			1	30	02/27/16
Dichloroacetic Acid (DCAA)	6.9	1.0	ug/L		6.8			1	30	02/27/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	02/27/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	02/27/16
Trichloroacetic Acid (TCAA)	4.5	1.0	ug/L		4.5			1	30	02/27/16
Surrogate: 2-Bromobutanoic Acid	28			25		110	70-130			02/27/16
Matrix Spike (A602219-MS1), Source:	A6B1572-01									
Dibromoacetic Acid (DBAA)	40	1.0	ug/L	10	29	110	70-130			02/26/16
Dichloroacetic Acid (DCAA)	23	1.0	ug/L	10	13	103	70-130			02/26/16
Monobromoacetic Acid (MBAA)	13	1.0	ug/L	10	2.8	101	70-130			02/26/16
Monochloroacetic Acid (MCAA)	21	2.0	ug/L	20	2.3	95	70-130			02/26/16
Trichloroacetic Acid (TCAA)	15	1.0	ug/L	10	4.5	107	70-130			02/26/16
Surrogate: 2-Bromobutanoic Acid	28			25		111	70-130			02/26/16
		EPA 5	52.3 - Q	uality Co	ntrol					
Batch: A602385										Prepared: 3/1/201
Prep Method: EPA 552.3										Analyst: MT
Blank (A602385-BLK1)										
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							03/02/16
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							03/02/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L							03/02/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							03/02/16
Frichloroacetic Acid (TCAA)	ND	1.0	ug/L							03/02/16
Surrogate: 2-Bromobutanoic Acid	24			25		97	70-130			03/02/16
Blank Spike (A602385-BS1)										
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		101	70-130			03/02/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		103	70-130			03/02/16
Monobromoacetic Acid (MBAA)	10	1.0	ug/L	10		101	70-130			03/02/16
Monochloroacetic Acid (MCAA)	20	2.0	ug/L	20		100	70-130			03/02/16
richloroacetic Acid (TCAA)	10	1.0	ug/L	10		103	70-130			03/02/16
Surrogate: 2-Bromobutanoic Acid	25			25		100	70-130			03/02/16
A6B2056 FINAL 03082016 1435										
Printed: 3/8/2016										D 2 ()
QA-RP-0001-10 Final.rpt		— www.	BSKAs	sociates.	com —					Page 6 of 1

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
Timery to				uality Co				-RFD	Emili	Analyzeu	- Quui
Batch: A602385		LI A O)U - Q	aunty 50						Prepare	ed: 3/1/201
Prep Method: EPA 552.3										An	alyst: MTN
Blank Spike Dup (A602385-BSD1)											
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		103	70-130	2	30	03/03/16	
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10		105	70-130	2	30	03/03/16	
Monobromoacetic Acid (MBAA)	10	1.0	ug/L	10		104	70-130	3	30	03/03/16	
Monochloroacetic Acid (MCAA)	21	2.0	ug/L	20		104	70-130	4	30	03/03/16	
Trichloroacetic Acid (TCAA)	11	1.0	ug/L	10		106	70-130	2	30	03/03/16	
Surrogate: 2-Bromobutanoic Acid	26			25		103	70-130			03/03/16	
Duplicate (A602385-DUP1), Source: A	A6B2294-01										
Dibromoacetic Acid (DBAA)	11	1.0	ug/L		11			0	30	03/03/16	
Dichloroacetic Acid (DCAA)	1.4	1.0	ug/L		1.4			3	30	03/03/16	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	03/03/16	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	03/03/16	
Trichloroacetic Acid (TCAA)	ND	1.0	ug/L		ND				30	03/03/16	
Surrogate: 2-Bromobutanoic Acid	26			25		105	70-130			03/03/16	
Matrix Spike (A602385-MS1), Source:	A6B1967-02										
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10	ND	102	70-130			03/02/16	
Dichloroacetic Acid (DCAA)	11	1.0	ug/L	10	ND	103	70-130			03/02/16	
Monobromoacetic Acid (MBAA)	11	1.0	ug/L	10	ND	106	70-130			03/02/16	
Monochloroacetic Acid (MCAA)	21	2.0	ug/L	20	ND	106	70-130			03/02/16	
Frichloroacetic Acid (TCAA)	11	1.0	ug/L	10	ND	105	70-130			03/02/16	
Surrogate: 2-Bromobutanoic Acid	25		=	25		101	70-130			03/02/16	

BSK Associates Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 53	10C - Q	uality Co	ntrol					
Batch: A602410										Prepared: 3/1/2016
Prep Method: Method Specific Preparat	ion									Analyst: CEG
Blank (A602410-BLK1)										
Total Organic Carbon	ND	0.20	mg/L							03/01/16
Blank Spike (A602410-BS1)										
Total Organic Carbon	10	0.20	mg/L	10		100	80-120			03/01/16
Blank Spike Dup (A602410-BSD1)										
Total Organic Carbon	10	0.20	mg/L	10		102	80-120	1	20	03/01/16
Matrix Spike (A602410-MS1), Source: A6	6C0011-01									
Total Organic Carbon	9.8	0.20	mg/L	10	ND	98	80-120			03/01/16
Matrix Spike Dup (A602410-MSD1), Soul	rce: A6C0011-01									
Total Organic Carbon	10	0.20	mg/L	10	ND	101	80-120	3	20	03/01/16
		SM 53	10C - Q	uality Co	ntrol					
Batch: A602411										Prepared: 3/1/2016
Prep Method: Method Specific Preparat	ion									Analyst: CEG
Blank (A602411-BLK1)										
Dissolved Organic Carbon	ND	0.20	mg/L							03/01/16
Blank Spike (A602411-BS1)										
Dissolved Organic Carbon	10	0.20	mg/L	10		101	80-120			03/01/16
Blank Spike Dup (A602411-BSD1)										
Dissolved Organic Carbon	10	0.20	mg/L	10		102	80-120	1	20	03/01/16
Matrix Spike (A602411-MS1), Source: A6	B2258-01									
Dissolved Organic Carbon	11	0.20	mg/L	10	1.3	101	80-120			03/01/16
Matrix Spike Dup (A602411-MSD1), Sour	rce: A6B2258-01									

March 11, 2016

Monterey Bay Analytical Services Lab ID : SP 1602104 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

(1 page): Results for each sample submitted. Sample Results

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
SMS Deep MW	02/19/2016	02/24/2016	SP 1602104-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at room temperature. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	03/09/2016:203478 All analysis quality controls are within established criteria
	03/07/2016:202615 All preparation quality controls are within established criteria
903.0	03/07/2016:203258 All analysis quality controls are within established criteria
	03/05/2016:202609 All preparation quality controls are within established criteria

March 11, 2016 Lab ID : SP 1602104

Monterey Bay Analytical Services Customer : 2-19144

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

March 11, 2016 Lab ID : SP 1602104-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : February 19, 2016-12:30 4 Justin Court

Sampled By : T. Lindberg Monterey, CA 93940

Received On : February 24, 2016-13:00

: Ground Water Matrix

Description : SMS Deep MW

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Unite	Units MCL/AL		Preparation	Sample Analysis		
Constituent	Result ± Enot MDA Units MCL/P		WICL/AL	Method	Date/ID	Method	Date/ID		
Radio Chemistry ^P									
Gross Alpha	1.97 ± 1.64	1.56	pCi/L		900.0	03/07/16-07:44 2P1602615	900.0	03/09/16-08:00 2A1603478	
Total Alpha Radium (226)	0.067 ± 0.228	0.363	pCi/L		903.0	03/05/16-15:00 2P1602609	903.0	03/07/16-12:40 2A1603258	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

March 11, 2016 Lab ID : SP 1602104 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	03/09/16:203478caa	CCV CCB	cpm cpm	8722	41.5 % 0.100	38 - 47 0.14	
Gross Alpha	900.0	03/07/16:202615elc (SP 1602154-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	1.72 102 % 121 % 115 % 5.3%	3 75-125 60-140 60-140 ≤30	
Alpha	903.0	03/07/16:203258caa	CCV CCB	cpm cpm	8723	41.6 % 0.0800	38 - 46 0.16	
Total Alpha Radium (226)	903.0	03/05/16:202609caa	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.59 21.59 21.59 21.59	0.1 94.6 % 91.6 % 85.9 % 6.4%	2 52-107 43-111 43-111 ≤35.5	

CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

LČS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries

MSD are an indication of how that sample matrix affects analyte recovery.

: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that

BSD the preparation process is not affecting analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

MSRPD and analysis.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation BSRPD

and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:Monterey Bay AnalyticalWorkOrder:1602961Date Received:2/24/16 11:20Extraction Method:RSK175Date Prepared:2/26/16Analytical Method:RSK175Project:MPWMDUnit:μg/L

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
SMS Deep MW	1602961-001A	Water	02/19/2010	6 12:30 GC26	117291
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.52		0.10	1	02/26/2016 14:44

Analyst(s): AK

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: Monterey Bay Analytical WorkOrder: 1602961 **Date Prepared:** 2/26/16 **BatchID:** 117291 **Date Analyzed:** 2/26/16 **Extraction Method: RSK175 Instrument:** GC26 **Analytical Method:** RSK175 **Matrix:** Air Unit: $\mu L/L$

Project: MPWMD Sample ID: MB/LCS-117291

QC Summary Report for RSK175							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Methane	ND	11.8	0.50	10	-	118	70-130

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Page 1 of 1 Wednesday, March 30, 2016

Lab Number: **AB44030**

Collection Date/Time: 3/16/2016 11:30 Sample Collector: OLIVER J Client Sample #: Coliform Designation: Submittal Date/Time: 3/17/2016 10:31 Sample ID

	Sample Description: ASR-1 Injectate									
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:		
Chloramines	SM4500-CI G	mg/L	0.11	Н	0.05		3/17/2016	LJ		
Haloacetic Acids	EPA552	μg/L	13	E		60	3/24/2016	BSK		
Trihalomethanes	EPA524.2	μg/L	27	E		80	3/21/2016	BSK		

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

A6C1956 3/30/2016

Invoice: A606540

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940

RE: Report for A6C1956 MPWMD

Dear David Holland,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 3/18/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, John Montierth, at (800) 877-8310 or (559) 497-2888 x201.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

John Montierth, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

Case Narrative

Project and Report Details Invoice Details

Client: Monterey Bay Analytical Invoice To: Monterey Bay Analytical

Report To: David Holland Invoice Attn: David Holland

Project #: - Project PO#: -

Received: 3/18/2016 - 10:10 **Report Due:** 4/01/2016

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 3.8 COC/Labels Agree
Received On Wet Ice

Received On Wet Ice Received On Blue Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

Report Distribution

Recipient(s)	Report Format	CC:
David Holland	FINAL.RPT	
Mason Weidner	FINAL.RPT	

^{***}None applied***

Certificate of Analysis

Sample ID: A6C1956-01 **Sample Date - Time:** 03/16/16 - 11:30

Sampled By:J. OliverMatrix:WaterSample Description:ASR-1 Injectate // AB44030Sample Type:Grab

BSK Associates Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	9.5	0.50	ug/L	1	A603299	03/18/16	03/21/16	
Bromoform	EPA 524.2	0.73	0.50	ug/L	1	A603299	03/18/16	03/21/16	
Chloroform	EPA 524.2	11	0.50	ug/L	1	A603299	03/18/16	03/21/16	
Dibromochloromethane	EPA 524.2	6.0	0.50	ug/L	1	A603299	03/18/16	03/21/16	
Surrogate: Bromofluorobenzene	EPA 524.2	95 %	Acceptable	range: 70	0-130 %				
Total Trihalomethanes, EPA 524.2		27	0.50	ug/L					
Haloacetic Acids by GC-ECD, C	SC-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	1.9	1.0	ug/L	1	A603459	03/23/16	03/24/16	
Dichloroacetic Acid (DCAA)	EPA 552.3	6.1	1.0	ug/L	1	A603459	03/23/16	03/24/16	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A603459	03/23/16	03/24/16	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A603459	03/23/16	03/24/16	
Trichloroacetic Acid (TCAA)	EPA 552.3	4.7	1.0	ug/L	1	A603459	03/23/16	03/24/16	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	102 %	Acceptable	range: 70	0-130 %				
Total Haloacetic Acids, EPA 552.3		13	2.0	ug/L					

BSK Associates Fresno Organics Quality Control Report

Analyte	Beaut	DI	Unite	Spike	Source	0/ DEC	%REC	DDD	RPD	Date
Analyte	Result		Units	Level	Result	%REC	Limits	TRPD	Limit	Analyzed Qual
		EPA 52	24.2 - Q	uality Co	ntrol					
Batch: A603299										Prepared: 3/21/20
Prep Method: EPA 524.2										Analyst: AN
Blank (A603299-BLK1)										
Bromodichloromethane	ND	0.50	ug/L							03/21/16
Bromoform	ND	0.50	ug/L							03/21/16
Chloroform	ND	0.50	ug/L							03/21/16
Dibromochloromethane	ND	0.50	ug/L							03/21/16
Surrogate: Bromofluorobenzene	47			50		94	70-130			03/21/16
Blank Spike (A603299-BS1)										
Bromodichloromethane	10	0.50	ug/L	10		100	70-130			03/21/16
Bromoform	11	0.50	ug/L	10		106	70-130			03/21/16
Chloroform	9.8	0.50	ug/L	10		98	70-130			03/21/16
Dibromochloromethane	10	0.50	ug/L	10		102	70-130			03/21/16
Surrogate: Bromofluorobenzene	46		-	50		92	70-130			03/21/16
Blank Spike Dup (A603299-BSD1)										
Bromodichloromethane	11	0.50	ug/L	10		108	70-130	8	30	03/21/16
Bromoform	11	0.50	ug/L	10		111	70-130	5	30	03/21/16
Chloroform	11	0.50	ug/L	10		106	70-130	9	30	03/21/16
Dibromochloromethane	11	0.50	ug/L	10		109	70-130	7	30	03/21/16
Surrogate: Bromofluorobenzene	49		J	50		98	70-130			03/21/16
Matrix Spike (A603299-MS1), Source: A	A6C1676-03									
Bromodichloromethane	22	0.50	ug/L	10	13	89	47-151			03/21/16
Bromoform	11	0.50	ug/L	10	ND	114	29-162			03/21/16
Dibromochloromethane	11	0.50	ug/L	10	1.2	102	44-149			03/21/16
Surrogate: Bromofluorobenzene	45		Ü	50		90	70-130			03/21/16
		EPA 5	52.3 - Q	uality Co	ntrol					
Batch: A603459				_						Prepared: 3/23/20
Prep Method: EPA 552.3										Analyst: MT
Blank (A603459-BLK1)										
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							03/24/16
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							03/24/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L							03/24/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							03/24/16
Frichloroacetic Acid (TCAA)	ND	1.0	ug/L							03/24/16
Surrogate: 2-Bromobutanoic Acid	25			25		100	70-130			03/24/16
Blank Spike (A603459-BS1)										
Dibromoacetic Acid (DBAA)	10	1.0	ug/L	10		105	70-130			03/24/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		102	70-130			03/24/16
Monobromoacetic Acid (MBAA)	10	1.0	ug/L	10		104	70-130			03/24/16
Monochloroacetic Acid (MCAA)	22	2.0	ug/L	20		109	70-130			03/24/16
Frichloroacetic Acid (TCAA)	10	1.0	ug/L	10		102	70-130			03/24/16
Surrogate: 2-Bromobutanoic Acid	26			25		105	70-130			03/24/16
A6C1956 FINAL 03302016 1235										
Printed: 3/30/2016										
QA-RP-0001-10 Final.rpt		\w/\/\/	RSK A e	sociates.	com —					Page 4 of 9

BSK Associates Fresno Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
Analyte –	Result			uality Co		701110	Limits	-Ki D	-Emilit	-Anaryzea Quar
Batch: A603459		LIAG)U Q	uunity 00						Prepared: 3/23/2016
Prep Method: EPA 552.3										Analyst: MTM
Blank Spike Dup (A603459-BSD1)										
Dibromoacetic Acid (DBAA)	11	1.0	ug/L	10		112	70-130	7	30	03/24/16
Dichloroacetic Acid (DCAA)	10	1.0	ug/L	10		103	70-130	1	30	03/24/16
Monobromoacetic Acid (MBAA)	11	1.0	ug/L	10		108	70-130	4	30	03/24/16
Monochloroacetic Acid (MCAA)	22	2.0	ug/L	20		111	70-130	2	30	03/24/16
Trichloroacetic Acid (TCAA)	10	1.0	ug/L	10		104	70-130	2	30	03/24/16
Surrogate: 2-Bromobutanoic Acid	27		J	25		107	70-130			03/24/16
Duplicate (A603459-DUP1), Source: A6	6C2092-04									
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L		ND				30	03/24/16
Dichloroacetic Acid (DCAA)	11	1.0	ug/L		11			0	30	03/24/16
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	03/24/16
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	03/24/16
Trichloroacetic Acid (TCAA)	13	1.0	ug/L		13			0	30	03/24/16
Surrogate: 2-Bromobutanoic Acid	29		J	25		117	70-130			03/24/16
Matrix Spike (A603459-MS1), Source: A	A6C1956-01									
Dibromoacetic Acid (DBAA)	12	1.0	ug/L	10	1.9	106	70-130			03/24/16
Dichloroacetic Acid (DCAA)	16	1.0	ug/L	10	6.1	100	70-130			03/24/16
Monobromoacetic Acid (MBAA)	11	1.0	ug/L	10	ND	103	70-130			03/24/16
Monochloroacetic Acid (MCAA)	22	2.0	ug/L	20	ND	111	70-130			03/24/16
Trichloroacetic Acid (TCAA)	15	1.0	ug/L	10	4.7	100	70-130			03/24/16
Surrogate: 2-Bromobutanoic Acid	26		ū	25		105	70-130			03/24/16

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- · The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters:

NA

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

)

State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
EPA - UCMR3	CA00079	State of Washington	C997-15

Sacramento

State of California - ELAP 2435

Vancouver

State of Oregon - NELAC WA100008-007 State of Washington C824-14a

03182016

Monte6227

Turnaround:

Standard

Due Date: 4/1/2016

Monterey Bay Analytical

Printed: 3/18/26

Page 7 of 9

		A6C1956 03/18/2016
	(559) 497-2888 · Fax (559) 497-2893 Xtandard - 10 business days	Monte6227 10 8
Associates Engineers/Taboratories	www.bskassociates.com S Rush (Surcharge may apply) Date needed:	Pac
ی	*Required Fields Temp:	A magazine de companya de composito de compo
Company/Client Name*:	Report Attention*: Mason Weidner-Hollan	Phone*: Fax: 831-375-6227 831-641-0734
Monterey Bay Analytical Services	Ces Additional cc's: David Holland	er@mbasinc.co
Address*: 4 Justin Court, Suite D	City*: State*: Zip*: Monterey CA 93940	
Project: MPWMD	Project #: How would you like to receive your completed results ? X E-Mail Fax Mail	
Reporting Options:	Regulatory Carbon Copies	
Sampler Name (Printed/Signature)*:	Merced Co Fresno Co System Number*:	
	a Co	
	STW=Storm Water DW=	
# Sample	Sample Description* Sample Time Matrix* Comments / Station Code / WTRAX	TH
1. ASR-1 Injectate	ြ	×
David Holland	MBAS Date Time Received by: (Signature and Printed Name) Received by: (Signature and Printed Name)	Company
Reinquisned by: (Signature and Printed Name)	Company Date Time Received by: (Signature and Printed Name)	Сопрату
Received for Lab by: (Signature and Printed Name)	(Aloka / Jule Holle 10:10 Date:	Check / Cash Amount: PJA#: Init.
Shipping Method: Cooling Method: Wet Blue	WALK-IN FED EX Courier:	Custody Seal: Y (N) Chilling Process Begury Y) N
		Committee Codes

Labels checked by:

Labeled by @ 11

RUSH Paged by:

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Tuesday, July 12, 2016 Page 1 of 2

Lab Number: AB49043

Collection Date/Time: 6/21/2016 Sample Collector: LINDBERG T Client Sample #: 10:00 Submittal Date/Time: 6/21/2016 12:30 Sample ID Coliform Designation:

Odbinittal Date/Time: 0/21/201	0 12.00	Jampic IL	<u> </u>		00110	iiii besignation.	
	Sam	ple Des	scription: ASR-2 backfl	ush			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	129	10		6/27/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	6/23/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/6/2016	MW
Arsenic, Total	EPA200.8	μg/L	1	1	10	6/23/2016	SM
Barium, Total	EPA200.8	μg/L	54	10	1000	6/23/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	157	10		6/28/2016	LRH
Boron	EPA200.7	mg/L	Not Detected	0.05		6/29/2016	MW
Bromide	EPA300.0	mg/L	Not Detected LM	0.1		6/21/2016	НМ
Calcium	EPA200.7	mg/L	40	0.5		6/29/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		6/28/2016	LRH
Chloramines	SM4500-CI G	mg/L	0.05	0.05		6/21/2016	LJ
Chloride	EPA300.0	mg/L	29	1	250	6/21/2016	НМ
DOC	SM5310C	mg/L	1.4	0.2		6/28/2016	MW
Fluoride	EPA300.0	mg/L	0.3	0.1	2.0	6/21/2016	НМ
Gross Alpha	EPA900.0	pCi/L	0.550 ± 1.08 E		15	7/6/2016	FGL
Haloacetic Acids	EPA552	μg/L	12 E		60	6/30/2016	FGL
Iron	EPA200.7	μg/L	70	10	300	6/29/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	6/29/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.5		6/27/2016	LJ
Lithium	EPA200.8	μg/L	6	1		6/23/2016	SM
Magnesium	EPA200.7	mg/L	13	0.5		6/29/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	6/29/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	6/29/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected	0.5	2	6/23/2016	SM
Methane	EPA174/175	μg/L	0.43 E	0.1		6/28/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	5	1	1000	6/23/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected	10	100	6/23/2016	SM
Nitrate as NO3	EPA300.0	mg/L	1	1	45	6/21/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.1	0.1	10	6/21/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.1	0.1		6/21/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected IA	0.1	1.0	6/21/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.3	0.1		6/21/2016	НМ

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance Page 2 of 2 Tuesday, July 12, 2016

Lab Number:AB49043Collection Date/Time:6/21/201610:00Sample Collector:LINDBERG TClient Sample #:Submittal Date/Time:6/21/201612:30Sample IDColiform Designation:

0 40 1111141 2 410/1111101 0/21/2010	. = . 0 0	Oup.o .2				000	2 00.gao	
Sample Description: ASR-2 backflush								
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.7		0.1		6/21/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.31		0.03		7/5/2016	LRH
Potassium	EPA200.7	mg/L	3.0		0.5		6/29/2016	MW
QC Anion Sum x 100	Calculation	%	101%				6/28/2016	LRH
QC Anion-Cation Balance	Calculation	%	1				7/1/2016	MW
QC Cation Sum x 100	Calculation	%	102%				7/1/2016	MW
QC Ratio TDS/SEC	Calculation		0.67				6/26/2016	LRH
Selenium, Total	EPA200.8	μg/L	6		2	50	6/23/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	24		0.5		6/29/2016	MW
Sodium	EPA200.7	mg/L	42		0.5		6/29/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	487		1	900	6/26/2016	LJ
Strontium, Total	EPA200.8	μg/L	206		5		6/23/2016	SM
Sulfate	EPA300.0	mg/L	72		1	250	6/21/2016	HM
TOC	SM5310C	mg/L	1.4		0.2		6/28/2016	MW
Total Diss. Solids	SM2540C	mg/L	326		10	500	6/21/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected	1	0.5		6/27/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.105	E		3	7/6/2016	FGL
Trihalomethanes	EPA524.2	μg/L	102	E,		80	6/27/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	Not Detected	1	1	30	6/23/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected	1	5	1000	6/23/2016	SM
Zinc, Total	EPA200.8	μg/L	228		20	5000	6/23/2016	SM

Sample Comments: LM: MS and/or MSD above acceptance limits. IA: Results are valid even though CCV recovery outside of limits.

Report Approved by:

David Holland, Laboratory Director

July 11, 2016

Monterey Bay Analytical Services Lab ID : SP 1607216 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR-2 Backflush	06/21/2016	06/24/2016	SP 1607216-001	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	06/27/2016:209152 All analysis quality controls are within established criteria.
	06/28/2016:209182 All analysis quality controls are within established criteria.
	06/24/2016:207472 All preparation quality controls are within established criteria.
552	06/29/2016:207632 All preparation quality controls are within established criteria, except: The following note applies to 2,3-Dibromopropionic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to 2,3-Dibromopropionic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552.2	06/30/2016:209306 All analysis quality controls are within established criteria.

July 11, 2016 Lab ID : SP 1607216 **Monterey Bay Analytical Services** Customer : 2-19144

Organic QC

552.2	06/30/2016:209378 All analysis quality controls are within established criteria.
-------	--

Radio QC

900.0	07/06/2016:209654 All analysis quality controls are within established criteria.			
	07/05/2016:207797 All preparation quality controls are within established criteria.			
903.0	07/06/2016:209610 All analysis quality controls are within established criteria.			
	06/29/2016:207659 All preparation quality controls are within established criteria.			

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists

July 11, 2016 Lab ID : SP 1607216-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : June 21, 2016-10:00

Sampled By : T. Lindberg Monterey, CA 93940

Received On : June 24, 2016-12:15

: Water Matrix

Description : ASR-2 Backflush

Project : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	115	80-120	%		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromodichloromethane	23.7	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromoform	1.0	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Chloroform	66.5	2.5*	ug/L		551.1	06/24/16:207472	551.1	06/28/16:209182
Dibromochloromethane	10.6	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Total Trihalomethanes	102		ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	101	70-130	%		552	06/29/16:207632	552.2	06/30/16:209306
Bromoacetic Acid	ND	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209378
Chloroacetic Acid	ND	2	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Dibromoacetic Acid	1	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209378
Dichloroacetic Acid	2	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Trichloroacetic Acid	9	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Haloacetic acids (five)	12		ug/L		552	06/29/16:207632	552.2	06/30/16:209378

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

July 11, 2016 Lab ID : SP 1607216-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : June 21, 2016-10:00 4 Justin Court

Sampled By : T. Lindberg Monterey, CA 93940

Received On : June 24, 2016-12:15

: Water Matrix

Description : ASR-2 Backflush

Project : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	0.550 ± 1.08	1.44	pCi/L	15/5	900.0	07/05/16-08:25 2P1607797	900.0	07/06/16-12:00 2A1609654
Total Alpha Radium (226)	0.000 ± 0.105	0.363	pCi/L	3	903.0	06/29/16-19:00 2P1607659	903.0	07/06/16-14:00 2A1609610

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

July 11, 2016 **Monterey Bay Analytical Services**

Customer

Lab ID

: SP 1607216 : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
Bromodicinoromethane	331.1	00/24/10.20/4/23BL	LCS	ug/L ug/L	9.852	111 %	80-120	
			MS	ug/L ug/L	9.875	106 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	110 %	80-120	
		(81 100/231 001)	MSRPD	ug/L	19.29	2.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	92.6 %	80-120	
	331.1	00/27/10:20/132552	CCV	ug/L	166.7	112 %	80-120	
Bromoform	551.1	06/24/16:207472SBL	Blank	ug/L	100.7	ND	<0.5	
Bromororm	331.1	00/21/10:20/1/2502	LCS	ug/L	9.852	107 %	80-120	
			MS	ug/L	9.875	96.3 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	104 %	80-120	
		(42 2007 20 7 002)	MSRPD	ug/L	19.29	3.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	91.6 %	80-120	
	00111	00/2//10/20/10/2020	CCV	ug/L	166.7	108 %	80-120	
Chloroform	551.1	06/24/16:207472SBL	Blank	ug/L		ND	<0.5	
	331.1		LCS	ug/L ug/L	9.852	120 %	80-120	
			MS	ug/L ug/L	9.875	118 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	118 %	80-120	
		(81 100/251 001)	MSRPD	ug/L	19.29	2.6%	≤20	
	551.1	06/28/16:209182SBL	CCV	ug/L	83.33	98.4 %	80-120	
	331.1	00/20/10.20/1025BE	CCV	ug/L ug/L	166.7	120 %	80-120	
Decafluorobiphenyl	551.1	06/24/16:207472SBL	Blank	ug/L	18.98	91.1 %	80-120	
Decandoroorphenyi	331.1	00/24/10.2074723DL	LCS	ug/L ug/L	19.70	85.8 %	80-120	
			MS	ug/L ug/L	19.75	103 %	80-120	
		(SP 1607234-001)	MSD	ug/L ug/L	19.29	102 %	80-120	
		(51 1007254-001)	MSRPD	ug/L ug/L	19.29	3.6%	≤20.0	
	551.1	06/27/16:209152SBL	CCV	ug/L ug/L	166.7	81.2 %	80-120	
	331.1	00/27/10.2091323BL	CCV	ug/L ug/L	333.3	86.7 %	80-120	
Dibromochloromethane	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.852	110 %	80-120	
			MS	ug/L	9.875	105 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	109 %	80-120	
			MSRPD	ug/L	19.29	1.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	91.5 %	80-120	
			CCV	ug/L	166.7	111 %	80-120	
2,3-Dibromopropionic Acid	552	06/29/16:207632SBL	Blank	ug/L	5.000	87.3 %	70-130	
			LCS	ug/L	5.000	107 %	70-130	
			MS	ug/L	5.000	133 %	70-130	435
		(SP 1607216-001)	MSD	ug/L	5.000	104 %	70-130	
			MSRPD	ug/L	5.000	23.9%	≤20.0	435
Dibromoacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	106 %	70-130	
			MS	ug/L	10.00	111 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	118 %	70-130	
			MSRPD	ug/L	5.000	5.8%	≤20.0	
Dichloroacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	108 %	70-130	
			MS	ug/L	10.00	102 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	119 %	70-130	
			MSRPD	ug/L	5.000	13.1%	≤20.0	
Monobromoacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	111 %	70-130	
			MS	ug/L	10.00	104 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	120 %	70-130	
			MSRPD			13.9%	≤20.0	

July 11, 2016 Lab ID : SP 1607216 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	113 %	70-130	
			MS	ug/L	10.00	101 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	119 %	70-130	
			MSRPD	ug/L	5.000	15.5%	≤20.0	
Trichloroacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	89.4 %	70-130	
			MS	ug/L	10.00	88.0 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	111 %	70-130	
			MSRPD	ug/L	5.000	12.0%	≤20.0	
2,3-Dibromopropionic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	75.00	110 %	70-130	
			CCV	ug/L	50.00	105 %	70-130	
Dibromoacetic Acid	552.2	06/30/16:209378SBL	CCV	ug/L	150.0	110 %	70-130	
			CCV	ug/L	100.0	109 %	70-130	
Dichloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	116 %	70-130	
			CCV	ug/L	100.0	117 %	70-130	
Monobromoacetic Acid	552.2	06/30/16:209378SBL	CCV	ug/L	150.0	119 %	70-130	
			CCV	ug/L	100.0	108 %	70-130	
Monochloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	114 %	70-130	
			CCV	ug/L	100.0	125 %	70-130	
Trichloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	101 %	70-130	
			CCV	ug/L	100.0	97.8 %	70-130	

Definition

CCV

: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery

July 11, 2016 Lab ID : SP 1607216 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	07/06/16:209654caa	CCV CCB	cpm cpm	8634	42.0 % 0.10	40 - 49 0.2	
Gross Alpha	900.0	07/05/16:207797ELC (CC 1682211-001)	Blank LCS MS MSD	pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4	0.39 85.7 % 106 % 89.3 %	3 75-125 60-140 60-140	
		<u> </u>	MSRPD	pCi/L	107.4	15.5%	≤30	
Alpha	903.0	07/06/16:209610caa	CCV CCB	cpm cpm	8634	42.2 % 0.100	38 - 47 0.16	
Total Alpha Radium (226)	903.0	06/29/16:207659emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.59 21.59 21.59 21.59	0.04 53.4 % 50.8 % 51.8 % 1.8%	2 52-107 43-111 43-111 ≤35.5	
		ation - Analyzed to verif Analyzed to verify the i	•			criteria.		

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

LČS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD

the preparation process is not affecting analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation BSRPD

and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

	Monterey Bay Analytical er Number: 2019144 : 4 Justin Court	l Services				umbei						TES	ST D	ESCF	RIPT	ION A	AND	ANA	LYS	ES R	EQU	EST	ED		 ·····	
Address	Monterey, CA 93940			,		011	1					٠														
Project Purcha Quote I Rush A Rush p Electron Sample Sample Compo	ddress: info@mbasinc.com Person: David Holland	Client Other:	Time	Method of Sempling: Composite (C) Grab (G)	Number of Containers	Type of Containers: (G)Glass (P)Prastic (V)VOA (MT)Metal Tube	Potable (P) Non-Potable (NP) Ag Water (AgW)	(SW) Surface Water (MW) Monitoring Well (GW) Ground Water (TB) Travel Blank (WW) Waste Water (DW) Drinking Water	(S) Soil (SLG) Siudge (SLD) Sæd (O) Oa	BecT. (Sys) System (SRC) Source (M) Waste	Bech. (ROUT)Routine (RPT)Repeat (OTH)Other (RPL)Replace	(LT) Less Tissue (PET) Peticle Tissue (PRD) Produce	Preservative: (1) NaOH + ZnAc. (2) NaOH, (3) HCi (4) HZSO4, (5) HNO3, (6) Na2S2O3, (7) Other	Gross Alpha	Radium 226	HAAS	TTHM									
Num	ASR-2 backflush	Sampled	Sampled	G	2	Р									×	X	4								 	
	AGR-2 Dackijusii	6/21/16	1000	۳											<u> </u>		5									
					4	9									-											
<u> </u>			1			_																				
Remari AB49		\sim		Reling	yshed 2	\bigcup	D	ate:	Ti	me:	I	Relinqu ⁄	ished		I	Date:	7	Time:		Relinq	uished			Date:	Time:	
	533703	72	ا ر	Recei	or By:	0	(B	de:	1/0	ue:		Receive	ed By:		I	Date:	7	Γime:		Receiv	ed By:			Date:	Time:	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No.1573 Office & Laboratory
2500 Stagecoach Road
Stockton, CA 95215
TEL: (209)942-0182
FAX: (209)942-0423
CA ELAP Certification No. 1563

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 CA ELAP Certification No. 2670 Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 2775 Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-9435 CA ELAP Certification No. 2810 FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:								
1. Number of ice chests/packages red	ceived:	1						
2. Shipper tracking numbers	532370372							
3. Were samples received in a chilled Temps:	condition?	6 /	′	/	_/	/	/	_/
4. Surface water (SWTR) bact sample should be flagged unless the time s	•		•	•			nether iced	or not,
5. Do the number of bottles received a COC?	agree with the	Yes	No	N/A				
6. Verify sample date, time, sampler		Yes	No	N/A				
7. Were the samples received intact? bottles, leaks, etc.)	(i.e. no broken	Yes	No					
8. Were sample custody seals intact?		Yes	No	N/A				
Sample Verification, Labeling and	Distribution:							
1. Were all requested analyses under acceptable?	stood and	Yes	No					
2. Did bottle labels correspond with the	e client's ID's?	Yes	No					
3. Were all bottles requiring sample p properly preserved? [Exception: Oil & Grease, VOA and		Yes	No	N/A F	FGL			
4. VOAs checked for Headspace?		Yes	No	N/A				
5. Were all analyses within holding tir receipt?	nes at time of	Yes	No					
6. Have rush or project due dates bee accepted?	en checked and	Yes	No	N/A				
Include a copy of the COC for lab deli	verv. (Bacti. Inc	rganics a	nd Rad	dio)				
Sample Receipt, Login and Verification	• •	-		Reviewed a Approved		nawn Peck	Title: Sam	gned by Shawn Peck ble Receiving 0/2016-09:30:37
Discrepency Documentation:			<i>,</i> ,					
Any items above which are "No" or do	o not meet speci		•	• /	oe resc	oivea.		
1. Person Contacted:			one Nu	ımber:				
Initiated By: Problem:		Dat	te:					
Problem.								
Resolution:								
2. Person Contacted:		Pho	one Ni	ımber:				
Initiated By:		Dat						
Problem:								
Resolution:						(20191	144)	

Monterey Bay Analytical Services **SP 1607216**

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1606c29

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 06/24/2016

Analytical Report reviewed & approved for release on 06/30/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1606C29

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Monterey Bay Analytical

 Date Received:
 6/24/16 10:08

 Date Prepared:
 6/28/16

 Project:
 MPWMD

WorkOrder: 1606C29 **Extraction Method:** RSK175

Analytical Method: RSK175 Unit: $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID Matr	x Date Collected	I Instrument Batch ID
ASR-2 backflush	1606C29-001A Water	06/21/2016 10:00	0 GC26 122965
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	<u>Date Analyzed</u>
Methane	0.43	0.10 1	06/28/2016 14:00

Analyst(s): AK

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: Monterey Bay Analytical

Date Prepared: 6/28/16 **Date Analyzed:** 6/28/16 GC26 **Instrument: Matrix:**

Air

Project: MPWMD WorkOrder: 1606C29 **BatchID:**

122965 **Extraction Method: RSK175**

Analytical Method: RSK175

Unit: $\mu L/L$

Sample ID: MB/LCS-122965

QC Summary Report for RSK175								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Methane	ND	11.4	0.50	10	-	113	70-130	

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder: 1606C29 ClientCode: MBAS

	☐ WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	☐ J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days;
David Holland	Email: r	nweidner@mbas	sinc.com; Dholl	and@mbas	Accounts Payal	ble			
Monterey Bay Analytical	cc/3rd Party:				Monterey Bay A	Analytical			
4 Justin Court, Suite D	PO:				4 Justin Court,	Suite D	Dat	e Received:	06/24/2016
Monterey, CA 93940	ProjectNo: N	MPWMD			Monterey, CA 9	3940	Dat	e Logged:	06/27/2016
831-375-6227 FAX: 831-641-0734					-			00	

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1606C29-001	ASR-2 backflush	Water	6/21/2016 10:00	Α											

Test Legend:

1	RSK175_W	2	3	4
5		6	7	8
9		10	11	12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	MONTEREY BAY ANALYTICAL				QC Level:	vel: LEVEL 2				Work	Order:	1606C29
Project:	MPWMD				Client Contact:	David H	olland			Date 1	Logged:	6/27/2016
Comments:					Contact's Email:	: mweidner@mbasinc.com; Dholland@mbasinc.com; 4mbas@sbcglobal.net; info@mbasinc.com						
		☐ WaterTrax	WriteOn	EDF	Excel	☐ Fax ☑ Email		HardCopy ThirdParty		J-flag		
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		le & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1606C29-001A	ASR-2 backflush	Water RSK175 < Methane_4>		3		VOA w/ HCl		6/21/2016 10:00	5 days	None		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1606C29

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 72 HR 5 DAY 48 HR Website: www.mccampbell.com Email: main@mccampbell.com ☐ GeoTracker EDF ☐ PDF ☐ Excel ☐ Write On (DW) Fax: (925) 252-9269 Telephone: (877) 252-9262 Other Comments Report To: David Holland Bill To: **Analysis Request** Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: info@mbasinc.com Gas (602 / 8021 + CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: Fotal Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: **Project Name:** Yes / No EPA 505/ 608 / 8081 (Cl Pesticides) TPH as Diesel / Motor Oil (8015) Lead (200.7 / 200.8 / 6010 / 6020) Project Location: MPWMD EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: METHOD SAMPLING MATRIX Type Containers PRESERVED # Containers MTBE / BTEX SAMPLE ID LOCATION/ Field Point Name Methane Sludge Water Date Time Other HNO3 Other HCL ICE Soil Air X AB49043 ASR-2 backflush 6/21/16 1000 XX Relinquished By: ICE/t° () COMMENTS: Date: Time: Received By: GOOD CONDITION **David Holland** 6/23/16 1600 HEAD SPACE ABSENT Relinquished By: Received By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS 1008 PRESERVED IN LAB Received By Relinquished By: Date! Time: VOAS O&G METALS OTHER PRESERVATION pH<2

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project Name:	Monterey Bay Ana MPWMD				Date and Time Received: Date Logged:	6/24/2016 10:08 6/27/2016
WorkOrder №: Carrier:	1606C29 OnTrac	Matrix: <u>Water</u>			Received by: Logged by:	Agustina Venegas Maria Venegas
G a G	<u> </u>					mana vonogac
		Chain of C	ustody		nformation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌	
Sample IDs note	ed by Client on COC?	•	Yes	✓	No 🗆	
Date and Time o	of collection noted by	Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes		No 🗹	
		<u>Sampl</u>	e Rece	eipt Infor	<u>mation</u>	
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗌	NA 🗸
Shipping contain	er/cooler in good cor	ndition?	Yes	•	No 🗌	
Samples in prope	er containers/bottles	?	Yes	✓	No 🗌	
Sample containe	ers intact?		Yes	•	No 🗌	
Sufficient sample	e volume for indicate	d test?	Yes	•	No 🗌	
		Sample Preservation	on and	Hold Tir	me (HT) Information	
All samples rece	ived within holding ti	me?	Yes	✓	No 🗌	
Sample/Temp Bl	lank temperature			Temp:	0.5°C	NA 🗌
Water - VOA vial	ls have zero headspa	ace / no bubbles?	Yes	✓	No 🗌	NA 🗆
Sample labels ch	necked for correct pre	eservation?	Yes	✓	No 🗌	
pH acceptable up	pon receipt (Metal: <	2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ісе Туре	e: WE	T ICE)	
UCMR3 Samples Total Chlorine		le upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine t 300.1, 537, 539		e upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗸
Comments:						

Monterey Bay Analytical Services
4 Justin Court Suite D, Monterey, CA 93940
831.375.MBAS

www.MBASinc.com ELAP Certification Number: 2385

Page 1 of 2 Monday, July 18, 2016

Lab Number: AB49176

Collection Date/Time: 6/22/2016 10:30 Sample Collector: LINDBERG T Client Sample #:
Submittal Date/Time: 6/22/2016 15:20 Sample ID Coliform Designation:

Submittal Date/Time: 6/22/2016		Sample II			Collio	im Designation.	
	Sam	ple De	scription: ASR-3 backfl	ush			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	129	10		6/27/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	6/23/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/6/2016	MW
Arsenic, Total	EPA200.8	μg/L	16	1	10	6/23/2016	SM
Barium, Total	EPA200.8	μg/L	52	10	1000	6/23/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	157	10		6/28/2016	LRH
Boron	EPA200.7	mg/L	Not detected	0.05		6/29/2016	MW
Bromide	EPA300.0	mg/L	Not Detected IA	0.1		6/22/2016	НМ
Calcium	EPA200.7	mg/L	38	0.5		6/29/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		6/28/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		6/22/2016	LRH
Chloride	EPA300.0	mg/L	30	1	250	6/22/2016	НМ
DOC	SM5310C	mg/L	1.5	0.2		6/28/2016	MW
Fluoride	EPA300.0	mg/L	0.3	0.1	2.0	6/22/2016	НМ
Gross Alpha	EPA900.0	pCi/L	1.16 ± 1.41 E		15	7/6/2016	FGL
Haloacetic Acids	EPA552	μg/L	16 E		60	6/30/2016	FGL
Iron	EPA200.7	μg/L	53	10	300	6/29/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	6/29/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.5		6/27/2016	LJ
Lithium	EPA200.8	μg/L	6	1		6/23/2016	SM
Magnesium	EPA200.7	mg/L	13	0.5		6/29/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	6/29/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	6/29/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected	0.5	2	6/23/2016	SM
Methane	EPA174/175	μg/L	0.52 E	0.1		6/28/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	76	1	1000	6/23/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected	10	100	6/23/2016	SM
Nitrate as NO3	EPA300.0	mg/L	1	1	45	6/22/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.1	0.1	10	6/22/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.1	0.1		6/22/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected IA	0.1	1.0	6/22/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.3	0.1		6/22/2016	НМ

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance

Page 2 of 2 Monday, July 18, 2016

Lab Number:AB49176Collection Date/Time:6/22/201610:30Sample Collector:LINDBERG TClient Sample #:Submittal Date/Time:6/22/201615:20Sample IDColiform Designation:

Odbinittai Dato, Timo. 0/22/2010	10.20	Campic ID				Como	iiii Dooigiiatioii.	
	Sar	nple Descri	ption: ASR-3	backfl	ush			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.6		0.1		6/22/2016	LRH
Phosphorus, Total	HACH 8190	mg/L	0.28		0.03		7/5/2016	LRH
Potassium	EPA200.7	mg/L	2.8		0.5		6/29/2016	MW
QC Anion Sum x 100	Calculation	%	99%				6/28/2016	LRH
QC Anion-Cation Balance	Calculation	%	-1				7/1/2016	MW
QC Cation Sum x 100	Calculation	%	96%				7/1/2016	MW
QC Ratio TDS/SEC	Calculation		0.61				7/1/2016	MP
Selenium, Total	EPA200.8	μg/L	9		2	50	6/23/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	24		0.5		6/29/2016	MW
Sodium	EPA200.7	mg/L	41		0.5		6/29/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	501		1	900	6/26/2016	LJ
Strontium, Total	EPA200.8	μg/L	207		5		6/23/2016	SM
Sulfate	EPA300.0	mg/L	72		1	250	6/22/2016	НМ
TOC	SM5310C	mg/L	1.4		0.2		6/28/2016	MW
Total Diss. Solids	SM2540C	mg/L	306		10	500	6/28/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		6/27/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.835 ± 0.370	Е		3	7/13/2016	FGL
Trihalomethanes	EPA524.2	μg/L	99.7	Е		80	6/27/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	1		1	30	6/23/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	6/23/2016	SM
Zinc, Total	EPA200.8	μg/L	231		20	5000	6/23/2016	SM
0 10 1	•							

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

July 18, 2016

Monterey Bay Analytical Services Lab ID : SP 1607215 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR-3 Backflush	06/22/2016	06/24/2016	SP 1607215-001	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	06/27/2016:209152 All analysis quality controls are within established criteria.
	06/28/2016:209182 All analysis quality controls are within established criteria.
	06/24/2016:207472 All preparation quality controls are within established criteria.
552	06/29/2016:207632 All preparation quality controls are within established criteria, except: The following note applies to 2,3-Dibromopropionic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to 2,3-Dibromopropionic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552.2	06/30/2016:209306 All analysis quality controls are within established criteria.

July 18, 2016 Lab ID

Monterey Bay Analytical Services Customer

Organic QC

552.2	06/30/2016:209378 All analysis quality controls are within established criteria.
-------	--

Radio QC

900.0	07/06/2016:209651 All analysis quality controls are within established criteria.
	07/05/2016:207797 All preparation quality controls are within established criteria.
903.0	07/13/2016:209956 All analysis quality controls are within established criteria.
	07/10/2016:208051 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

: SP 1607215

: 2-19144

Analytical Chemists

July 18, 2016 Lab ID : SP 1607215-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : June 22, 2016-10:30

Sampled By : T. Lindberg Monterey, CA 93940

Received On : June 24, 2016-12:15

: Water Matrix

Description : ASR-3 Backflush

Project : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	129	80-120	%		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromodichloromethane	22.5	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromoform	1.1	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Chloroform	65.8	2.5*	ug/L		551.1	06/24/16:207472	551.1	06/28/16:209182
Dibromochloromethane	10.3	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Total Trihalomethanes	99.7		ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	110	70-130	%		552	06/29/16:207632	552.2	06/30/16:209306
Bromoacetic Acid	ND	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209378
Chloroacetic Acid	ND	2	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Dibromoacetic Acid	1	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209378
Dichloroacetic Acid	4	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Trichloroacetic Acid	11	1	ug/L		552	06/29/16:207632	552.2	06/30/16:209306
Haloacetic acids (five)	16		ug/L		552	06/29/16:207632	552.2	06/30/16:209378

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

July 18, 2016 Lab ID : SP 1607215-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : June 22, 2016-10:30 4 Justin Court

Sampled By : T. Lindberg Monterey, CA 93940

Received On : June 24, 2016-12:15

: Water Matrix

Description : ASR-3 Backflush

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis	
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	1.16 ± 1.41	1.68	pCi/L	15/5	900.0	07/05/16-08:25 2P1607797	900.0	07/06/16-09:00 2A1609651
Total Alpha Radium (226)	0.835 ± 0.370	0.470	pCi/L	3	903.0	07/10/16-11:30 2P1608051	903.0	07/13/16-09:20 2A1609956

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

July 18, 2016 Lab ID : SP 1607215 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Organic

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
Bromodicinoromethane	331.1	00/24/10.2074725BE	LCS	ug/L ug/L	9.852	111 %	80-120	
			MS	ug/L ug/L	9.875	106 %	80-120	
		(SP 1607234-001)	MSD	ug/L ug/L	9.646	110 %	80-120	
		(51 100/251 001)	MSRPD	ug/L ug/L	19.29	2.0%	≤20	
	551.1	06/27/16:209152SBL		ug/L	83.33	92.6 %	80-120	
	331.1	00/27/10.20/132BBE	CCV	ug/L ug/L	166.7	112 %	80-120	
Bromoform	551.1	06/24/16:207472SBL	Blank	ug/L	100.7	ND	<0.5	
Bromororm	331.1	00/24/10.20/4/25BE	LCS	ug/L ug/L	9.852	107 %	80-120	
			MS	ug/L ug/L	9.875	96.3 %	80-120	
		(SP 1607234-001)	MSD	ug/L ug/L	9.646	104 %	80-120	
		(31 100/234-001)	MSRPD	ug/L ug/L	19.29	3.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L ug/L	83.33	91.6 %	80-120	
	331.1	00/2//10:2091323BL	CCV	ug/L ug/L	166.7	108 %	80-120	
Chloroform	551.1	06/24/16-207472CDI			100.7			
Chloroform	331.1	06/24/16:207472SBL	Blank	ug/L	0.952	ND 120.9/	<0.5	
		1	LCS	ug/L	9.852	120 %	80-120	
		(CD 1 (07224 001)	MS	ug/L	9.875	118 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	118 %	80-120	
			MSRPD	ug/L	19.29	2.6%	≤20	
	551.1	06/28/16:209182SBL	CCV	ug/L	83.33	98.4 %	80-120	
			CCV	ug/L	166.7	120 %	80-120	
Decafluorobiphenyl	551.1	06/24/16:207472SBL	Blank	ug/L	18.98	91.1 %	80-120	
			LCS	ug/L	19.70	85.8 %	80-120	
			MS	ug/L	19.75	103 %	80-120	
		(SP 1607234-001)	MSD	ug/L	19.29	102 %	80-120	
			MSRPD	ug/L	19.29	3.6%	≤20.0	
	551.1	06/27/16:209152SBL	CCV	ug/L	166.7	81.2 %	80-120	
			CCV	ug/L	333.3	86.7 %	80-120	
Dibromochloromethane	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.852	110 %	80-120	
			MS	ug/L	9.875	105 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	109 %	80-120	
			MSRPD	ug/L	19.29	1.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	91.5 %	80-120	
	55111	00/2//10/20/10/2020	CCV	ug/L	166.7	111 %	80-120	
2,3-Dibromopropionic Acid	552	06/29/16:207632SBL	Blank	ug/L	5.000	87.3 %	70-130	
2,3-Dioromopropionie Acid	332	00/27/10.20/0325BL	LCS	ug/L ug/L	5.000	107 %	70-130	
			MS	ug/L ug/L	5.000	133 %	70-130	435
		(SP 1607216-001)	MSD	ug/L ug/L	5.000	104 %	70-130	733
		(51 100/210 001)	MSRPD	ug/L ug/L	5.000	23.9%	≤20.0	435
Dibromoacetic Acid	552	06/29/16:207632SBL	Blank	ug/L ug/L	2.000	ND	<1	133
Diolomoaceuc Acid	332	00/29/10.20/0323DL	LCS		10.00	106 %	70-130	
		1	MS	ug/L	10.00		70-130	
		(SP 1607216-001)	MSD	ug/L ug/L	10.00	111 % 118 %	70-130	
		(SF 100/210-001)	MSD MSRPD	ug/L ug/L	5.000	5.8%	/0-130 ≤20.0	
Dichloroacetic Acid	552	06/29/16:207632SBL			5.000			
Dichioroacene Acid	552	00/29/10:20/032SBL	Blank	ug/L	10.00	ND	<1 70.120	
		1	LCS	ug/L	10.00	108 %	70-130	
		(CD 1607216 001)	MS	ug/L	10.00	102 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	119 %	70-130	
		0.5/0.0/4.5.00==================================	MSRPD	ug/L	5.000	13.1%	≤20.0	
Monobromoacetic Acid	552	06/29/16:207632SBL	Blank	ug/L	40.00	ND	<1	
		1	LCS	ug/L	10.00	111 %	70-130	
			MS	ug/L	10.00	104 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	120 %	70-130	
			MSRPD	ug/L	5.000	13.9%	≤20.0	

July 18, 2016 Lab ID : SP 1607215 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	113 %	70-130	
			MS	ug/L	10.00	101 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	119 %	70-130	
			MSRPD	ug/L	5.000	15.5%	≤20.0	
Trichloroacetic Acid	552	06/29/16:207632SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	89.4 %	70-130	
			MS	ug/L	10.00	88.0 %	70-130	
		(SP 1607216-001)	MSD	ug/L	10.00	111 %	70-130	
			MSRPD	ug/L	5.000	12.0%	≤20.0	
2,3-Dibromopropionic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	75.00	110 %	70-130	
			CCV	ug/L	50.00	105 %	70-130	
Dibromoacetic Acid	552.2	06/30/16:209378SBL	CCV	ug/L	150.0	110 %	70-130	
			CCV	ug/L	100.0	109 %	70-130	
Dichloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	116 %	70-130	
			CCV	ug/L	100.0	117 %	70-130	
Monobromoacetic Acid	552.2	06/30/16:209378SBL	CCV	ug/L	150.0	119 %	70-130	
			CCV	ug/L	100.0	108 %	70-130	
Monochloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	114 %	70-130	
			CCV	ug/L	100.0	125 %	70-130	i I
Trichloroacetic Acid	552.2	06/30/16:209306SBL	CCV	ug/L	150.0	101 %	70-130	
			CCV	ug/L	100.0	97.8 %	70-130	i II

Definition

MS

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

July 18, 2016 Lab ID : SP 1607215 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	07/06/16:209651caa	CCV CCB	cpm cpm	8634	43.5 % 0.1200	38 - 47 0.18	
Gross Alpha	900.0	07/05/16:207797ELC (CC 1682211-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	0.39 85.7 % 106 % 89.3 % 15.5%	3 75-125 60-140 60-140 ≤30	
Alpha	903.0	07/13/16:209956caa	CCV CCB	cpm cpm	8629	41.8 % 0.100	38 - 47 0.19	
Total Alpha Radium (226)	903.0	07/10/16:208051emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.58 21.58 21.58 21.58	0.01 88.5 % 78.4 % 83.7 % 6.6%	2 52-107 43-111 43-111 ≤35.5	
		ation - Analyzed to verif Analyzed to verify the i	y the instrur	nent calibration	on is within		_55.5	

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

LČS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD

the preparation process is not affecting analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation BSRPD

and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

Client: Custom Addres:	Monterey Bay Analytica er Number: 2019144 5: 4 Justin Court	I Services			Lab N	72	5					TES	ST D	ESCI	RIPT	ION A	AND	ANA	LYS	SES P	REQU	JEST	ED				
74000	Monterey, CA 93940					777																					
Contact Project Purcha Quote I	ddress: info@mbasinc.com Person: David Holland Name: MPWMD se Order Number: Number:	1)641-0734) Grab (G)		Type of Containers: (G)Glass (P)Plastic (V)VOA (MT)Metal Tube	Ag Water (AgW)	II (GW) Ground Water (DW) Drinking Water		aste	Bect. (ROUT)Routine (RPT)Repeat (OTH)Other (RPL)Replace	D) Produce	i, (3) HCi Yther_														
Rush p	nalysis: 5 Day 4 Day 3 Day re-approval by lab (initals): nic Data Transfer: No State			Composite (C)		Glass (P)Plastic	Non-Potable (NP) Ag	n) Monttoring We V) Waste Water	EO (O) P308 (OT	Source (W) W	RPT)Repeat (O'	eticle Tissue (Pf	ZnAc. (2) NaOt) Na2S2O3. (7) (
Samplin	r(s): T. Lindberg Ing Fee: Pickup Fee: Sitor Setup Date: Time:			Method of Sempling:	Number of Containers	of Containers: (G)	Potable (P) Non-Pol	(SW) Surface Water (MW) Monttoring Well (TB) Travel Blank (WW) Waste Water	(S) Soil (SLG) Sludge (SLD) Soed (O) O	BecT. (Sys) System (SRC) Source (W) Waste	(ROUT)Routine (I	(LT) Leaf Tissue (PET) Peticle Tissue (PRD) Produce	Preservative: (1) NaOH + ZnAc, (2) NaOH, (3) HCI (4) HZSO4, (5) HNO3, (6) NaZSZO3, (7) Other	Apha	ו 226	\$ 5	THM										
Samp Num	Location Description	Date Sampled	Time Sampled	Meth	Num	Pp.	Potet	(SW) (TB)	(\$)	BecT	BacT	(LI) [Prese (4) H2	Gross Alpha	Radium 226	HAAS	17,										
1.	ASR-3 backflush	6/22/16	1030	G	2	Р								х	х	4	×										
					4	9																					
				 																							
																	_							_			
									İ																		
Remark AB49			27	Reling	ished ()	Da	ate:	Tir	me:	R	elinqui	shed		D	ate:	T	ime:		Relinqu	ished		1	Date:		Time:	
	53'd'	$\frac{3N}{2}$	518	Receiv		00	U	ate:	Tin	me:	2/8	eceive	d By:		D	ate:	Т	ime:		Receive	ed By:		1	Date:	•	l'ime:	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No.1573 Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 CA ELAP Certification No. 2670

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 2775

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810 FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers 532370372							
Were samples received in a chilled condition? Temps:	6	/	/	/	/	/	/
4. Surface water (SWTR) bact samples: A sample the should be flagged unless the time since sample co		•	•		•	C, whethe	er iced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	l Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inc	organics a	and Ra	idio)				
Sample Receipt, Login and Verification completed b	•		Reviewe Approve		Shawn P	eck 🧓	Digitally signed by Shawn Peck Title: Sample Receiving Date: 06/30/2016-09:33:59
Discrepency Documentation:		,,					
Any items above which are "No" or do not meet spec		•	• •	st be re	esoivea.		
1. Person Contacted:			umber: _				
Initiated By: Problem:	Da	ate:	_				
Problem.							
Resolution:							
2. Person Contacted:	Pł	none N	umber: _				
Initiated By:		ate:					
Problem:							
Resolution:					(20	019144)	

Monterey Bay Analytical Services SP 1607215

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1606C15

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 06/24/2016

Analytical Report reviewed & approved for release on 06/30/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1606C15

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Monterey Bay Analytical

 Date Received:
 6/24/16 10:08

 Date Prepared:
 6/28/16

 Project:
 MPWMD

WorkOrder: 1606C15

Extraction Method: RSK175 **Analytical Method:** RSK175

Unit: $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
ASR-3 backflush	1606C15-001A	Water	06/22/20	16 10:08 GC26	122965
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Date Analyzed</u>
Methane	0.52		0.10	1	06/28/2016 14:17

Analyst(s): AK

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: Monterey Bay Analytical

Date Prepared: 6/28/16
Date Analyzed: 6/28/16
Instrument: GC26
Matrix: Air

Project: MPWMD

WorkOrder: 1606C15 **BatchID:** 122965

Extraction Method: RSK175 **Analytical Method:** RSK175

Unit: $\mu L/L$

Sample ID: MB/LCS-122965

Analyte			RL	_			LCS Limits
Methane	ND	11.4	0.50	10	-	113	70-130

McCampbell Analytical, Inc.

ASR-3 backflush

Water

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder: 1606C15 ClientCode: MBAS

(923) 232-9202									
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:					Bill to:		Req	uested TAT:	5 days;
David Holland Monterey Bay Analytical 4 Justin Court, Suite D	cc/3rd Party: PO:	nweidner@mbas	sinc.com; Dholl	and@mbas	Accounts Paya Monterey Bay A 4 Justin Court,	Analytical	Dat	e Received:	06/24/2016
Monterey, CA 93940 831-375-6227 FAX: 831-641-0734	ProjectNo: N	MPWMD			Monterey, CA 9	93940	Dat	e Logged:	06/27/2016
						Requested 1	ests (See legend	below)	
ah ID Client ID	1	Matrix	Collection Date	Hold 1	2 3	1 5	6 7 9	0 1) 11

Α

6/22/2016 10:30

Test Legend:

1606C15-001

1 RSK175_W	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	: MONTEREY	BAY ANALYTICA	AL		QC Level:	LEVEL 2	2			Work	Order:	1606C15
Project:	MPWMD				Client Contact:	David Ho	olland			Date l	Logged:	6/27/2016
Comments:					Contact's Email:		er@mbasinc.com; sbcglobal.net; inf	_	·			
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppyThirdParty	J-	flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Compos		le & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1606C15-001A	ASR-3 backflush	Water	RSK175 <me< th=""><th>thane_4></th><th>3</th><th></th><th>VOA w/ HCl</th><th></th><th>6/22/2016 10:30</th><th>5 days</th><th>None</th><th></th></me<>	thane_4>	3		VOA w/ HCl		6/22/2016 10:30	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1606CV5

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com □ PDF ☐ Write On (DW) ☐ GeoTracker EDF ☐ Excel Fax: (925) 252-9269 Telephone: (877) 252-9262 **Analysis Request** Other Comments Report To: David Holland Bill To: Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: info@mbasinc.com Gas (602 / 8021 + CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) Total Petroleum Hydrocarbons (418.1) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: EPA 515 / 8151 (Acidic CI Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project Name: MPWMD Project #: Yes / No EPA 505/ 608 / 8081 (CI Pesticides) TPH as Diesel / Motor Oil (8015) Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) **Project Location:** EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: METHOD MTBE / BTEX & TPH MATRIX SAMPLING Type Containers PRESERVED Containers SAMPLE ID LOCATION/ Field Point Name Sludge Methane Water Date Time HNO3 Other Other HCL ICE Soil Air X ASR-3 backflush 6/22/16 1030 XX AB49176 G ICE/t° U ~ COMMENTS: Relinquished By: Date: Time: Received By: GOOD CONDITION **David Holland** 6/23/16 1600 HEAD SPACE ABSENT Tracking #: 532370334 Time: Received By: Relinquished By: Date: DECHLORINATED IN LAB APPROPRIATE CONTAINERS 1008 PRESERVED IN LAB Received By: Relinquished By: Date: Time: VOAS O&G METALS OTHER PRESERVATION pH<2

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Project Name: WorkOrder №: Carrier:	MPWMD 1606C15 Matrix: Water Golden State Overnight			Date and Time Received. Date Logged: Received by: Logged by:	6/27/2016 Alexandra Iniguez Maria Venegas
	Chain of C	ustod	v (COC)	Information	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes		No 🗸	
	Sampl	e Rece	eipt Info	<u>rmation</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗆	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	•	No 🗌	
	Sample Preservation	on and	Hold Ti	me (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp	: 0.5°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes	✓	No 🗌	NA 🗌
Samples Receive		Yes	✓	No 🗌	
	(Ice Type	e: WE	T/BLU)	
UCMR3 Samples Total Chlorine t		Yes		No 🗌	NA 🗸
Free Chlorine t 300.1, 537, 539	rested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	na ✓
		<u> </u>			

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Thursday, July 07, 2016

Lab Number: AB48896

Collection Date/Time: 6/16/2016 14:20 Sample Collector: LINDBERG T Client Sample #:
Submittal Date/Time: 6/16/2016 15:18 Sample ID Coliform Designation:

		San	nple Description: MW-1				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	138	10		6/17/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	6/23/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/6/2016	MW
Arsenic, Total	EPA200.8	μg/L	2	1	10	6/23/2016	SM
Barium, Total	EPA200.8	μg/L	19	10	1000	6/23/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	168	10		6/17/2016	LRH
Boron	EPA200.7	mg/L	Not detected	0.05		6/20/2016	MW
Bromide	EPA300.0	mg/L	Not Detected	0.1		6/16/2016	НМ
Calcium	EPA200.7	mg/L	45	0.5		6/20/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		6/17/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		6/16/2016	SM
Chloride	EPA300.0	mg/L	32	1	250	6/16/2016	НМ
DOC	SM5310C	mg/L	1.3	0.2		6/17/2016	MW
Fluoride	EPA300.0	mg/L	0.2	0.1	2.0	6/16/2016	НМ
Gross Alpha	EPA900.0	pCi/L	0.924 ± 1.32 E		15	6/28/2016	FGL
Haloacetic Acids	EPA552	μg/L	Not Detected E		60	6/28/2016	FGL
Iron	EPA200.7	μg/L	Not Detected	10	300	6/20/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	6/20/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected	0.5		6/27/2016	LJ
Lithium	EPA200.8	μg/L	8	1		6/23/2016	SM
Magnesium	EPA200.7	mg/L	11	0.5		6/20/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	6/20/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	6/20/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected	0.5	2	6/23/2016	SM
Methane	EPA174/175	μg/L	0.57 E	0.1		6/28/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	3	1	1000	6/23/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected	10	100	6/23/2016	SM
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	6/16/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.1	0.1	10	6/16/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.1	0.1		6/16/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	6/16/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

T = Temperature Exceedance

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Thursday, July 07, 2016

Lab Number: AB48896

Collection Date/Time: 6/16/2016 14:20 Sample Collector: LINDBERG T Client Sample #:
Submittal Date/Time: 6/16/2016 15:18 Sample ID Coliform Designation:

		Sample	Description: MW-1				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected	0.1		6/16/2016	НМ
pH (Laboratory)	SM4500-H+B	pH (H)	7.6	0.1		6/16/2016	HM
Phosphorus, Total	HACH 8190	mg/L	0.04	0.03		6/21/2016	LRH
Potassium	EPA200.7	mg/L	2.9	0.5		6/20/2016	MW
QC Anion Sum x 100	Calculation	%	100%			6/20/2016	LRH
QC Anion-Cation Balance	Calculation	%	0			6/21/2016	MW
QC Cation Sum x 100	Calculation	%	100%			6/21/2016	MW
QC Ratio TDS/SEC	Calculation		0.62			6/20/2016	HM
Selenium, Total	EPA200.8	μg/L	4	2	50	6/23/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	26	0.5		6/20/2016	MW
Sodium	EPA200.7	mg/L	45	0.5		6/20/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	520	1	900	6/20/2016	HM
Strontium, Total	EPA200.8	μg/L	242	5		6/23/2016	SM
Sulfate	EPA300.0	mg/L	73	1	250	6/16/2016	HM
TOC	SM5310C	mg/L	1.1	0.2		6/17/2016	MW
Total Diss. Solids	SM2540C	mg/L	323	10	500	6/16/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		6/27/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.389 E		3	6/28/2016	FGL
Trihalomethanes	EPA524.2	μg/L	82.1 E		80	6/27/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	1	1	30	6/23/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected	5	1000	6/23/2016	SM
Zinc, Total	EPA200.8	μg/L	Not Detected	20	5000	6/23/2016	SM

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L: Micrograms per liter (=ppb) PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

T = Temperature Exceedance

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS www.MBASinc.com

ELAP Certification Number: 2385

Thursday, July 07, 2016

Lab Number: AB48897

Collection Date/Time: 6/16/2016 15:00 Sample Collector: LINDBERG T Client Sample #:
Submittal Date/Time: 6/16/2016 15:18 Sample ID Coliform Designation:

		San	ple Description: SMSD				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	134	10		6/17/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	6/23/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/6/2016	MW
Arsenic, Total	EPA200.8	μg/L	12	1	10	6/23/2016	SM
Barium, Total	EPA200.8	μg/L	35	10	1000	6/23/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	163	10		6/17/2016	LRH
Boron	EPA200.7	mg/L	Not detected	0.05		6/20/2016	MW
Bromide	EPA300.0	mg/L	Not Detected	0.1		6/16/2016	НМ
Calcium	EPA200.7	mg/L	43	0.5		6/20/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		6/17/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		6/16/2016	SM
Chloride	EPA300.0	mg/L	29	1	250	6/16/2016	НМ
DOC	SM5310C	mg/L	1.4	0.2		6/17/2016	MW
Fluoride	EPA300.0	mg/L	0.3	0.1	2.0	6/16/2016	НМ
Gross Alpha	EPA900.0	pCi/L	1.20 ± 1.32 E		15	6/28/2016	FGL
Haloacetic Acids	EPA552	μg/L	9 E		60	6/28/2016	FGL
Iron	EPA200.7	μg/L	Not Detected	10	300	6/20/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	6/20/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected	0.5		6/27/2016	LJ
Lithium	EPA200.8	μg/L	7	1		6/23/2016	SM
Magnesium	EPA200.7	mg/L	11	0.5		6/20/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	6/20/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	6/20/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected	0.5	2	6/23/2016	SM
Methane	EPA174/175	μg/L	0.55 E	0.1		6/28/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	43	1	1000	6/23/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected	10	100	6/23/2016	SM
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	6/16/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.1	0.1	10	6/16/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.1	0.1		6/16/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	6/16/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

T = Temperature Exceedance

D = Method deviates from standard method due to insufficient sample for MS/MSD

Monterey Bay Analytical Services 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Thursday, July 07, 2016

Lab Number: **AB48897**

Collection Date/Time: 6/16/2016 15:00 Sample Collector: LINDBERG T Client Sample #: Submittal Date/Time: 6/16/2016 Sample ID Coliform Designation: 15:18

		Sample	Description: SMS	D			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.2	0.1		6/16/2016	НМ
pH (Laboratory)	SM4500-H+B	pH (H)	7.6	0.1		6/16/2016	HM
Phosphorus, Total	HACH 8190	mg/L	0.20	0.03		6/21/2016	LRH
Potassium	EPA200.7	mg/L	2.8	0.5		6/20/2016	MW
QC Anion Sum x 100	Calculation	%	99%			6/20/2016	LRH
QC Anion-Cation Balance	Calculation	%	-1			6/21/2016	MW
QC Cation Sum x 100	Calculation	%	98%			6/21/2016	MW
QC Ratio TDS/SEC	Calculation		0.65			6/20/2016	НМ
Selenium, Total	EPA200.8	μg/L	13	2	50	6/23/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	24	0.5		6/20/2016	MW
Sodium	EPA200.7	mg/L	41	0.5		6/20/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	501	1	900	6/20/2016	НМ
Strontium, Total	EPA200.8	μg/L	267	5		6/23/2016	SM
Sulfate	EPA300.0	mg/L	70	1	250	6/16/2016	НМ
TOC	SM5310C	mg/L	1.4	0.2		6/17/2016	MW
Total Diss. Solids	SM2540C	mg/L	328	10	500	6/16/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		6/27/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.316 E		3	6/28/2016	FGL
Trihalomethanes	EPA524.2	μg/L	84.2 E		80	6/27/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	2	1	30	6/23/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected	5	1000	6/23/2016	SM
Zinc, Total	EPA200.8	μg/L	Not Detected	20	5000	6/23/2016	SM

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L: Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

T = Temperature Exceedance

July 1, 2016

Lab ID : SP 1607108 **Monterey Bay Analytical Services** 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 9 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (4 pages): Results for each sample submitted.

Quality Control (3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
MW-1	06/16/2016	06/22/2016	SP 1607108-001	GW
SMSD	06/16/2016	06/22/2016	SP 1607108-002	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 5 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	06/27/2016:209152 All analysis quality controls are within established criteria.
	06/28/2016:209182 All analysis quality controls are within established criteria.
	06/24/2016:207472 All preparation quality controls are within established criteria.
552	06/23/2016:207389 All preparation quality controls are within established criteria, except: The following note applies to Dibromoacetic Acid, Monobromoacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monochloroacetic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552.2	06/28/2016:209035 All analysis quality controls are within established criteria.

July 1, 2016Lab ID: SP 1607108Monterey Bay Analytical ServicesCustomer: 2-19144

Radio QC

900.0	06/28/2016:209305 All analysis quality controls are within established criteria.
	06/28/2016:209307 All analysis quality controls are within established criteria.
	06/27/2016:207485 All preparation quality controls are within established criteria, except: The following note applies to Gross Alpha: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
903.0	06/28/2016:209227 All analysis quality controls are within established criteria.
	06/27/2016:207537 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists

July 1, 2016 Lab ID : SP 1607108-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : June 16, 2016-14:20

Sampled By : Tom Lindberg Monterey, CA 93940

Received On : June 22, 2016-13:00

Matrix : Ground Water

Description : MW-1 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	116	80-120	%		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromodichloromethane	15.9	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromoform	0.7	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Chloroform	58.8	2.5*	ug/L		551.1	06/24/16:207472	551.1	06/28/16:209182
Dibromochloromethane	6.7	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Total Trihalomethanes	82.1		ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	96.9	70-130	%		552	06/23/16:207389	552.2	06/28/16:209035
Bromoacetic Acid	ND	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Chloroacetic Acid	ND	2	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Dibromoacetic Acid	ND	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Dichloroacetic Acid	ND	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Trichloroacetic Acid	ND	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Haloacetic acids (five)	ND		ug/L		552	06/23/16:207389	552.2	06/28/16:209035

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

July 1, 2016 Lab ID : SP 1607108-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : June 16, 2016-14:20 4 Justin Court

Sampled By : Tom Lindberg Monterey, CA 93940

Received On : June 22, 2016-13:00

: Ground Water Matrix

Description : MW-1 **Project** : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	0.924 ± 1.32	1.65	pCi/L		900.0	06/27/16-08:40 2P1607485	900.0	06/28/16-17:00 2A1609305
Total Alpha Radium (226)	0.000 ± 0.389	0.470	pCi/L		903.0	06/27/16-19:00 2P1607537	903.0	06/28/16-14:40 2A1609227

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

: SP 1607108-002 July 1, 2016 Lab ID

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : June 16, 2016-15:00

Sampled By : Tom Lindberg Monterey, CA 93940

Received On : June 22, 2016-13:00

: Ground Water Matrix

Description : SMSD **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	96.6	80-120	%		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromodichloromethane	19.6	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Bromoform	1.0	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Chloroform	54.4	2.5*	ug/L		551.1	06/24/16:207472	551.1	06/28/16:209182
Dibromochloromethane	9.2	0.5	ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
Total Trihalomethanes	84.2		ug/L		551.1	06/24/16:207472	551.1	06/27/16:209152
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	103	70-130	%		552	06/23/16:207389	552.2	06/28/16:209035
Bromoacetic Acid	ND	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Chloroacetic Acid	ND	2	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Dibromoacetic Acid	1	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Dichloroacetic Acid	2	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Trichloroacetic Acid	6	1	ug/L		552	06/23/16:207389	552.2	06/28/16:209035
Haloacetic acids (five)	9		ug/L		552	06/23/16:207389	552.2	06/28/16:209035

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

July 1, 2016 Lab ID : SP 1607108-002

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : June 16, 2016-15:00 4 Justin Court

Sampled By : Tom Lindberg Monterey, CA 93940

Received On : June 22, 2016-13:00

: Ground Water Matrix

Description : SMSD **Project** : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Effor	MDA	Omts	WICL/AL	Method	Date/ID	Date/ID Method	
Radio Chemistry ^{P:1}								
Gross Alpha	1.20 ± 1.32	1.48	pCi/L		900.0	06/27/16-08:40 2P1607485	900.0	06/28/16-18:00 2A1609307
Total Alpha Radium (226)	0.000 ± 0.316	0.470	pCi/L		903.0	06/27/16-19:00 2P1607537	903.0	06/28/16-15:00 2A1609227

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

July 1, 2016 Lab ID : SP 1607108 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Organic

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
	55111	00/2 1/ 10120 / 1/ 2022	LCS	ug/L	9.852	111 %	80-120	
			MS	ug/L	9.875	106 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	110 %	80-120	
			MSRPD	ug/L	19.29	2.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	92.6 %	80-120	
			CCV	ug/L	166.7	112 %	80-120	
Bromoform	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.852	107 %	80-120	
			MS	ug/L	9.875	96.3 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	104 %	80-120	
			MSRPD	ug/L	19.29	3.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L	83.33	91.6 %	80-120	
			CCV	ug/L	166.7	108 %	80-120	
Chloroform	551.1	06/24/16:207472SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.852	120 %	80-120	
		(CD 1 COT22 1 00 11	MS	ug/L	9.875	118 %	80-120	
		(SP 1607234-001)	MSD	ug/L	9.646	118 %	80-120	
			MSRPD	ug/L	19.29	2.6%	≤20	
	551.1	06/28/16:209182SBL	CCV	ug/L	83.33	98.4 %	80-120	
			CCV	ug/L	166.7	120 %	80-120	
Decafluorobiphenyl	551.1	06/24/16:207472SBL	Blank	ug/L	18.98	91.1 %	80-120	
			LCS	ug/L	19.70	85.8 %	80-120	
		(CD 1 (C) (C) (C) (C) (C)	MS	ug/L	19.75	103 %	80-120	
		(SP 1607234-001)	MSD	ug/L	19.29	102 %	80-120	
	551.1	0.6/07/1.6 0001 50CDI	MSRPD	ug/L	19.29	3.6%	≤20.0	
	551.1	06/27/16:209152SBL	CCV CCV	ug/L ug/L	166.7 333.3	81.2 % 86.7 %	80-120 80-120	
Dibromochloromethane	551.1	06/24/16:207472SBL	Blank		333.3	ND	<0.5	
Dibromocnioromethane	331.1	00/24/10:20/4/23DL	LCS	ug/L ug/L	9.852	110 %	80-120	
			MS	ug/L ug/L	9.832	105 %	80-120	
		(SP 1607234-001)	MSD	ug/L ug/L	9.646	109 %	80-120	
		(51 100/254 001)	MSRPD	ug/L ug/L	19.29	1.0%	≤20	
	551.1	06/27/16:209152SBL	CCV	ug/L ug/L	83.33	91.5 %	80-120	
	331.1	00/27/10.20/1323BL	CCV	ug/L ug/L	166.7	111 %	80-120	
2,3-Dibromopropionic Acid	552	06/23/16:207389SBL	Blank	ug/L	5.000	123 %	70-130	
2,3-Dioromopropionie Acid	332	00/23/10.20/30/3DL	LCS	ug/L ug/L	5.000	85.3 %	70-130	
			MS	ug/L	5.000	116 %	70-130	
		(SP 1606787-001)	MSD	ug/L	5.000	96.0 %	70-130	
			MSRPD	ug/L	5.000	19.0%	≤20.0	
Dibromoacetic Acid	552	06/23/16:207389SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	114 %	70-130	
			MS	ug/L	10.00	141 %	70-130	435
		(SP 1606787-001)	MSD	ug/L	10.00	129 %	70-130	
			MSRPD	ug/L	5.000	7.3%	≤20.0	
Dichloroacetic Acid	552	06/23/16:207389SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	111 %	70-130	
			MS	ug/L	10.00	150 %	70-130	435
		(SP 1606787-001)	MSD	ug/L	10.00	135 %	70-130	435
			MSRPD	ug/L	5.000	6.7%	≤20.0	
Monobromoacetic Acid	552	06/23/16:207389SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	113 %	70-130	
			MS	ug/L	10.00	149 %	70-130	435
		(SP 1606787-001)	MSD	ug/L	10.00	185 %	70-130	435
			MSRPD	ug/L	5.000	19.4%	≤20.0	

July 1, 2016 Lab ID : SP 1607108 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	06/23/16:207389SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	120 %	70-130	
			MS	ug/L	10.00	142 %	70-130	435
		(SP 1606787-001)	MSD	ug/L	10.00	129 %	70-130	
			MSRPD	ug/L	5.000	8.4%	≤20.0	
Trichloroacetic Acid	552	06/23/16:207389SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	95.8 %	70-130	
			MS	ug/L	10.00	136 %	70-130	435
		(SP 1606787-001)	MSD	ug/L	10.00	126 %	70-130	
			MSRPD	ug/L	5.000	4.6%	≤20.0	
2,3-Dibromopropionic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	75.00	84.3 %	70-130	
			CCV	ug/L	50.00	86.2 %	70-130	
			CCV	ug/L	75.00	87.0 %	70-130	
Dibromoacetic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	150.0	111 %	70-130	
			CCV	ug/L	100.0	117 %	70-130	
			CCV	ug/L	150.0	115 %	70-130	
Dichloroacetic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	150.0	106 %	70-130	
			CCV	ug/L	100.0	121 %	70-130	
			CCV	ug/L	150.0	111 %	70-130	
Monobromoacetic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	150.0	107 %	70-130	
			CCV	ug/L	100.0	126 %	70-130	
			CCV	ug/L	150.0	112 %	70-130	
Monochloroacetic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	150.0	114 %	70-130	
			CCV	ug/L	100.0	128 %	70-130	
			CCV	ug/L	150.0	119 %	70-130	
Trichloroacetic Acid	552.2	06/28/16:209035SBL	CCV	ug/L	150.0	88.8 %	70-130	
			CCV	ug/L	100.0	94.6 %	70-130	
			CCV	ug/L	150.0	92.0 %	70-130	

Definition

LCS

MS

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

MSD : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries

are an indication of how that sample matrix affects analyte recovery.

MSRPD : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

and analysis.

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

July 1, 2016Lab ID: SP 1607108Monterey Bay Analytical ServicesCustomer: 2-19144

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note				
Radio												
Alpha	900.0	06/28/16:209305caa	CCV	cpm	8640	41.9 %	38 - 47					
_			CCB	cpm		0.100	0.18					
	900.0	06/28/16:209307caa	CCV	cpm	8640	42.1 %	40 - 49					
			CCB	cpm		0.10	0.2					
Gross Alpha	900.0	06/27/16:207485caa	Blank	pCi/L		0.02	3					
•			LCS	pCi/L	107.4	125 %	75-125					
			MS	pCi/L	107.4	166 %	60-140	435				
		(SP 1606949-001)	MSD	pCi/L	107.4	167 %	60-140	435				
			MSRPD	pCi/L	107.4	0.3%	≤30					
Alpha	903.0	06/28/16:209227caa	CCV	cpm	8640	42.1 %	38 - 47					
			CCB	cpm		0.100	0.19					
Total Alpha Radium (226)	903.0	06/27/16:207537caa	RgBlk	pCi/L		0.22	2					
			LCS	pCi/L	21.59	100 %	52-107					
			BS	pCi/L	21.59	73.9 %	43-111					
			BSD	pCi/L	21.59	69.3 %	43-111					
			BSRPD	pCi/L	21.59	6.4%	≤35.5					
Definition												
CCV : Continuing	Calibration Verifica	ntion - Analyzed to veri	fy the instru	ment calibrati	on is within	criteria.						
CCB : Continuing												
Blank : Method Bla	ank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.											
	agent Blank - Prepai	red to correct for any re-	agent contril	outions to san	nple result.							
LCS : Laboratory	: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.											

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD are an indication of how that sample matrix affects analyte recovery. : Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery. : Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD the preparation process is not affecting analyte recovery. : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD and analysis. : BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

BSRPD : BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation
435 : Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

	Monterey Bay Analytica ner Number: 2019144 s: 4 Justin Court	l Services			Lab N	lumbe]][Y	4					TES	ST D	ESCI	RIPT	ION	AND	ANA	LYS	SES R	REQU	JEST)	ED			
Addres	Monterey, CA 93940				0	1,0																				
Contac Project Purcha Quote Rush A Rush p Electro Sample	Address: info@mbasinc.com t Person: David Holland Name: MPWMD ase Order Number: Number: Analysis: 5 Day 4 Day 3 Da ore-approval by lab (initals): er(s): Tom Lindberg ing Fee: Pickup Fee: ssitor Setup Date: Time:	Client Other:	24 hour	Method of Sampling: Composite (C) Grab (G)	Number of Containers	Type of Containers: (G) Glass (P)Plastic (V)VOA (HT)Metal Tube	Potable (P) Non-Potable (NP) Ag Water (AgW)	(SW) Surface Water (MW) Monitoring Well (GW) Ground Water (TB) Travel Blank (WW) Waste Weter (DW) Drinking Water	(S) Soil (SL(3) Sludge (SLD) S oöd (O) Od	BacT. (Sys) System (SRC) Source (W) Waste	Becf. (ROUT)Routine (RPT)Repeat (OTH)Other (RPL)Replace	(LT) Lesd Tissue (PET) Peticia Tissue (PRD) Produce	Preservative: (1) NsOH + ZnAc, (2) NsOH, (3) HCi (4) H2SO4, (5) HINO3, (6) Ns2S2O3, (7) Other	Gross Alpha	НАА	ТТНМ	Radium 226									
	MW-1	6/16/16	1420	G	4	G/P	Ρ	GW						х	x	х	х									
	SMSD	6/16/16	1500	G	4	G/P	Ρ	GW						x	×	×	х									
				<u> </u>		<u> </u>						ļ				<u> </u>	ļ									
						1		_																	 	-
		-			_							_			-	-					<u> </u>					-
Remark AB48 AB48	8896	1	<u> </u>	Relinq	uished	1- 1-80	X	Pate: 6/2	Ti	me: > 16		l Refinqui	ished (5	1	Date:	1	ime:		Reling	uished			Date:	 Time:	
	5323371	010)	Receiv	ved By:		D	ate:	Ti	me:		X	X	9 (1		Date	0	1 2 2	I.	Receiv	ed By:			Date:	Time:	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No.1573 Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563 Office & Laboratory
563 E. Lindo Avenue
Chico, CA 95926
TEL: (530)343-5818
FAX: (530)343-3807
CA ELAP Certification No. 2670

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 2775 Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810 FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers 532337670							
Were samples received in a chilled condition? Temps:	5	/	/	/	/_	/	/
4. Surface water (SWTR) bact samples: A sample th should be flagged unless the time since sample co		•	•		•	C, wheth	er iced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inc	organics a	and Ra	dio)				
Sample Receipt, Login and Verification completed b	•		Reviewe Approve		Shawn I	Peck 🧓	Digitally signed by Shawn Peck Title: Sample Receiving Date: 06/22/2016-15:45:02
Discrepency Documentation:	,.	<i>'</i> : ,	,				
Any items above which are "No" or do not meet spec		•	• /	st be re	esoivea.		
1. Person Contacted:			umber: _				
Initiated By: Problem:		ate:	_				
Froblem.							
Resolution:							
2. Person Contacted:	Pł	none N	umber: _				
Initiated By:		ate:					
Problem:			_				
Resolution:					(2	2019144))

Monterey Bay Analytical Services SP 1607108

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1606A34

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 06/22/2016

Analytical Report reviewed & approved for release on 06/29/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1606A34

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: Monterey Bay Analytical

Date Received: 6/22/16 9:51 **Date Prepared:** 6/28/16 **Project:** MPWMD

WorkOrder: 1606A34 Extraction Method: RSK175

Analytical Method: RSK175 Unit: $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
MW-1	1606A34-001A	Water	06/16/201	6 14:20 GC26	122965
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.57		0.10	1	06/28/2016 13:37

Analyst(s): AK

Client ID	Lab ID	Matrix	Date Coll	ected Instrument	Batch ID
SMSD	1606A34-002A	Water	06/16/2016	15:00 GC26	122965
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.55		0.10	1	06/28/2016 13:49

Analyst(s): AK

Quality Control Report

Client: Monterey Bay Analytical

Date Prepared: 6/28/16Date Analyzed: 6/28/16Instrument: GC26Matrix: Air

Project: MPWMD

WorkOrder: 1606A34

BatchID: 122965 **Extraction Method:** RSK175

Analytical Method: RSK175

Unit: $\mu L/L$

Sample ID: MB/LCS-122965

	QC Sum	mary Report	for RSK175				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Methane	ND	11.4	0.50	10	-	113	70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder: 1606A34 ClientCode: MBAS

(723) 232 7202									
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				i	Bill to:		Requ	uested TAT:	5 days;
David Holland		nweidner@mbas	inc.com; Dholl	and@mbas	Accounts Payal				
Monterey Bay Analytical	cc/3rd Party:				Monterey Bay A	•	Dat	e Received:	06/22/2016
4 Justin Court, Suite D	PO:				4 Justin Court,	Suite D	Dai	e Keceivea:	00/22/2010
Monterey, CA 93940	ProjectNo: N	//PWMD			Monterey, CA 9	3940	Date	e Logged:	06/22/2016
831-375-6227 FAX: 831-641-0734									
					<u> </u>		<u> </u>	·	·

							Re	quested	l Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date He	old 1	2	3	4	5	6	7	8	9	10	11	12
1606A34-001	MW-1	Water	6/16/2016 14:20	Α											
1606A34-002	SMSD	Water	6/16/2016 15:00	Α											

Test Legend:

1	RSK175_W	2	3	4
5		6	7	8
9		10	11	12

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	: MONTEREY	BAY ANALYTICA	L		QC Level:	LEVEL 2				Work	Order:	1606A34
Project:	MPWMD				Client Contact:	David Ho	lland			Date	Logged:	6/22/2016
Comments:					Contact's Email:		@mbasinc.com; bcglobal.net; inf	_				
		☐ WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppy ThirdPart	y 🔲 J	-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1606A34-001A	MW-1	Water	RSK175 <m< td=""><td>ethane_4></td><td>3</td><td>,</td><td>VOA w/ HCl</td><td></td><td>6/16/2016 14:20</td><td>5 days</td><td>None</td><td></td></m<>	ethane_4>	3	,	VOA w/ HCl		6/16/2016 14:20	5 days	None	
1606A34-002A	SMSD	Water	RSK175 <m< td=""><td>ethane_4></td><td>3</td><td>,</td><td>VOA w/ HCl</td><td></td><td>6/16/2016 15:00</td><td>5 days</td><td>None</td><td></td></m<>	ethane_4>	3	,	VOA w/ HCl		6/16/2016 15:00	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1606A34

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com □ PDF □ Excel ☐ GeoTracker EDF ☐ Write On (DW) Telephone: (877) 252-9262 Fax: (925) 252-9269 Report To: David Holland Bill To: **Analysis Request** Other Comments Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) 8015) Filter 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: info@mbasinc.com CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) MTBE / BTEX & TPH as Gas (602 / 8021 Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: EPA 502.2 / 601 / 8010 / 8021 (HVOCs) Total Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: **Project Name:** Yes / No EPA 505/ 608 / 8081 (CI Pesticides) TPH as Diesel / Motor Oil (8015) **Project Location: MPWMD** Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: Tom Lindberg **METHOD** SAMPLING MATRIX Type Containers PRESERVED # Containers SAMPLE ID LOCATION/ Field Point Name Methane Sludge Water Date Time HNO3 Other Other HCL ICE Soil Air X AB48896 MW-1 6/16/16 1420 G X XX X SMSD 6/16/16 1500 G X XX AB48897 Received By: ICE/t° COMMENTS: Relinquished By: Time: Date: GOOD CONDITION **David Holland** 6/21/16 1600 HEAD SPACE ABSENT Relinquished By: Received By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS 60/224 PRESERVED IN LAB Received By: Relinquished By: Date: Time: VOAS O&G METALS OTHER PRESERVATION pH<2

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	Monterey Bay Analytical MPWMD 1606A34 Matrix: Water Golden State Overnight			Date and Time Received: Date Logged: Received by: Logged by:	6/22/2016 09:51 6/22/2016 Jena Alfaro Jena Alfaro
	Chain of C	ustod	y (COC) I	<u>nformation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	•	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	le Rece	eipt Infor	<u>mation</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	volume for indicated test?	Yes	•	No 🗆	
	Sample Preservation	on and	Hold Tin	me (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:	4.8°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive		Yes	✓	No 🗌	
	(Ice Type	e: BLI	JE ICE)	
UCMR3 Samples Total Chlorine	<u>s:</u> tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	NA 🗹
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	na ✓
Comments:	=========	==:		======	========

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

Monterey Bay Analytical Services
4 Justin Court Suite D, Monterey, CA 93940
831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Page 1 of 2

Lab Number:
Collection Date/Time:

AB50176

7/12/2016 11:30

Sample Collector:

LINDBERG T

Client Sample #:

oliform Docianation

Tuesday, August 02, 2016

Alkalinity, Total (as CaCO3) Aluminum, Total Ammonia-N Arsenic, Total Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium	12:30 S	Sample ID				Colifor	n Designation:	
Alkalinity, Total (as CaCO3) Aluminum, Total Ammonia-N Arsenic, Total Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium	Samı	ple Descrip	tion: ASR-1	Backflus	sh			
Aluminum, Total Ammonia-N Arsenic, Total Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Ammonia-N Arsenic, Total Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium	SM2320B	mg/L	135		10		7/13/2016	BS
Arsenic, Total Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium	EPA200.8	μg/L	Not Detected		10	1000	7/14/2016	SM
Barium, Total Bicarbonate (as HCO3-) Boron Bromide Calcium E	SM4500NH3 D	mg/L	Not Detected		0.05		7/27/2016	MW
Bicarbonate (as HCO3-) Boron Bromide Calcium Bicarbonate (as HCO3-) Ending	EPA200.8	μg/L	1		1	10	7/14/2016	SM
Boron E Bromide E Calcium E	EPA200.8	μg/L	56		10	1000	7/14/2016	SM
Bromide E Calcium E	SM2320B	mg/L	165		10		7/13/2016	LRH
Calcium E	EPA200.7	mg/L	Not detected		0.05		7/13/2016	MW
	EPA300.0	mg/L	Not Detected		0.4		7/12/2016	НМ
Carbonate as CaCO3	EPA200.7	mg/L	41		0.5		7/13/2016	MW
	SM2320B	mg/L	Not Detected		10		7/13/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		7/12/2016	DH
Chloride	EPA300.0	mg/L	28		4.0	250	7/12/2016	НМ
DOC	SM5310C	mg/L	1.4		0.2		7/19/2016	MW
Fluoride	EPA300.0	mg/L	Not Detected		0.4	2.0	7/12/2016	НМ
Gross Alpha	EPA900.0	pCi/L	1.76 ± 1.57	E		15	7/22/2016	FGL
Haloacetic Acids E	EPA552	μg/L	6	E		60	7/21/2016	FGL
Iron E	EPA200.7	μg/L	120		10	300	7/13/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	7/13/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected		0.5		7/18/2016	LJ
Lithium	EPA200.8	μg/L	6		1		7/14/2016	SM
Magnesium	EPA200.7	mg/L	13		0.5		7/13/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected		10	50	7/13/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected		10	50	7/13/2016	MW
Mercury, Total	EPA200.8	μg/L	Not Detected		0.5	2	7/14/2016	SM
Methane	EPA174/175	μg/L	0.59	E	0.1		7/20/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	3		1	1000	7/14/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected		10	100	7/14/2016	SM
Nitrate as NO3	EPA300.0	mg/L	Not Detected		4.0	45	7/12/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.4	10	7/12/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected		0.40		7/12/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.4	1.0	7/12/2016	НМ
o-Phosphate-P, Dissolved	L1 71000.0	g/ L	Hot Botootoa					

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance

Page 2 of 2 Tuesday, August 02, 2016

Lab Number:	AD30170				
Collection Date/Time:	7/12/2016	11:30	Sample Collector:	LINDBERG T	Client Sample #:
Submittal Date/Time:	7/12/2016	12:30	Sample ID		Coliform Designation:

Cabilitta Date/Tillic. 1/12/2010	12.00	Campic ID				Como	iiii beoignation.	
	San	nple Descri	ption: ASR-1	Backfl	ush			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.4		0.1		7/12/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.26		0.03		7/28/2016	LRH
Potassium	EPA200.7	mg/L	2.9		0.5		7/13/2016	MW
QC Anion Sum x 100	Calculation	%	100%				7/13/2016	LRH
QC Anion-Cation Balance	Calculation	%	1				7/15/2016	MW
QC Cation Sum x 100	Calculation	%	102%				7/15/2016	MW
QC Ratio TDS/SEC	Calculation		0.64				7/22/2016	НМ
Selenium, Total	EPA200.8	μg/L	4		2	50	7/14/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	24		0.5		7/13/2016	MW
Sodium	EPA200.7	mg/L	43		0.5		7/13/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	496		1	900	7/12/2016	LJ
Strontium, Total	EPA200.8	μg/L	222	BB	5		7/14/2016	SM
Sulfate	EPA300.0	mg/L	70		4.0	250	7/12/2016	HM
TOC	SM5310C	mg/L	1.5		0.2		7/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	317		10	500	7/19/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected	i	0.5		7/18/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.264 ± 0.245	i E		3	7/21/2016	FGL
Trihalomethanes	EPA524.2	μg/L	93.0	E		80	7/19/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	Not Detected	i	1	30	7/14/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected	i	5	1000	7/14/2016	SM
Zinc, Total	EPA200.8	μg/L	219		20	5000	7/14/2016	SM
0 10 1 55 0 1								

Sample Comments: BB: Sample > 4x spike concentration

Report Approved by:

August 2, 2016

Monterey Bay Analytical Services Lab ID : SP 1607951 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (3 pages): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR-1 Backflush	07/12/2016	07/13/2016	SP 1607951-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 4 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	07/19/2016:210293 All analysis quality controls are within established criteria.
	07/20/2016:210339 All analysis quality controls are within established criteria.
	07/18/2016:208385 All preparation quality controls are within established criteria, except: The following note applies to Chloroform, Decafluorobiphenyl: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552	07/20/2016:208537 All preparation quality controls are within established criteria, except: The following note applies to Monobromoacetic Acid, Dichloroacetic Acid, Monochloroacetic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552.2	07/21/2016:210277 All analysis quality controls are within established criteria.

August 2, 2016 **Monterey Bay Analytical Services**

Customer : 2-19144

: SP 1607951

Lab ID

Organic QC

552.2	07/21/2016:210624 All analysis quality controls are within established criteria.
-------	--

Radio QC

900.0	07/22/2016:210492 All analysis quality controls are within established criteria.
	07/19/2016:208460 All preparation quality controls are within established criteria.
903.0	07/21/2016:210453 All analysis quality controls are within established criteria.
	07/18/2016:208417 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

August 2, 2016 Lab ID : SP 1607951-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : July 12, 2016-11:30

Sampled By : T. Lindberg Monterey, CA 93940

Received On : July 13, 2016-13:15

Matrix : Ground Water

Description : ASR-1 Backflush

Project : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesuit	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	80.8	80-120	%		551.1	07/18/16:208385	551.1	07/19/16:210293
Bromodichloromethane	20.7	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Bromoform	0.9	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Chloroform	62.1	2.5*	ug/L		551.1	07/18/16:208385	551.1	07/20/16:210339
Dibromochloromethane	9.3	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Total Trihalomethanes	93.0		ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	109	70-130	%		552	07/20/16:208537	552.2	07/21/16:210624
Bromoacetic Acid	ND	1	ug/L		552	07/20/16:208537	552.2	07/21/16:210277
Chloroacetic Acid	ND	2	ug/L		552	07/20/16:208537	552.2	07/21/16:210277
Dibromoacetic Acid	1	1	ug/L		552	07/20/16:208537	552.2	07/21/16:210624
Dichloroacetic Acid	1	1	ug/L		552	07/20/16:208537	552.2	07/21/16:210277
Trichloroacetic Acid	4	1	ug/L		552	07/20/16:208537	552.2	07/21/16:210277
Haloacetic acids (five)	6		ug/L		552	07/20/16:208537	552.2	07/21/16:210277

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

August 2, 2016 Lab ID : SP 1607951-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 12, 2016-11:30 4 Justin Court

Sampled By : T. Lindberg Monterey, CA 93940

Received On : July 13, 2016-13:15

: Ground Water Matrix

Description : ASR-1 Backflush

Project : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	Result ± Error	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID	
Radio Chemistry ^{P:1}									
Gross Alpha	1.76 ± 1.57	1.62	pCi/L		900.0	07/19/16-15:07 2P1608460	900.0	07/22/16-13:00 2A1610492	
Total Alpha Radium (226)	0.264 ± 0.245	0.470	pCi/L		903.0	07/18/16-19:15 2P1608417	903.0	07/21/16-11:00 2A1610453	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

August 2, 2016 Lab ID : SP 1607951 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Radio

Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
900.0	07/22/16:210492caa	CCV CCB	cpm cpm	8622	42.2 % 0.10	40 - 49 0.2	
900.0	07/19/16:208460RMM (CH 1675390-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	0.15 83.6 % 73.0 % 68.8 % 5.2%	3 75-125 60-140 60-140 ≤30	
903.0	07/21/16:210453caa	CCV CCB	cpm cpm	8623	41.9 % 0.0800	38 - 47 0.19	
903.0	07/18/16:208417emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.58 21.58 21.58 21.58	0.01 73.1 % 70.1 % 69.5 % 0.8%	2 52-107 43-111 43-111 ≤35.5	
	900.0 900.0 903.0	900.0 07/22/16:210492caa 900.0 07/19/16:208460RMM (CH 1675390-001) 903.0 07/21/16:210453caa	900.0 07/22/16:210492caa CCV CCB 900.0 07/19/16:208460RMM Blank LCS MS (CH 1675390-001) MSD MSRPD 903.0 07/21/16:210453caa CCV CCB 903.0 07/18/16:208417emv RgBlk LCS BS BSD	900.0 07/22/16:210492caa CCV cpm cpm 900.0 07/19/16:208460RMM Blank pCi/L LCS pCi/L MS pCi/L MS pCi/L MSRPD pCi/L MSRPD pCi/L MSRPD pCi/L MSRPD pCi/L CV cpm CCB cpm 903.0 07/21/16:210453caa CCV cpm CCB cpm 903.0 07/18/16:208417emv RgBlk pCi/L LCS pCi/L BS pCi/L BS pCi/L BS pCi/L BSD pCi/L	900.0 07/22/16:210492caa CCV cpm	900.0 07/22/16:210492caa CCV cpm cpm 0.10 900.0 07/19/16:208460RMM Blank pCi/L 107.4 83.6 % MS pCi/L 107.4 73.0 % MS pCi/L 107.4 68.8 % MS pCi/L 107.4 68.8 % MS pCi/L 107.4 5.2% 0.01 903.0 07/21/16:210453caa CCV cpm 8623 41.9 % CCB cpm 0.0800 903.0 07/18/16:208417emv RgBlk pCi/L 107.4 10.01 LCS pCi/L 21.58 73.1 % BS pCi/L 21.58 70.1 % BSD pCi/L 21.58 69.5 %	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

LČS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that

BSD the preparation process is not affecting analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD and analysis.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation **BSRPD**

and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

August 2, 2016 Monterey Bay Analytical Services

Quality Control - Organic

Lab ID

Customer

: SP 1607951

: 2-19144

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
Bromodiemoromethane	331.1	07710/10.200303BBE	LCS	ug/L	10.33	104 %	80-120	
			MS	ug/L ug/L	9.960	96.1 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	108 %	80-120	
		(32 233, 313,	MSRPD	ug/L	19.57	8.2%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	104 %	80-120	
			CCV	ug/L	166.7	103 %	80-120	
Bromoform	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	10.33	99.0 %	80-120	
			MS	ug/L	9.960	89.1 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	109 %	80-120	
		(01 100,015 010)	MSRPD	ug/L	19.57	7.3%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	104 %	80-120	
	551.1	0 // 15/ 10:210250002	CCV	ug/L	166.7	103 %	80-120	
Chloroform	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
	35		LCS	ug/L ug/L	10.33	114 %	80-120	
			MS	ug/L ug/L	9.960	112 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	121 %	80-120	435
		(81 100/019 010)	MSRPD	ug/L ug/L	19.57	5.8%	≤20	133
	551.1	07/20/16:210339SBL	CCV	ug/L	83.33	110 %	80-120	
	331.1	07/20/10.21033/3BL	CCV	ug/L ug/L	166.7	119 %	80-120	
Decafluorobiphenyl	551.1	07/18/16:208385SBL	Blank	ug/L ug/L	20.03	120 %	80-120	
Decaridoroorphenyr	331.1	07/16/10.2063633BL	LCS	ug/L ug/L	20.67	117 %	80-120	
			MS	ug/L ug/L	19.92	109 %	80-120	
		(SP 1607849-010)	MSD	ug/L ug/L	19.52	122 %	80-120	435
		(31 1007649-010)	MSRPD	ug/L ug/L	19.57	9.0%	≤20.0	433
	551.1	07/19/16:210293SBL	CCV	ug/L ug/L	166.7	112 %	80-120	
	331.1	07/19/10.2102933BL	CCV	ug/L ug/L	333.3	109 %	80-120	
Dibromochloromethane	551.1	07/18/16:208385SBL	Blank	ug/L ug/L	333.3	ND	<0.5	
Dioromocmoromethane	331.1	07/16/10.2063633BL	LCS	ug/L ug/L	10.33	102 %	80-120	
			MS	ug/L ug/L	9.960	94.9 %	80-120	
		(SP 1607849-010)	MSD	ug/L ug/L	9.785	110 %	80-120	
		(31 1007047-010)	MSRPD	ug/L ug/L	19.57	7.7%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L ug/L	83.33	103 %	80-120	
	331.1	07/19/10.2102933BL	CCV	ug/L ug/L	166.7	103 %	80-120	
2.2 Dibramanuniania Asid	552	07/20/16:208537SBL	Blank	ug/L ug/L	5.000	112 %	70-130	
2,3-Dibromopropionic Acid	332	07/20/10:2083373BL	LCS	ug/L ug/L	5.000	128 %	70-130	
			MS	ug/L ug/L	5.000	106 %	70-130	
		(SP 1607951-001)	MSD	ug/L ug/L	5.000	127 %	70-130	
		(SF 1007931-001)	MSRPD	ug/L ug/L	5.000	17.5%	≤20.0	
Dibromoacetic Acid	552	07/20/16:208537SBL	Blank		3.000	ND	<1	
Diolomoacene Acid	332	07/20/10.20833/SBL	LCS	ug/L	10.00	93.6 %	70-130	
			MS	ug/L	10.00		70-130	
		(SP 1607951-001)	MSD	ug/L	10.00	108 %		
		(Sr 100/951-001)	MSD MSRPD	ug/L ug/L	10.00 5.000	119 % 8.5%	70-130 ≤20.0	
Dighlarogastia Asid	552	07/20/16:208537SBL			5.000			
Dichloroacetic Acid	552	0 // 20/ 10:20853 / SBL	Blank	ug/L	10.00	ND	<1 70.120	
			LCS	ug/L	10.00	92.8 %	70-130	
		(CD 1607051 001)	MS	ug/L	10.00	119 %	70-130	125
		(SP 1607951-001)	MSD	ug/L	10.00	131 %	70-130	435
		05/00/4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MSRPD	ug/L	5.000	8.5%	≤20.0	
Monobromoacetic Acid	552	07/20/16:208537SBL	Blank	ug/L	40.00	ND	<1	
			LCS	ug/L	10.00	112 %	70-130	
		(CD 4 c05051 000	MS	ug/L	10.00	130 %	70-130	4
		(SP 1607951-001)	MSD	ug/L	10.00	140 %	70-130	435
			MSRPD	ug/L	5.000	7.0%	≤20.0	

August 2, 2016 Lab ID : SP 1607951

Monterey Bay Analytical Services Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	07/20/16:208537SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	113 %	70-130	
			MS	ug/L	10.00	125 %	70-130	
		(SP 1607951-001)	MSD	ug/L	10.00	139 %	70-130	435
			MSRPD	ug/L	5.000	9.6%	≤20.0	
Trichloroacetic Acid	552	07/20/16:208537SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	71.3 %	70-130	
			MS	ug/L	10.00	87.5 %	70-130	
		(SP 1607951-001)	MSD	ug/L	10.00	98.9 %	70-130	
			MSRPD	ug/L	5.000	8.7%	≤20.0	
2,3-Dibromopropionic Acid	552.2	07/21/16:210624SBL	CCV	ug/L	75.00	92.9 %	70-130	
			CCV	ug/L	50.00	91.7 %	70-130	
Dibromoacetic Acid	552.2	07/21/16:210624SBL	CCV	ug/L	150.0	113 %	70-130	
			CCV	ug/L	100.0	109 %	70-130	
Dichloroacetic Acid	552.2	07/21/16:210277SBL	CCV	ug/L	150.0	119 %	70-130	
			CCV	ug/L	100.0	123 %	70-130	
Monobromoacetic Acid	552.2	07/21/16:210277SBL	CCV	ug/L	150.0	130 %	70-130	
			CCV	ug/L	100.0	130 %	70-130	
Monochloroacetic Acid	552.2	07/21/16:210277SBL	CCV	ug/L	150.0	127 %	70-130	
			CCV	ug/L	100.0	128 %	70-130	
Trichloroacetic Acid	552.2	07/21/16:210277SBL	CCV	ug/L	150.0	103 %	70-130	
			CCV	ug/L	100.0	104 %	70-130	

Definition

CCV

: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

MS : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

MSD : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries

are an indication of how that sample matrix affects analyte recovery.

MSRPD : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

and analysis.

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

435 : Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

	Monterey Bay Analytica	l Services			Lab N	umbei	:: (5)			-		TES	T DI	ESCF	RIPT	ON A	AND	ANA	LYS	ES R	EQU	EST	ED				
Contact Project Purcha Quote l	Monterey, CA 93940 (831)375-6227 Fax: (83° ddress: info@mbasinc.com Person: David Holland Name: MPWMD se Order Number: Number:	1)641-0734		C) Grab (G)	\	tic (V)VOA (MT)Metel Tube	Ag Water (AgW)	Veli (GW) Ground Water r (DW) Drinidag Water	28	Weste	OTH)Other (RPL)Replace	PRD) Produce	Эн, (3) нС!) Other														
Rush p Electron Sample	nalysis:			Method of Sempling: Composite (C)	Number of Containers	Type of Containers: (G)Glass (P)Pisstic (V)VOA (MT)Metal Tube	-Potable (NP)	(SW) Surface Water (MW) Montlaring Well (TB) Travel Blank (WW) Waste Water	(S) Soil (SLG) Sludge (SLD) Soad (O) Oa	BacT. (Sys) System (SRC) Source (W) Waste	BacT. (ROUT)Routine (RPT)Repeat (OTH)Other	(LT) Leaf Tissue (PET) Peticle Tissue (PRO) Produce	Preservative: (1) NaOH + ZnAc. (2) NaOH, (3) HCi (4) HZSO4, (5) HNO3, (6) Na2S2O3, (7) Other	Gross Alpha	Radium 226	HAAs	TTHMs										
1.	ASR-1 Backflush	7/12/16	1130	G	6	G/P	Р	GW						X	Х	X	х									T	
																									一		
		, .																									
																								_			
					ļ																						
																							-		_	_	
Remark AB50	176	l	1	Relinq	uished	1.2	Q D	ate: 7/12		me: 600		elineut	shed /)	I I	Date:	1	ime:		Relinqu	_		1	Date:		Γime:	
5	32503574	/		Receiv	ved By:		D	ate:	Ti	me:		ecoive M		<u> </u>	7/4	Dark:	Q (Receiv	ed By:]	Date:		Γime:	

FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:					
Number of ice chests/packages received:	1				
2. Shipper tracking numbers 532563374					
Were samples received in a chilled condition? Temps:	4 /	//	'//	/	/
4. Surface water (SWTR) bact samples: A sample that h should be flagged unless the time since sample collection.	•	•	•	hether iced o	or not,
5. Do the number of bottles received agree with the COC?	Yes No	N/A			
6. Verify sample date, time, sampler	Yes No	N/A			
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes No				
8. Were sample custody seals intact?	Yes No	N/A			
Sample Verification, Labeling and Distribution:					
Were all requested analyses understood and acceptable?	Yes No				
2. Did bottle labels correspond with the client's ID's?	Yes No				
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	Yes No	N/A FO	SL		
	Yes No	N/A			
5. Were all analyses within holding times at time of receipt?	Yes No				
6. Have rush or project due dates been checked and accepted?	Yes No	N/A			
Include a copy of the COC for lab delivery. (Bacti. Inorga	anics and Ra	dio)			
Sample Receipt, Login and Verification completed by:		Reviewed an Approved By	Shawh Pack	Digitally signe Title: Sample Date: 07/26/2	ed by Shawn Peck Receiving 2016-09:15:38
Discrepency Documentation:					
Any items above which are "No" or do not meet specifica	ations (i.e. te	mps) must be	resolved.		
1. Person Contacted:	_ Phone N	umber:			
Initiated By:	_ Date:				
Problem:					
Resolution:					
2. Person Contacted:	Phone N	umber:			
Initiated By:	ъ.				
Problem:					
Resolution:			(2019	144)	

Monterey Bay Analytical Services
SP 1607951

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1607491

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 07/13/2016

Analytical Report reviewed & approved for release on 07/20/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1607491

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client:Monterey Bay AnalyticalWorkOrder:1607491Date Received: $7/13/16\ 10:02$ Extraction Method:RSK175Date Prepared:7/20/16Analytical Method:RSK175Project:MPWMDUnit: $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
ASR-1 Backflush	1607491-001A	Water	07/12/20	016 11:30 GC26	124023
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.59		0.10	1	07/20/2016 09:14

Analyst(s): AK

Angela Rydelius, Lab Manager

Quality Control Report

Client:Monterey Bay AnalyticalWorkOrder:1607491Date Prepared:7/20/16BatchID:124023Date Analyzed:7/20/16Extraction Method:RSK175

Instrument:GC26Analytical Method:RSK175Matrix:AirUnit:μL/L

Project: MPWMD **Sample ID:** MB/LCS-124023

QC Summary Report for RSK175 MB LCS RL **SPK** LCS Analyte MB SS **LCS** Result Result Val %REC %REC Limits Methane ND 10.3 0.50 10 103 70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder:	1607491	ClientCode:	MBAS

	☐ WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
eport to:				E	Bill to:		Req	uested TAT:	5 days;
David Holland	Email: m	weidner@mbas	sinc.com; Dholl	land@mbas	Accounts Payal	ble			-
Monterey Bay Analytical	cc/3rd Party:				Monterey Bay A	Analytical			
4 Justin Court, Suite D	PO:				4 Justin Court,	Suite D	Dat	e Received:	07/13/2016
Monterey, CA 93940	ProjectNo: M	PWMD			Monterey, CA 9	3940	Date	e Logged:	07/13/2016
831-375-6227 FAX: 831-641-073	34				•			33	

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
										_			_		
1607491-001	ASR-1 Backflush	Water	7/12/2016 11:30	Α											

Test Legend:

1	RSK175_W	2	3	4
5		6	7	8
9		10	11	12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	MONTEREY :	BAY ANALYTICA	AL		QC Level:	LEVEL	2			Work	Order:	1607491
Project:	MPWMD				Client Contact:	David H	olland			Date	Logged:	7/13/2016
Comments:					Contact's Email:		er@mbasinc.com; sbcglobal.net; inf	_				
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppy ThirdParty	/J	-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		le & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1607491-001A	ASR-1 Backflush	Water	RSK175 <m< th=""><th>[ethane_4></th><th>3</th><th></th><th>VOA w/ HCl</th><th></th><th>7/12/2016 11:30</th><th>5 days</th><th>None</th><th></th></m<>	[ethane_4>	3		VOA w/ HCl		7/12/2016 11:30	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com ☐ GeoTracker EDF ☐ PDF ☐ Write On (DW) □ Excel Fax: (925) 252-9269 Telephone: (877) 252-9262 Other Comments **Analysis Request** Bill To: Report To: David Holland Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Fotal Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: info@mbasinc.com CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals MTBE / BTEX & TPH as Gas (602 / 8021 + LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Fax: (831) 641-0734 Tele: (831) 375 - 6227 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: EPA 502.2 / 601 / 8010 / 8021 (HVOCs) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project Name: MPWMD Yes / No Project #: Lead (200.7 / 200.8 / 6010 / 6020) TPH as Diesel / Motor Oil (8015) EPA 525.2 / 625 / 8270 (SVOCs) **Project Location:** Sampler Signature: T. Lindberg METHOD SAMPLING MATRIX Type Containers PRESERVED # Containers LOCATION/ SAMPLE ID Methane Field Point Name Sludge Water HNO3 Date Time Other Other HCL ICE Soil Air AB50176 1130 7/12/16 G ASR-1 Backflush GOOD CONDITION COMMENTS: Time: Received By: Relinquished By: Date: 7/12/16 1600 David Holland Tracking #: 532563427

Received By:

Received By:

Time:

Time:

13/

Date:

Relinquished By:

Relinquished By:

HEAD SPACE ABSENT

PRESERVED IN LAB

PRESERVATION

DECHLORINATED IN LAB

APPROPRIATE CONTAINERS

VOAS O&G METALS OTHER

pH<2

Sample Receipt Checklist

Project Name: WorkOrder №: Carrier:	Monterey Bay Analytical MPWMD 1607491 Matrix: Water Golden State Overnight			Date and Time Received: Date Logged: Received by: Logged by:	7/13/2016 10:02 7/13/2016 Maria Venegas Maria Venegas
	Chain of C	ustody	<u>/ (COC) I</u>	nformation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	•	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	•	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	<u>Sampl</u>	e Rece	eipt Infor	<u>mation</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗆	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample container	rs intact?	Yes	•	No 🗌	
Sufficient sample	volume for indicated test?	Yes	•	No 🗌	
	Sample Preservation	on and	Hold Tir	me (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:	1°C	NA 🗌
Water - VOA vials	s have zero headspace / no bubbles?	Yes		No 🗹	NA 🗌
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗸
Samples Receive		Yes	✓	No 🗌	
	(Ice Type	e: WE	TICE)	
UCMR3 Samples Total Chlorine t	<u>s:</u> tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
	ested and acceptable upon receipt for EPA 218.7,			No 🗌	NA 🗹
Comments: All		<u> </u>	===	=======	========

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Page 1 of 2 Tuesday, August 02, 2016

Lab Number: AB50269

Collection Date/Time: 7/13/2016 10:00 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 7/13/2016 11:00 Sample ID Coliform Designation:

	Sam	ple Des	scription: ASR-4 backfl	ush			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	215	10		7/18/2018	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	10	1000	7/14/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/27/2016	MW
Arsenic, Total	EPA200.8	μg/L	6	1	10	7/14/2016	SM
Barium, Total	EPA200.8	μg/L	52	10	1000	7/14/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	262	10		7/18/2016	LRH
Boron	EPA200.7	mg/L	0.08	0.05		7/22/2016	MW
Bromide	EPA300.0	mg/L	Not Detected	0.4		7/14/2016	НМ
Calcium	EPA200.7	mg/L	65	0.5		7/22/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		7/18/2016	LRH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		7/13/2016	LJ
Chloride	EPA300.0	mg/L	109 LN	4.0	250	7/14/2016	НМ
DOC	SM5310C	mg/L	0.8	0.2		7/19/2016	MW
Fluoride	EPA300.0	mg/L	Not Detected IA	0.4	2.0	7/14/2016	НМ
Gross Alpha	EPA900.0	pCi/L	2.76 ± 1.40 E		15	7/25/2016	FGL
Haloacetic Acids	EPA552	μg/L	1 E		60	7/22/2016	FGL
Iron	EPA200.7	μg/L	108	10	300	7/22/2016	MW
Iron, Dissolved	EPA200.7	μg/L	41	10	300	7/22/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.5		7/18/2016	LJ
Lithium	EPA200.8	μg/L	28	1		7/14/2016	SM
Magnesium	EPA200.7	mg/L	14	0.5		7/22/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	14	10	50	7/22/2016	MW
Manganese, Total	EPA200.7	μg/L	16	10	50	7/22/2016	MW
Mercury, Total	EPA200.8	μg/L	3	0.5	2	7/14/2016	SM
Methane	EPA174/175	μg/L	1.2 E	0.1		7/20/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	7	1	1000	7/14/2016	SM
Nickel, Total	EPA200.8	μg/L	61	10	100	7/14/2016	SM
Nitrate as NO3	EPA300.0	mg/L	Not Detected	4.0	45	7/14/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.4	10	7/14/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.40		7/14/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected LN	0.4	1.0	7/14/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected	0.4		7/14/2016	НМ

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance Page 2 of 2 Tuesday, August 02, 2016

Lab Number:AB50269Collection Date/Time:7/13/201610:00Sample Collector:LEAR JClient Sample #:Submittal Date/Time:7/13/201611:00Sample IDColiform Designation:

Submittal Date/Time. 1/13/2010	11.00	Sample ID				Collio	iiii Designation.	
	Sar	nple Descri	ption: ASR-4	backfl	lush			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.4		0.1		7/13/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.04		0.03		7/28/2016	LRH
Potassium	EPA200.7	mg/L	3.7		0.5		7/22/2016	MW
QC Anion Sum x 100	Calculation	%	99%				7/18/2016	LRH
QC Anion-Cation Balance	Calculation	%	-1				7/25/2016	MW
QC Cation Sum x 100	Calculation	%	98%				7/25/2016	MW
QC Ratio TDS/SEC	Calculation		0.62				7/22/2016	HM
Selenium, Total	EPA200.8	μg/L	3		2	50	7/14/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	42		0.5		7/22/2016	MW
Sodium	EPA200.7	mg/L	88		0.5		7/22/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	850		1	900	7/15/2016	LJ
Strontium, Total	EPA200.8	μg/L	457		5		7/14/2016	SM
Sulfate	EPA300.0	mg/L	51		4.0	250	7/14/2016	НМ
TOC	SM5310C	mg/L	0.7		0.2		7/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	529		10	500	7/19/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		7/18/2016	LJ
Total Radium 226	EPA903.0	pCi/L	0.596 ± 0.326	Е		3	7/21/2016	FGL
Trihalomethanes	EPA524.2	μg/L	4.5	E		80	7/22/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	2		1	30	7/14/2016	SM
Vanadium, Total	EPA200.8	μg/L	5		5	1000	7/14/2016	SM
Zinc, Total	EPA200.8	μg/L	28	•	20	5000	7/14/2016	SM

Sample Comments: IA: Results are valid even though CCV recovery outside of limits; LN: MS and/or

Report Approved by:

David Holland, Laboratory Director

August 2, 2016

Lab ID : SP 1608023 **Monterey Bay Analytical Services** 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (3 pages): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR-4 Backflush	07/13/2016	07/15/2016	SP 1608023-001	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	07/19/2016:210293 All analysis quality controls are within established criteria.
	07/18/2016:208385 All preparation quality controls are within established criteria, except: The following note applies to Chloroform, Decafluorobiphenyl: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552	07/21/2016:208591 All preparation quality controls are within established criteria, except: The following note applies to 2,3-Dibromopropionic Acid, Monobromoacetic Acid, Monochloroacetic Acid, Dichloroacetic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to 2,3-Dibromopropionic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552.2	07/22/2016:210683 All analysis quality controls are within established criteria.

August 2, 2016 Lab ID : SP 1608023 **Monterey Bay Analytical Services** Customer : 2-19144

Radio QC

900.0	07/25/2016:210607 All analysis quality controls are within established criteria.
	07/22/2016:208625 All preparation quality controls are within established criteria.
903.0	07/21/2016:210453 All analysis quality controls are within established criteria.
	07/18/2016:208417 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists

August 2, 2016 Lab ID : SP 1608023-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : July 13, 2016-10:00

: J. Lear Monterey, CA 93940 Sampled By

Received On : July 15, 2016-12:30

: Ground Water Matrix

Description : ASR-4 Backflush

Project : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesuit	FQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	107	80-120	%		551.1	07/18/16:208385	551.1	07/19/16:210293
Bromodichloromethane	1.2	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Bromoform	ND	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Chloroform	2.6	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Dibromochloromethane	0.7	0.5	ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
Total Trihalomethanes	4.5		ug/L		551.1	07/18/16:208385	551.1	07/19/16:210293
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic	118	70-130	%		552	07/21/16:208591	552.2	07/22/16:210683
Acid [‡]	110	70-130	/0		332	07/21/10.200391	332.2	07/22/10.210083
Bromoacetic Acid	ND	1	ug/L		552	07/21/16:208591	552.2	07/22/16:210683
Chloroacetic Acid	ND	2	ug/L		552	07/21/16:208591	552.2	07/22/16:210683
Dibromoacetic Acid	1	1	ug/L		552	07/21/16:208591	552.2	07/22/16:210683
Dichloroacetic Acid	ND	1	ug/L		552	07/21/16:208591	552.2	07/22/16:210683
Trichloroacetic Acid	ND	1	ug/L		552	07/21/16:208591	552.2	07/22/16:210683
Haloacetic acids (five)	1		ug/L		552	07/21/16:208591	552.2	07/22/16:210683

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

Lab ID August 2, 2016 : SP 1608023-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 13, 2016-10:00 4 Justin Court

Sampled By : J. Lear Monterey, CA 93940

Received On : July 15, 2016-12:30

: Ground Water Matrix

Description : ASR-4 Backflush

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Unite	Jnits MCL/AL		Preparation	Sample Analysis		
Constituent	Result ± Effor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID	
Radio Chemistry ^{P:1}									
Gross Alpha	2.76 ± 1.40	1.29	pCi/L		900.0	07/22/16-07:05 2P1608625	900.0	07/25/16-12:00 2A1610607	
Total Alpha Radium (226)	0.596 ± 0.326	0.470	pCi/L		903.0	07/18/16-19:15 2P1608417	903.0	07/21/16-13:00 2A1610453	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

August 2, 2016 **Monterey Bay Analytical Services**

Quality Control - Organic

Lab ID

Customer

: SP 1608023

: 2-19144

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
	55111	07710710120000000	LCS	ug/L	10.33	104 %	80-120	
			MS	ug/L	9.960	96.1 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	108 %	80-120	
			MSRPD	ug/L	19.57	8.2%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	104 %	80-120	
			CCV	ug/L	166.7	103 %	80-120	
Bromoform	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	10.33	99.0 %	80-120	
			MS	ug/L	9.960	89.1 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	109 %	80-120	
			MSRPD	ug/L	19.57	7.3%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	104 %	80-120	
			CCV	ug/L	166.7	103 %	80-120	
Chloroform	551.1	07/18/16:208385SBL	Blank	ug/L		ND	< 0.5	
		1	LCS	ug/L	10.33	114 %	80-120	
		(07) 4 (07) 40 (040)	MS	ug/L	9.960	112 %	80-120	405
		(SP 1607849-010)	MSD	ug/L	9.785	121 %	80-120	435
		05/40/45 04000000	MSRPD	ug/L	19.57	5.8%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	116 %	80-120	
			CCV	ug/L	166.7	113 %	80-120	
Decafluorobiphenyl	551.1	07/18/16:208385SBL	Blank	ug/L	20.03	120 %	80-120	
			LCS	ug/L	20.67	117 %	80-120	
		(SP 1607849-010)	MS MSD	ug/L	19.92	109 %	80-120 80-120	125
		(SP 160/849-010)		ug/L	19.57	122 %		435
	551.1	07/10/16 210202CDI	MSRPD	ug/L	19.57	9.0%	≤20.0	
	551.1	07/19/16:210293SBL	CCV CCV	ug/L ug/L	166.7 333.3	112 % 109 %	80-120 80-120	
Dibromochloromethane	551.1	07/18/16:208385SBL	Blank	ug/L	555.6	ND	<0.5	
Dioromoemoromethane	331.1	07/10/10:200303BE	LCS	ug/L	10.33	102 %	80-120	
			MS	ug/L	9.960	94.9 %	80-120	
		(SP 1607849-010)	MSD	ug/L	9.785	110 %	80-120	
			MSRPD	ug/L	19.57	7.7%	≤20	
	551.1	07/19/16:210293SBL	CCV	ug/L	83.33	103 %	80-120	
			CCV	ug/L	166.7	104 %	80-120	
2,3-Dibromopropionic Acid	552	07/21/16:208591SBL	Blank	ug/L	5.000	104 %	70-130	
• •			LCS	ug/L	5.000	115 %	70-130	
			MS	ug/L	5.000	134 %	70-130	435
		(SP 1608023-001)	MSD	ug/L	5.000	103 %	70-130	
			MSRPD	ug/L	5.000	26.7%	≤20.0	435
Dibromoacetic Acid	552	07/21/16:208591SBL	Blank	ug/L		ND	<1	
		1	LCS	ug/L	10.00	93.2 %	70-130	
		1	MS	ug/L	10.00	120 %	70-130	
		(SP 1608023-001)	MSD	ug/L	10.00	108 %	70-130	
		<u> </u>	MSRPD	ug/L	5.000	9.7%	≤20.0	
Dichloroacetic Acid	552	07/21/16:208591SBL	Blank	ug/L		ND	<1	
		1	LCS	ug/L	10.00	92.7 %	70-130	
		(GD 1 6000000 0000	MS	ug/L	10.00	127 %	70-130	407
		(SP 1608023-001)	MSD	ug/L	10.00	131 %	70-130	435
		05/04/4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MSRPD	ug/L	5.000	3.1%	≤20.0	
Monobromoacetic Acid	552	07/21/16:208591SBL	Blank	ug/L	10.00	ND	<1	
		1	LCS	ug/L	10.00	105 %	70-130	125
		(CD 1600002 001)	MS	ug/L	10.00	135 %	70-130	435
		(SP 1608023-001)	MSD	ug/L	10.00	139 %	70-130	435
		1	MSRPD	ug/L	5.000	3.0%	≤20.0	

August 2, 2016 Lab ID : SP 1608023 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	07/21/16:208591SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	98.5 %	70-130	
			MS	ug/L	10.00	134 %	70-130	435
		(SP 1608023-001)	MSD	ug/L	10.00	139 %	70-130	435
			MSRPD	ug/L	5.000	3.5%	≤20.0	
Trichloroacetic Acid	552	07/21/16:208591SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	75.7 %	70-130	
			MS	ug/L	10.00	95.9 %	70-130	
		(SP 1608023-001)	MSD	ug/L	10.00	101 %	70-130	
			MSRPD	ug/L	5.000	4.8%	≤20.0	
2,3-Dibromopropionic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	75.00	90.2 %	70-130	
			CCV	ug/L	50.00	88.3 %	70-130	
Dibromoacetic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	150.0	101 %	70-130	
			CCV	ug/L	100.0	106 %	70-130	
Dichloroacetic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	150.0	104 %	70-130	
			CCV	ug/L	100.0	105 %	70-130	
Monobromoacetic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	150.0	114 %	70-130	
			CCV	ug/L	100.0	112 %	70-130	
Monochloroacetic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	150.0	87.1 %	70-130	
			CCV	ug/L	100.0	111 %	70-130	
Trichloroacetic Acid	552.2	07/22/16:210683SBL	CCV	ug/L	150.0	84.9 %	70-130	
			CCV	ug/L	100.0	90.0 %	70-130	

Definition

CCV

: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

MS : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

MSD : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries

are an indication of how that sample matrix affects analyte recovery.

MSRPD : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

and analysis.

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

435 : Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery

August 2, 2016 Lab ID : SP 1608023 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	07/25/16:210607caa	CCV CCB	cpm cpm	8620	42.0 % 0.10	40 - 49 0.2	ı
Gross Alpha	900.0	07/22/16:208625ELC (SP 1608123-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	1.05 85.3 % 108 % 101 % 6.6%	3 75-125 60-140 60-140 ≤30	
Alpha	903.0	07/21/16:210453caa	CCV CCB	cpm cpm	8623	41.9 % 0.0800	38 - 47 0.19	
Total Alpha Radium (226)	903.0	07/18/16:208417emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.58 21.58 21.58 21.58	0.01 73.1 % 70.1 % 69.5 % 0.8%	2 52-107 43-111 43-111 ≤35.5	
		ation - Analyzed to verify	fy the instrur	nent calibrati	on is within			

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

LČS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD

the preparation process is not affecting analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation BSRPD

and analysis.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

	Monterey Bay Analytical er Number: 2019144	Services			ab N	umbe	13					TES	ST DI	ESCF	RIPT	ION A	AND	ANA	LYS	ES R	EQU	EST	ED				
Phone: Email A Contact Project Purchas Quote N Rush A Rush pi	: 4 Justin Court Monterey, CA 93940 (831)375-6227 Fax: (831) ddress: info@mbasinc.com Person: David Holland Name: MPWMD te Order Number:			Method of Sempling: Composite (C) Grab (G)	Number of Containers	Type of Centainers: (G)Glass (P)Plastic (V)VOA (MT)Metal Tube	Non-Potable (NP) Ag Water (AgW)	Veter (MW) Montoring Well (GW) Ground Water nk (WW) Waste Weter (DW) Drinking Water	(S) Soil (SLG) Sludge (SLD) Sood (O) Od	BacT. (Sys) System (SRC) Source (W) Wests	Bact: (ROUT)Routine (RPT)Repeat (OTH)Other (RPL)Replace	(LT) Lesf Tissus (PET) Peticle Tissus (PRD) Produce	Preservative: (1) N5OH + ZnAc. (2) N5OH, (3) HCi (4) H2SOA. (5) HNO3. (6) N2SS2O3. (7) Other														
Samplir	ng Fee: Pickup Fee:			88	Š	Conta	<u>@</u>	(SW) Surface Water (TB) Travel Blank	SEG)	R) Sy	(LTO)		the: (1 14, (5)	룓	5 6										Ì		
	sitor Setup Date: Time:			g	mber	e of (Potable (P)) Sur	Soil (:T: (S)	cT: (R	Lead (serve H2SO	Gross Alpha	Radium 226	رو ا	Ms										
Samp Num	Location Description	Date Sampled	Time Sampled	ž	2	₹	&	§ €	(S)	Ba	88	5	P	ő	Rad	HAAs	TTHMs										
1.	ASR-4 backflush	7/13/16	1000	G	6	G/P	Р	GW						×	×	×	X										
								_																			
				_										<u> </u>													
												_															
					-	<u> </u>	<u> </u>																				
					-																						
Remark AB20				Reling	uished			ate:	1	ime:		dingui	Shed /	<u>)</u>	I	Date:	7	lime:		Relinq	uished		1	Date:		Time:	
				Receiv	ed By:		D	ate:	Ti	ine:	*	eccite X	N N) '	71	Date:	U	Time:	3Û	Receiv	ved By:			Date:		Time:	

Corporato Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No.1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563 Office & Laboratory
563 E. Lindo Avenue
Chico, CA 95926
TEL: (530)343-5818
FAX: (530)343-3807
CA ELAP Certification No. 2670

Office & Laboratory
3442 Empresa Drive, Suite D
San Luis Obispo, CA 93401
TEL: (805)783-2940
FAX: (805)783-2912
CA ELAP Certification No. 2775

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-9435 CA ELAP Certification No. 2810 FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers 532587211							
Were samples received in a chilled condition? Temps:	6	/	/	/	/	/	/
4. Surface water (SWTR) bact samples: A sample the should be flagged unless the time since sample co		•	•		•	, whether id	ced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inc	organics a	and Ra	dio)				
Sample Receipt, Login and Verification completed b	-		Reviewed Approved		Shawn Pe	CK 💷 Title:	ally signed by Shawn Peck Sample Receiving 07/26/2016-08:58:58
Discrepency Documentation:		,,	,				
Any items above which are "No" or do not meet spec		•	• •	t be re	solved.		
1. Person Contacted:			umber:				
Initiated By: Problem:	Da	ate:					
Problem.							
Resolution:							
2. Person Contacted:	Pł	none N	umber:				
Initiated By:		ate:					
Problem:							
Resolution:					(20	19144)	

Monterey Bay Analytical Services **SP 1608023**

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1607623

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 07/15/2016

Analytical Report reviewed & approved for release on 07/20/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1607623

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: Monterey Bay Analytical

 Date Received:
 7/15/16 13:15

 Date Prepared:
 7/20/16

 Project:
 MPWMD

WorkOrder: 1607623 **Extraction Method:** RSK175

Analytical Method: RSK175

 $\mu g/L$

Unit:

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
ASR-4 backflush	1607623-001A	Water	07/13/20	016 10:00 GC26	124023
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	1.2		0.10	1	07/20/2016 09:27

Analyst(s): AK

Quality Control Report

Client: Monterey Bay Analytical

Date Prepared: 7/20/16
Date Analyzed: 7/20/16
Instrument: GC26
Matrix: Air

Project:

Methane

MPWMD

WorkOrder: 1607623
BatchID: 124023
Extraction Method: RSK175

0.50

Analytical Method: RSK175
Unit: µL/L

Sample ID: MB/LCS-124023

10

Analyte			RL	_			LCS Limits	
Acetylene	ND	9.47	0.50	10	-	95	70-130	
Ethane	ND	12.0	0.50	10	-	120	70-130	
Ethylene	ND	8.48	0.50	10	-	85	70-130	

10.3

ND

103

70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder:	1607623	ClientCode:	MBAS
WOINGIUCI.	100/023	Chemicouc.	MIDAD

(925) 252-9262									
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				E	Bill to:		Req	uested TAT:	5 days;
David Holland Monterey Bay Analytical 4 Justin Court, Suite D Monterey, CA 93940 831-375-6227 FAX: 831-641-0734	Email: cc/3rd Party: PO: ProjectNo:	mweidner@mbas MPWMD	inc.com; Dholl	and@mbas	Accounts Paya Monterey Bay A 4 Justin Court, Monterey, CA 9	Analytical Suite D		e Received: e Logged:	07/15/2016 07/15/2016
						Requested 1	Tests (See legend	helow)	

Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1607623-001	ASR-4 backflush	Water	7/13/2016 10:00		Α											

Test Legend:

1 RSK175_W	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Valerie Riva

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name	: MONTEREY	BAY ANALYTICA	AL		QC Level:	LEVEL 2				Work	Order:	1607623	
Project:	MPWMD				Client Contact:	David Ho	lland			Date	Logged:	7/15/2016	
Comments:					Contact's Email:		@mbasinc.com; bcglobal.net; inf	_					
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppyThirdParty	J.	-flag		
Lab ID	Client ID	Matrix	Test Name		Containe /Compos		e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubO	ut
1607623-001A	ASR-4 backflush	Water	RSK175 <m< td=""><td>ethane_4></td><td>3</td><td>,</td><td>VOA w/ HC1</td><td></td><td>7/13/2016 10:00</td><td>5 days</td><td>None</td><td></td><td></td></m<>	ethane_4>	3	,	VOA w/ HC1		7/13/2016 10:00	5 days	None		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1607623

Telej	McCAMPI Website: www.mcc phone: (877) 252-	1534 WII PITTSBU ampbell.	LLOW PAS	SS RO 1565-17	AD 701 ain@n	ncca		ll.co	m	269								OU	CHA UND er E) T	IM	E		RUS	SH	[24	HR xce		48 I	IR	72 H		AY
Report To: Da	vid Holland		В	ill To):														A	nal	ysis	Rec	ues	t						O	ther	Comn	nents
Company: M	onterey Bay Ana	lytical S	ervices														_				2											U.S.	
4.	Justin Ct. Suite I)												8015)			3&F				sene											Filter	
	onterey, Ca 9394	10	E	-Mail	l: info)@n	ıbasi	nc.c	om					+			0 E/I				Cong						6	6				Sample for Me	
Tele: (831) 37	5 - 6227				(831)									8021	(12		552	_	(s		LS/		9			2	602	6020				analys	
Project #:			P	rojec	t Nan	ne:	MPV	VM	D					02/3	/ 802		994	418.1	70C	(S	roclo		cides			(SV)	010	10/				Yes / I	
Project Locati														9) SE	602	015)	e (1	ous (E	icide	V; A	(sə	erbi	(\$	Cs)	S/P	9/8	09/1	020)				7
Sampler Signa	ture: J. Lear													ıs G	EPA	8) 11	reas	arbo	8021	Pest	NE	ticid	СН	VOC	SVO	AH	200.	8.002	9/0				
		SAMI	PLING	so.	ers		MAT	RD	<			THO!		& TPH as Gas (602 / 8021	NLY (lotor O	Oil & C	Hydroc	8010 /)81 (CI	CB's O	NP Pes	Acidic	8260 (8270 (5	8310 (F	200.7 /	2/1/2003	109 / 8				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE	HCL	HNO ₃	Other	MTBE / BTEX &	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Methane			
	ASR-4 backflush	7/13/16	1000	3	G	X			П	X	X																			X		AB502	269
		- V																															
							T	1	\top	Т		П	m																				
							+	+	+	\vdash		H			-													\vdash		-	-		
							-	+	+	\vdash	-																			-	-	-	
							_	-	-	⊢	-																			_	_		
	1.							1		_																							
						, 1							-4															2					
)*																																
	,																						1										
							7117			Г																							
Relinquished By: David Holland		Date: 7/14/16	Time: 1600	Rece	eived B	y:				_				IC GC HI	E/t°_	CON	· / NDIT	ION	e+	ic	e						-	CON	1ME	NTS:			
Relinquished By:		Date:	Time: /3:/5	Rece	eived B	//	is.	R	ea)			DI AI	ECH	LOR PRI	INAT ATE	CO	IN L NTA		RS_		4										
Relinquished By:		Date:	Time:	Rece	eived B	y:		-							RESE			vo	DAS	08		ME nH<		s	ОТН	IER							

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №:	Monterey Bay Analytical MPWMD 1607623 Matrix: Water			Date and Time Received: Date Logged: Received by:	7/15/2016 13:15 7/15/2016 Valerie Riva
Carrier:	Golden State Overnight			Logged by:	Valerie Riva
	Chain of C	ustod	y (COC) I	<u>nformation</u>	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time o	f collection noted by Client on COC?	Yes	•	No 🗌	
Sampler's name	noted on COC?	Yes	•	No 🗌	
	Samp	le Rece	eipt Infor	mation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	e volume for indicated test?	Yes	•	No 🗌	
	Sample Preservation	on and	Hold Tir	me (HT) Information	
All samples rece	ived within holding time?	Yes	✓	No 🗆	
Sample/Temp Bl	ank temperature		Temp:	7.1°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗆
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive		Yes	✓	No 🗆	
	(Ice Type	e: WE	TICE)	
UCMR3 Samples Total Chlorine	<u>s:</u> tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗸
Free Chlorine t 300.1, 537, 539	rested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗹
Comments: Me	ethod ASTM D1946-90 was received passed its 0.2	 25-day l	holdina tir		========

Page 8 of 8

831.375.MBAS www.MBASinc.com **ELAP Certification Number: 2385**

Monday, August 08, 2016

Lab Number: AB50922

Collection Date/Time: 7/26/2016 Sample Collector: LEAR, J Client Sample #: 11:00 Coliform Designation: Submittal Date/Time: 7/26/2016 Sample ID 13:43

Submittal Date/Time. 7/26/2		Sample ID	504	- 401		COIIIOIIII D	esignation.	
	Sa	mple Descr	ription: PCA	East Sn	allow			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	64		10		7/28/2016	BS
Ammonia-N	SM4500NH3 D	mg/L	Not Detected		0.05		7/27/2016	MW
Barium, Total	EPA200.8	μg/L	23		10	1000	7/28/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	78		10		8/1/2016	MP
Boron	EPA200.7	mg/L	Not Detected		0.05		8/1/2016	MW
Bromide	EPA300.0	mg/L	Not Detected	IA	0.4		7/26/2016	HM
Calcium	EPA200.7	mg/L	16	EUM	0.5		8/1/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		8/1/2016	MP
Chloride	EPA300.0	mg/L	51		4.0	250	7/26/2016	HM
Fluoride	EPA300.0	mg/L	Not Detected		0.4	2.0	7/26/2016	HM
Hardness (as CaCO3)	SM2340B/Calc	mg/L	56		10		8/2/2016	MW
Iron	EPA200.7	μg/L	224		10	300	8/1/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	8/1/2016	MW
Magnesium	EPA200.7	mg/L	4.0	EUM	0.5		8/1/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected		10	50	8/1/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	EUM	10	50	8/1/2016	MW
Nitrate as NO3	EPA300.0	mg/L	Not Detected		4.0	45	7/26/2016	HM
Nitrate as NO3-N	EPA300.0	mg/L	0.5		0.4	10	7/26/2016	HM
Nitrate+Nitrite as N	EPA300.0	mg/L	0.5		0.40		7/26/2016	HM
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	IA	0.4	1.0	7/26/2016	HM
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected		0.4		7/26/2016	HM
pH (Laboratory)	SM4500-H+B	pH (H)	7.7		0.1		7/26/2016	BS
Potassium	EPA200.7	mg/L	2.0	EUM	0.5		8/1/2016	MW
QC Anion Sum x 100	Calculation	%	95%				8/1/2016	MP
QC Anion-Cation Balance	Calculation	%	0				8/2/2016	MW
QC Cation Sum x 100	Calculation	%	95%				8/2/2016	MW
QC Ratio TDS/SEC	Calculation		0.70				8/2/2016	MP
Sodium	EPA200.7	mg/L	39	EUM	0.5		8/1/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	304		1	900	7/27/2016	LJ
Sulfate	EPA300.0	mg/L	8		4.0	250	7/26/2016	HM
TOC	SM5310C	mg/L	1.6		0.2		8/4/2016	HM
Total Diss. Solids	SM2540C	mg/L	214		10	500	7/28/2016	MP

Sample Comments: IA: Results are valid even though CCV recovery outside of limits.

Report Approved by:

David Holland, Laboratory Director

831.375.MBAS www.MBASinc.com **ELAP Certification Number: 2385**

Monday, August 08, 2016

Lab Number: AB50923

Collection Date/Time: 7/26/2016 Sample Collector: LEAR, J Client Sample #: 11:00 Submittal Date/Time: 7/26/2016 Sample ID Coliform Designation:

Submittal Date/Time: 7/26/2	016 13:43	Sample ID		(Coliform D	esignation:	
	S	Sample Desc	cription: PCA East I	Реер			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	148	10		7/28/2016	BS
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/27/2016	MW
Barium, Total	EPA200.8	μg/L	65	10	1000	7/28/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	181	10		8/1/2016	MP
Boron	EPA200.7	mg/L	0.06	0.05		8/1/2016	MW
Bromide	EPA300.0	mg/L	Not Detected IA	0.4		7/26/2016	НМ
Calcium	EPA200.7	mg/L	41	0.5		8/1/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		8/1/2016	MP
Chloride	EPA300.0	mg/L	82	4.0	250	7/26/2016	НМ
Fluoride	EPA300.0	mg/L	0.6	0.4	2.0	7/26/2016	НМ
Hardness (as CaCO3)	SM2340B/Calc	mg/L	135	10		8/2/2016	MW
Iron	EPA200.7	μg/L	Not Detected	10	300	8/1/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected	10	300	8/1/2016	MW
Magnesium	EPA200.7	mg/L	8	0.5		8/1/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	Not Detected	10	50	8/1/2016	MW
Manganese, Total	EPA200.7	μg/L	Not Detected	10	50	8/1/2016	MW
Nitrate as NO3	EPA300.0	mg/L	Not Detected	4.0	45	7/26/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.4	10	7/26/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.40		7/26/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected IA	0.4	1.0	7/26/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected	0.4		7/26/2016	НМ
pH (Laboratory)	SM4500-H+B	pH (H)	7.5	0.1		7/26/2016	BS
Potassium	EPA200.7	mg/L	3.5	0.5		8/1/2016	MW
QC Anion Sum x 100	Calculation	%	96%			8/1/2016	MP
QC Anion-Cation Balance	Calculation	%	4			8/2/2016	MW
QC Cation Sum x 100	Calculation	%	105%			8/2/2016	MW
QC Ratio TDS/SEC	Calculation		0.61			8/2/2016	MP
Sodium	EPA200.7	mg/L	79	0.5		8/1/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	594	1	900	7/27/2016	LJ
Sulfate	EPA300.0	mg/L	22	4.0	250	7/26/2016	НМ
TOC	SM5310C	mg/L	0.4	0.2		8/4/2016	НМ
Total Diss. Solids	SM2540C	mg/L	360	10	500	7/28/2016	MP

Sample Comments: IA: Results are valid even though CCV recovery outside of limits.

Report Approved by:

David Holland, Laboratory Director

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Page 1 of 2

Lab Number:

Collection Date/Time:

AB50921

7/26/2016 11:00 Sample Collector:

LEAR, J

Client Sample #:

Thursday, August 18, 2016

Submittal Date/Time: 7/26/2016 13:43 Sample ID Coliform Designation: Sample Description: PCA East Deep Unit PQL MCL Analyte Method Qual Date Analyzed Result Analyst: Alkalinity, Total (as CaCO3) SM2320B mg/L 148 10 7/28/2016 BS Aluminum, Total EPA200.8 μg/L **Not Detected** 10 1000 7/28/2016 SM Ammonia-N SM4500NH3 D mg/L **Not Detected** 0.05 7/27/2016 MW Arsenic, Total EPA200.8 µg/L 1 10 7/28/2016 SM Barium, Total EPA200.8 µg/L 59 10 1000 7/28/2016 SM SM2320B 10 8/1/2016 MP Bicarbonate (as HCO3-) 181 mg/L Boron EPA200.7 0.06 0.05 8/1/2016 MW mg/L **Bromide** EPA300.0 mg/L Not Detected IA 0.4 7/26/2016 НМ Calcium EPA200.7 mg/L 0.5 8/1/2016 MW MP Carbonate as CaCO3 **Not Detected** 10 8/1/2016 SM2320B mg/L 7/27/2016 LJ Chloramines SM4500-CI G Not Detected H 0.05 mg/L Chloride EPA300.0 40 250 7/26/2016 НМ mg/L 82 DOC SM5310C mg/L 0.5 0.2 8/4/2016 НМ Fluoride EPA300.0 mg/L 0.4 0.4 2.0 7/26/2016 НМ Gross Alpha EPA900.0 pCi/L 1.27 ± 1.54 Е 15 8/3/2016 **FGL** EPA552 Е 60 FGL Haloacetic Acids 8/12/2016 µg/L EPA200.7 8/1/2016 MW Iron µg/L 17 10 300 Iron, Dissolved EPA200.7 10 300 8/1/2016 MW µg/L **Not Detected** Kjehldahl Nitrogen SM4500-NH3 B, 0.5 8/2/2016 mg/L **Not Detected** BS/LJ Lithium EPA200.8 µg/L 1 7/28/2016 SM 22 Magnesium EPA200.7 0.5 8/1/2016 MW mg/L 8.0 EPA200.7 Manganese, Dissolved 10 50 8/1/2016 MW μg/L **Not Detected** Manganese, Total EPA200.7 10 8/1/2016 MW Not Detected 50 μg/L Mercury, Total EPA200.8 μg/L Not Detected 0.5 2 7/28/2016 SM Methane EPA174/175 0.1 8/2/2016 **WECK** µg/L 0.19 Ε Molybdenum, Total EPA200.8 µg/L 1 1000 7/28/2016 SM 10 Nickel, Total EPA200.8 μg/L 36 10 100 7/28/2016 SM EPA300.0 Nitrate as NO3 4.0 45 7/26/2016 НМ mg/L **Not Detected** Nitrate as NO3-N EPA300.0 0.4 10 7/26/2016 НМ mg/L **Not Detected** Nitrate+Nitrite as N EPA300.0 mg/L **Not Detected** 0.40 7/26/2016 HM Nitrite as NO2-N EPA300.0 Not Detected IA 0.4 1.0 7/26/2016 НМ mg/L o-Phosphate-P, Dissolved EPA300.0 mg/L **Not Detected** 0.4 7/26/2016 HM

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See Report attachments. T = Temperature Exceedance Page 2 of 2 Thursday, August 18, 2016

Lab Number:AB50921Collection Date/Time:7/26/201611:00Sample Collector:LEAR, JClient Sample #:Submittal Date/Time:7/26/201613:43Sample IDColiform Designation:

Submittal Date/Time. 1/20/2010	13.43	Sample ID				Collio	iiii Designation.	
	Sa	mple Descr	iption: PCA	East De	еер			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.4		0.1		7/26/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.05		0.03		7/28/2016	LRH
Potassium	EPA200.7	mg/L	3.4		0.5		8/1/2016	MW
QC Anion Sum x 100	Calculation	%	98%				8/1/2016	MP
QC Anion-Cation Balance	Calculation	%	0				8/2/2016	MW
QC Cation Sum x 100	Calculation	%	98%				8/2/2016	MW
QC Ratio TDS/SEC	Calculation		0.63				8/2/2016	MP
Selenium, Total	EPA200.8	μg/L	Not Detected		2	50	7/28/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	48		0.5		8/1/2016	MW
Sodium	EPA200.7	mg/L	72		0.5		8/1/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	587		1	900	7/27/2016	LJ
Strontium, Total	EPA200.8	μg/L	200		5		7/28/2016	SM
Sulfate	EPA300.0	mg/L	22		4.0	250	7/26/2016	HM
TOC	SM5310C	mg/L	0.4		0.2		8/4/2016	HM
Total Diss. Solids	SM2540C	mg/L	368		10	500	7/28/2016	MP
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		8/3/2016	MP
Total Radium 226	EPA903.0	pCi/L	0.036 ± 0.470	Е		3	8/11/2016	FGL
Trihalomethanes	EPA524.2	μg/L	Not Detected	Е		80	8/2/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	Not Detected		1	30	7/28/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	7/28/2016	SM
Zinc, Total	EPA200.8	μg/L	24		20	5000	7/28/2016	SM

Sample Comments: IA: Results are valid even though CCV recovery outside of limits.

Report Approved by:

David Holland, Laboratory Director

August 17, 2016

Lab ID : SP 1608596 **Monterey Bay Analytical Services** 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
PCA East Deep	07/26/2016	07/28/2016	SP 1608596-001	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 4 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	08/02/2016:211074 All analysis quality controls are within established criteria
	08/02/2016:209099 All preparation quality controls are within established criteria
552	08/08/2016:209372 All preparation quality controls are within established criteria
552.2	08/12/2016:211537 All analysis quality controls are within established criteria

Radio QC

900.0	08/03/2016:211133 All analysis quality controls are within established criteria
	08/01/2016:209036 All preparation quality controls are within established criteria
Ra - 05	08/11/2016:211558 All analysis quality controls are within established criteria

August 17, 2016 Monterey Bay Analytical Services

Radio QC

Lab ID

Customer

: SP 1608596

: 2-19144

Ra - 05

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

August 17, 2016 Lab ID : SP 1608596-001

Monterey Bay Analytical Services

4 Justin Court Sampled On : July 26, 2016-11:00

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On : July 28, 2016-11:30

: Drinking Water Matrix

Customer ID : 2-19144

Description : PCA East Deep Project : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	e Analysis
			Method	Date/ID	Method	Date/ID		
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	92.7	80-120	%		551.1	08/02/16:209099	551.1	08/02/16:211074
Bromodichloromethane	ND	0.5	ug/L	1	551.1	08/02/16:209099	551.1	08/02/16:211074
Bromoform	ND	0.5	ug/L		551.1	08/02/16:209099	551.1	08/02/16:211074
Chloroform	ND	0.5	ug/L		551.1	08/02/16:209099	551.1	08/02/16:211074
Dibromochloromethane	ND	0.5	ug/L		551.1	08/02/16:209099	551.1	08/02/16:211074
Total Trihalomethanes	ND		ug/L	80	551.1	08/02/16:209099	551.1	08/02/16:211074
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	87.1	70-130	%		552	08/08/16:209372	552.2	08/12/16:211537
Bromoacetic Acid	ND	1	ug/L		552	08/08/16:209372	552.2	08/12/16:211537
Chloroacetic Acid	ND	2	ug/L		552	08/08/16:209372	552.2	08/12/16:211537
Dibromoacetic Acid	1	1	ug/L		552	08/08/16:209372	552.2	08/12/16:211537
Dichloroacetic Acid	ND	1	ug/L		552	08/08/16:209372	552.2	08/12/16:211537
Trichloroacetic Acid	ND	1	ug/L		552	08/08/16:209372	552.2	08/12/16:211537
Haloacetic acids (five)	1		ug/L	60	552	08/08/16:209372	552.2	08/12/16:211537

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

Lab ID August 17, 2016 : SP 1608596-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : July 26, 2016-11:00

Monterey, CA 93940 Sampled By : Jonathan Lear

> Received On : July 28, 2016-11:30 Matrix : Drinking Water

Description : PCA East Deep

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	WIDA UIIIIS WICL/AL		Method	Date/ID	Method	Date/ID	
Radio Chemistry P:1'5								
Gross Alpha	1.27 ± 1.54	1.84	pCi/L		900.0	08/01/16-11:11 2P1609036	900.0	08/03/16-07:00 2A1611133
Ra 228	0.036 ± 0.470	0.200	pCi/L		Ra - 05	08/08/16-18:00 2P1609064	Ra - 05	08/11/16-18:50 2A1611558

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

August 17, 2016 **Monterey Bay Analytical Services** Lab ID : SP 1608596 : 2-19144 Customer

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	08/02/16:209099SBL	Blank	ug/L		ND	< 0.5	
	001.1	00,02,10.20,0,,522	LCS	ug/L	9.712	107 %	80-120	
			MS	ug/L	9.750	97.3 %	80-120	
		(CC 1682565-001)	MSD	ug/L	9.419	110 %	80-120	
			MSRPD	ug/L	9.419	8.6%	≤20	
	551.1	08/02/16:211074SBL	CCV	ug/L	83.33	83.6 %	80-120	
			CCV	ug/L	166.7	112 %	80-120	
Bromoform	551.1	08/02/16:209099SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.712	114 %	80-120	
			MS	ug/L	9.750	106 %	80-120	
		(CC 1682565-001)	MSD	ug/L	9.419	119 %	80-120	
			MSRPD	ug/L	9.419	8.8%	≤20	
	551.1	08/02/16:211074SBL	CCV	ug/L	83.33	86.3 %	80-120	
			CCV	ug/L	166.7	119 %	80-120	
Chloroform	551.1	08/02/16:209099SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.712	108 %	80-120	
			MS	ug/L	9.750	101 %	80-120	
		(CC 1682565-001)	MSD	ug/L	9.419	114 %	80-120	
			MSRPD	ug/L	9.419	8.1%	≤20	
	551.1	08/02/16:211074SBL	CCV	ug/L	83.33	84.6 %	80-120	
			CCV	ug/L	166.7	114 %	80-120	
Decafluorobiphenyl	551.1	08/02/16:209099SBL	Blank	ug/L	18.89	107 %	80-120	
The state of the s			LCS	ug/L	19.42	107 %	80-120	
			MS	ug/L	19.50	115 %	80-120	
		(CC 1682565-001)	MSD	ug/L	18.84	117 %	80-120	
			MSRPD	ug/L	9.419	1.0%	≤20.0	
	551.1	08/02/16:211074SBL	CCV	ug/L	166.7	91.0 %	80-120	
			CCV	ug/L	333.3	93.5 %	80-120	
Dibromochloromethane	551.1	08/02/16:209099SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.712	108 %	80-120	
			MS	ug/L	9.750	99.7 %	80-120	
		(CC 1682565-001)	MSD	ug/L	9.419	113 %	80-120	
			MSRPD	ug/L	9.419	8.7%	≤20	
	551.1	08/02/16:211074SBL	CCV	ug/L	83.33	82.6 %	80-120	
			CCV	ug/L	166.7	112 %	80-120	
2,3-Dibromopropionic Acid	552	08/08/16:209372SBL	Blank	ug/L	5.000	106 %	70-130	
			LCS	ug/L	5.000	91.7 %	70-130	
			MS	ug/L	5.000	111 %	70-130	
		(SP 1608596-001)	MSD	ug/L	5.000	102 %	70-130	
			MSRPD	ug/L	5.000	9.2%	≤20.0	
Dibromoacetic Acid	552	08/08/16:209372SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	92.1 %	70-130	
			MS	ug/L	10.00	81.7 %	70-130	
		(SP 1608596-001)	MSD	ug/L	10.00	85.4 %	70-130	
			MSRPD	ug/L	5.000	3.9%	≤20.0	
Dichloroacetic Acid	552	08/08/16:209372SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	92.3 %	70-130	
			MS	ug/L	10.00	89.7 %	70-130	
		(SP 1608596-001)	MSD	ug/L	10.00	92.7 %	70-130	
			MSRPD	ug/L	5.000	3.3%	≤20.0	
Monobromoacetic Acid	552	08/08/16:209372SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	94.6 %	70-130	
			MS	ug/L	10.00	89.1 %	70-130	
		(SP 1608596-001)	MSD	ug/L	10.00	95.8 %	70-130	
			MSRPD	ug/L	5.000	7.1%	≤20.0	

August 17, 2016 Lab ID : SP 1608596 **Monterey Bay Analytical Services** Customer : 2-19144

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Monochloroacetic Acid	552	08/08/16:209372SBL	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	109 %	70-130	
			MS	ug/L	10.00	106 %	70-130	
		(SP 1608596-001)	MSD	ug/L	10.00	113 %	70-130	
			MSRPD	ug/L	5.000	7.0%	≤20.0	
Trichloroacetic Acid	552	08/08/16:209372SBL	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	97.3 %	70-130	
			MS	ug/L	10.00	82.9 %	70-130	
		(SP 1608596-001)	MSD	ug/L	10.00	88.1 %	70-130	
			MSRPD	ug/L	5.000	5.9%	≤20.0	
2,3-Dibromopropionic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	75.00	77.5 %	70-130	
			CCV	ug/L	50.00	84.5 %	70-130	
Dibromoacetic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	150.0	97.4 %	70-130	
			CCV	ug/L	100.0	96.0 %	70-130	
Dichloroacetic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	150.0	94.6 %	70-130	
			CCV	ug/L	100.0	93.9 %	70-130	
Monobromoacetic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	150.0	97.7 %	70-130	
			CCV	ug/L	100.0	94.5 %	70-130	
Monochloroacetic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	150.0	112 %	70-130	
			CCV	ug/L	100.0	113 %	70-130	
Trichloroacetic Acid	552.2	08/12/16:211537SBL	CCV	ug/L	150.0	94.9 %	70-130	
			CCV	ug/L	100.0	95.6 %	70-130	

Definition

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. LCS

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared. August 17, 2016Lab ID: SP 1608596Monterey Bay Analytical ServicesCustomer: 2-19144

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note		
Radio											
Alpha		900.0	08/03/16:211133caa	CCV	cpm	8614	42.1 %	38 - 47			
•				CCB	cpm		0.100	0.18			
Gross Alpha		900.0	08/01/16:209036ELC	Blank	pCi/L		0.02	3			
1				LCS	pCi/L	107.4	105 %	75-125			
I				MS	pCi/L	107.4	121 %	60-140			
			(CH 1676278-001)	MSD	pCi/L	107.4	109 %	60-140	1		
				MSRPD	pCi/L	107.4	9.7%	≤30			
Beta		Ra - 05	08/11/16:211558emv	CCV	cpm	8994	99.2 %	88 - 108	ı		
				CCB	cpm		0.4000	0.49			
Ra 228		Ra - 05	08/08/16:209064emv	RgBlk	pCi/L		-0.04	3			
				LRS	pCi/L	79.28	52.5 %	27-59			
				BS	pCi/L	79.28	89.9 %	75-125	1		
				BSD	pCi/L	79.28	99.5 %	75-125			
				BSRPD	pCi/L	79.28	10.1%	≤25			
Definition											
CCV			tion - Analyzed to verif				criteria.				
CCB			Analyzed to verify the i								
Blank			ify that the preparation				ion to the sam	ples.			
RgBlk			ed to correct for any rea								
LCS			imple - Prepared to veri					e recovery.			
LRS			 Prepared to establish the 								
MS			ole is spiked with a know	vn amount o	of analyte. The	e recoveries	are an indication	on of how tha	at sample		
	matrix affects and										
MSD			MSD pair - A random sa			with a know	n amount of ar	alyted. The	recoveries		
			ple matrix affects analy								
BS	: Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not affecting analyte recovery.										
		•	OD A 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4- !!1	4 44 1		1				
BSD			SD pair - A blank duplic		a with a know	n amount of	analyte. It is p	reparea to v	emry that		
	1 1 1	ocess is not all	ecting analyte recovery.		11.00						

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

: Data Quality Objective - This is the criteria against which the quality control data is compared.

MSRPD

BSRPD DQO and analysis.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

i	Monterey Bay Analytical er Number: 2019144			ab N	umbe	110					TES	ST D	ESCF	RIPT	ION .	AND	ANA	LYS	ES R	EQU	EST	ED					
Address: 4 Justin Court Monterey, CA 93940 Phone: (831)375-6227 Fax: (831)641-0734 Email Address: info@mbasinc.com Contact Person: David Holland Project Name: MPWMD Purchase Order Number: Quote Number: Quote Number: Rush Analysis: 5 Day 4 Day 3 Day 2 Day 24 hour Rush pre-approval by lab (initals):				Composite (C) Grab (G)		Type of Containers: (G)Glass (P)Plastic (V)VOA (MT)Metal Tube	Ag Water (AgW)	ontoring Well (GW) Ground Water laste Water (DW) Drinking Water	Soera (O) Od	ource (W) Waste	BacT. (ROUT)Routine (RPT)Repeat (OTH)Other (RPL)Replace	le Tissue (PRD) Produce	Ac. (2) NsOH, (3) HCi 2S2O3, (7) Other														
Electronic Data Transfer: No State Client Other:				Method of Sempling: Co	Number of Containers	Type of Containers: (G)Glas	Potable (P) Non-Potable (NP)	(SW) Surface Water (MW) Monttoring Well (TB) Travel Blank (WW) Waste Water	(S) Soil (St.O) Sludge (St.D) Sood (O) Od	BacT: (3ys) System (SRC) Source (W) Waste	Bact: (ROUT)Routine (RP1	(LT) Leaf Tissue (PET) Peticle Tissue (PRD) Produce	Preservative: (1) NaOH + ZnAc. (2) NaOH, (3) HCI (4) HZSOA, (5) HNO3, (6) Na2SS2O3, (7) Other	Gross Alpha	Radium 226	HAAs	TTHMS										
1.	PCA East Deep	7/26/16	1100	G	6	G/P	Р	DW						Х	Х	Х	x										
	•																										
									<u> </u>	<u> </u>																	
					<u> </u>	ļ			 	<u> </u>																	
-				<u> </u>	-				<u> </u>		 	<u> </u>		ļ		ļ											
Remari AB50	marks .B50921 Tracking #: 532736151			Mal	uished	Jood	AR.		27/16	me:	200	Relinqui	Ide	ns	ta		PX	ime:	-			18/10		Date:		Time:	
	Tracking #: 532736131				ved By:			ate:	Ti	me:		ide live	a By:	7	2	8 Date:	$\varphi^{'}$	ime:		Receive	ed By:		,	Date:	,	Time:	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No.1573 Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 CA ELAP Certification No. 2670 Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 2775 Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810 Subject: RE: MPWMD (AB50921)

From: Monterey Bay Analytical Services <info@mbasinc.com>

Date: 07/28/2016 11:44

To: 'Inez Covarrubias' <inezc@fglinc.com>

It does not, thanks for checking.

Mason Weidner
Monterey Bay Analytical Services
4 Justin Court, Suite D
Monterey, Ca 93940
(831) 375-MBAS (6227)
(831) 641-0734 (Fax)
www.MBASinc.com
MWeidner@MBASinc.com

----Original Message----

From: Inez Covarrubias [mailto:inezc@fglinc.com]

Sent: Thursday, July 28, 2016 11:37 AM

To: MBAS

Subject: MPWMD (AB50921)

Does this project need state EDT reporting? If so please provide system # and sampler name.

Thanks,

Inez

FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers 532736151							
Were samples received in a chilled condition? Temps:	4	/	/	/	/	/	/
Surface water (SWTR) bact samples: A sample the should be flagged unless the time since sample co				•		whether ic	ed or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. In	organics a	and Ra	ıdio)				
Sample Receipt, Login and Verification completed by	oy:		wed and oved By	Inez Cova	arrubias	Title: Samp	ned by Inez Covarrubias le Receiving ½016-12:18:39
Discrepency Documentation:							
Any items above which are "No" or do not meet spec	cifications	(i.e. te	mps) m	ust be reso	lved.		
Person Contacted:	Ph	one N	umber:				
Initiated By:	Da	ite:					
Problem:							
Resolution:							
2. Person Contacted:	Ph	one N	umber:				
Initiated By:		ite:					
Problem:							
Resolution:					(201	9144)	

Monterey Bay Analytical Services
SP 1608596

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1607C53

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: PCA East Deep

Project Received: 07/28/2016

Analytical Report reviewed & approved for release on 08/03/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: PCA East Deep

WorkOrder: 1607C53

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: Monterey Bay Analytical

Date Received: 7/28/16 10:00

Date Prepared: 8/2/16

Project: PCA East Deep

WorkOrder: 1607C53

Extraction Method: RSK175

Analytical Method: RSK175

Unit: $\mu g/L$

Dissolved Gases by RSK 175

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PCA East Deep	1607C53-001A	Water	07/26/20	16 11:00 GC26	124664
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.19		0.10	1	08/02/2016 13:27

Analyst(s): AK

Quality Control Report

Client:Monterey Bay AnalyticalWorkOrder:1607C53Date Prepared:8/2/16BatchID:124664Date Analyzed:8/2/16Extraction Method:RSK175

Instrument:GC26Analytical Method:RSK175Matrix:AirUnit:μL/L

Project: PCA East Deep Sample ID: MB/LCS-124664

QC Summary Report for RSK175 MB LCS RL **SPK** LCS Analyte MB SS **LCS** Result Result Val %REC %REC Limits Methane ND 10.4 0.50 10 104 70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder: 1607C53 ClientCode: MBAS

	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days;
David Holland	Email: r	nweidner@mbas	inc.com; Dholl	and@mbas	Accounts Paya	ble			_
Monterey Bay Analytical	cc/3rd Party:				Monterey Bay A	Analytical			
4 Justin Court, Suite D	PO:				4 Justin Court,	Suite D	Date	e Received:	07/28/2016
Monterey, CA 93940	ProjectNo: F	PCA East Deep			Monterey, CA 9	3940	Dat	e Logged:	07/28/2016
831-375-6227 FAX: 831-641-0734		•			-			00	

							Re	quested	l Tests	(See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date Ho	old 1	2	3	4	5	6	7	8	9	10	11	12
1607C53-001	PCA East Deep	Water	7/26/2016 11:00	Α											

Test Legend:

1 RSK175_W	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Briana Cutino

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name	: MONTEREY	BAY ANALYTICA	AL		QC Level:	LEVEL 2				Work	der:	1607C53
Project:	PCA East Dee	ep			Client Contact:	David Ho	olland			Date	Logged:	7/28/2016
Comments:					Contact's Email:		r@mbasinc.com sbcglobal.net; in	_				
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	ppy ThirdParty	J	-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1607C53-001A	PCA East Deep	Water	RSK175 <m< th=""><th>ethane_4></th><th>3</th><th>,</th><th>VOA w/ HCl</th><th></th><th>7/26/2016 11:00</th><th>5 days</th><th>Trace</th><th></th></m<>	ethane_4>	3	,	VOA w/ HCl		7/26/2016 11:00	5 days	Trace	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1607CS3

		534 WII PITTSBU ampbell.	LOW PA	SS RO. 565-17	AD 701 nin@n	ıcca	mpl	ell.		26	9					UR l G			OU	ND	TI	MI	E		RUS	H	OL 24 2 E	HR		□ 48 F	IR		IR	5 DAY (DW)
Report To: Da	vid Holland		Е	ill To):							=(A	nal	sis	Reg	ues	t						C	ther	1	Comments
	onterey Bay Ana	lytical S	ervices															_				25											Т.	
	Justin Ct. Suite D	-													8015)			3&F				sene												Filter
M	onterey, Ca 9394	0	E	-Mail	: info	@n	ıba	sino	e.con	n					+			0 E/I				Cong						6	6					Samples for Metals
Tele: (831) 37	5 - 6227		F	ax: (831)	641-	073	34							(602 / 8021	£		252	_	(S		LS/		3			4	602	6020					analysis:
Project #:			P	rojec	t Nan	ne:									02 / 8	/ 802		994	418.	70C	(S	roclo		cide			NAS	010	10/					Yes / No
Project Locati	on:														9) SI	602	(\$10	se (10	ous (E	icide	Y; A	(sa)	lerbi	(s)	Cs)	s/P	9/8	9/8	020)			1	
Sampler Signa	iture:														ıs G	EPA	8) 11	reas	arbo	8021	Pest	NT.	ticid	СІН	VOC	SVO	PAH	200.	200.8	9/0			1	
		SAMI	PLING	, s	iers		MA	TR	IX	ı	PRE	SEI	RVE	ED	& TPH) ATNO	Motor C	Oil & C	Hydroc	/ 8010 /	081 (CI	PCB's C	(NP Pes	(Acidic	/ 8260 (/ 8270 (8310 (1	(200.7 /	(200.77	0.8 / 601				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Office	ICE	нсг	HNO ₃	Other	MTBE / BTEX &	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Methane			
	PCA East Deep	7/26/16	1100	3	G	Х				1	X	X																			X			AB50921
										\dagger	+	1	7																					
						\vdash			-	+	+	1									1													
									-	+	+	+	-																				+	
										1		-		_																			+	
										1																								
										1																								
										+	1		7																				T	
									-	+	+	+	+						-															
					_	\vdash			_	+	1	7										- 7	-										+	
				/	_	L				\perp	\sqcup	1		_		77.1.0													COL	***	ENTE		_	
Relinquished By: Mason Holland		Date: 7/27/16	Time: 1600	Rece	ived B	y:	1	1	1		1	1			GC	E/t°_ OOD EAD	CON	DIT CE A	ION	NT	_								CON	VIIVIE	ENTS			
Relinquished By:		Date:	Time:	Reco	eived B	y:		_			7				DE	PRO	OR	NATE	CO	IN L		RS_	-	-										
Relinquished By:		Date:	Time:	Reco	eived B	y:										ESE			vo	DAS	o	&G	ME pH-		S	оті	HER	i.						

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	Monterey Bay Analy PCA East Deep 1607C53 FedEx	/tical Matrix: <u>Water</u>			Date and Time Received: Date Logged: Received by: Logged by:	7/28/2016 10:00 7/28/2016 Briana Cutino Briana Cutino
		Chain of C	ustody	/(COC) Ir	<u>formation</u>	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinquis	shed and received?	Yes	•	No 🗌	
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌	
Sample IDs note	ed by Client on COC?		Yes	✓	No 🗌	
Date and Time o	of collection noted by C	Client on COC?	Yes	•	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
		Sampl	e Rece	eipt Inforn	nation	
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample containe	ers intact?		Yes	✓	No 🗌	
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗆	
		Sample Preservation	on and	Hold Tim	e (HT) Information	
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗆	
Sample/Temp Bl	lank temperature			Temp:	3°C	NA 🗌
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes	✓	No 🗌	NA 🗆
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌	
pH acceptable up	pon receipt (Metal: <2	; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗆	
		(Ice Type	e: BLU	JE ICE)		
UCMR3 Samples Total Chlorine		e upon receipt for EPA 522?	Yes		No 🗆	NA 🗸
Free Chlorine t 300.1, 537, 539		upon receipt for EPA 218.7,	Yes		No 🗆	NA 🗹
Comments:	=====	======	:	:	======	=======

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Wednesday, November 02, 2016

Lab Number: AB54457

Collection Date/Time: 9/21/2016 10:30 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 9/28/2016 Sample ID Coliform Designation: 15:30

		Sam	ole Description:	ASR4				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	234		10		9/30/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	LN	10	1000	10/11/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	IH, PH	0.05		10/3/2016	MW
Arsenic, Total	EPA200.8	μg/L	5		1	10	10/11/2016	SM
Barium, Total	EPA200.8	μg/L	54		10	1000	10/11/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	285		10		9/30/2016	MP
Boron	EPA200.7	mg/L	0.11		0.05		10/5/2016	MW
Bromide	EPA300.0	mg/L	0.4		0.1		9/29/2016	НМ
Calcium	EPA200.7	mg/L	76		0.5		10/5/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		9/30/2016	MP
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		9/28/2016	LRH
Chloride	EPA300.0	mg/L	121		1	250	9/29/2016	НМ
DOC	SM5310C	mg/L	Not Collected		0.2		9/21/2016	JL
Fluoride	EPA300.0	mg/L	0.2		0.1	2.0	9/29/2016	НМ
Gross Alpha	EPA900.0	pCi/L	3.01 ± 2.64	E		15	10/7/2016	FGL
Haloacetic Acids	EPA552	μg/L	Not Detected	E		60	10/5/2016	FGL
Iron	EPA200.7	μg/L	144		10	300	10/5/2016	MW
Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	10/5/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	0.5		0.5		10/6/2016	BS
Lithium	EPA200.8	μg/L	32		1		10/11/2016	SM
Magnesium	EPA200.7	mg/L	16		0.5		10/5/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	21		10	50	10/5/2016	MW
Manganese, Total	EPA200.7	μg/L	21		10	50	10/5/2016	MW
Mercury, Total	EPA200.8	μg/L	1		0.5	2	10/11/2016	SM
Methane	EPA174/175	μg/L	1.7	ΗE	0.1		10/6/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	6		1	1000	10/11/2016	SM
Nickel, Total	EPA200.8	μg/L	58		10	100	10/11/2016	SM
Nitrate as NO3	EPA300.0	mg/L	1	Н	1	45	9/29/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.2	Н	0.1	10	9/29/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.5	Н	0.1		9/29/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	0.3	Н	0.1	1.0	9/29/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	Not Detected	Н	0.1		9/29/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L: Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Monterey Bay Analytical Services 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Wednesday, November 02, 2016

Lab Number: **AB54457**

Collection Date/Time: 9/21/2016 Sample Collector: LEAR J Client Sample #: 10:30 Submittal Date/Time: 9/28/2016 Sample ID Coliform Designation: 15:30

		Sample	Description:	ASR4				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.5		0.1		9/28/2016	BS
Phosphorus, Total	HACH 8190	mg/L	Not Detected	PH	0.03		10/4/2016	LRH
Potassium	EPA200.7	mg/L	4.6		0.5		10/5/2016	MW
QC Anion Sum x 100	Calculation	%	100%				9/30/2016	MP
QC Anion-Cation Balance	Calculation	%	2				10/7/2016	MW
QC Cation Sum x 100	Calculation	%	105%				10/7/2016	MW
QC Ratio TDS/SEC	Calculation		0.61				10/4/2016	MP
Selenium, Total	EPA200.8	μg/L	2		2	50	10/11/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	46		0.5		10/5/2016	MW
Sodium	EPA200.7	mg/L	103		0.5		10/5/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	924		1	900	9/30/2016	НМ
Strontium, Total	EPA200.8	μg/L	444		5		10/11/2016	SM
Sulfate	EPA300.0	mg/L	55		1	250	9/29/2016	НМ
TOC	SM5310C	mg/L	0.6		0.2		10/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	563	Н	10	500	9/29/2016	MP
Total Nitrogen	Calculation	mg/L	1.0		0.5		10/6/2016	MP
Total Radium 226	EPA903.0	pCi/L	0.760 ± 0.438	E		3	10/12/2016	FGL
Trihalomethanes	EPA524.2	μg/L	Not Detected	E		80	10/3/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	1		1	30	10/11/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	10/11/2016	SM
Zinc, Total	EPA200.8	μg/L	Not Detected		20	5000	10/11/2016	SM

Sample Comments:

H: Analyzed outside of holding time. (Received at 7 days/5 hours) III- ICV and/or CCV

PH: Preserved after the reccomended time. (Pres at 7 days/5 hour

limits.

Report Approved by

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L: Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com ELAP Certification Number: 2385

Wednesday, November 02, 2016

Lab Number: AB54458

Collection Date/Time: 9/21/2016 9:30 Sample Collector: LEAR J Client Sample #:
Submittal Date/Time: 9/28/2016 15:30 Sample ID Coliform Designation:

Ikalinity, Total (as CaCO3) SM2320B mg/L 180 10 9/30/2016 BS Iuminum, Total EPA2200.8 μg/L Not Detected LN 10 1000 10/11/2016 SM Immonia-N SM4500NH3 D mg/L Not Detected IH, PH 0.05 10/3/2016 MW Irsenic, Total EPA2200.8 μg/L 1 1 1 10 10/11/2016 SM Irinity, Total EPA200.8 μg/L 55 10 1000 10/11/2016 SM Irinity, Total EPA200.8 μg/L 55 10 1000 10/11/2016 SM Irinity, Total EPA200.8 μg/L 55 10 1000 10/11/2016 SM Irinity, Total EPA200.7 mg/L 0.08 0.05 10/5/2016 MW Irinity, Total EPA200.0 mg/L 0.2 0.1 9/30/2016 MW Irinity, Total EPA200.7 mg/L 68 0.5 10/5/2016 MW Irinity, Total EPA200.7 mg/L Not Detected 10 9/30/2016 MP Irinity, Total EPA200.0 mg/L 72 1 250 9/29/2016 HM Irinity, Total EPA200.0 mg/L 1.0 0.2 10/19/2016 MW Irinity, Total EPA200.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Irinity, Total EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW Irinity, Total EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW Irinity, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Irinity, Total EPA200.8 μg/L 19 1 10/11/2016 SM Irinity, Total EPA200.8 μg/L Not Detected 10 50 10/5/2016 MW Irinity, Total EPA200.8 μg/L Not Detected 10 50 10/5/2016 MW Irinity, Total EPA200.8 μg/L Not Detected 10 50 10/5/2016 MW Irinity, Total EPA200.8 μg/L Not Detected 10 50 10/5/2016 MW Irinity, Total EPA200.8 μg/L Not Detected 10 50 10/5/2016 MW Irin			Sam	ple Description:	ASR1				
Illuminum, Total	Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Marting Mart	Alkalinity, Total (as CaCO3)	SM2320B	mg/L	180		10		9/30/2016	BS
Page	Aluminum, Total	EPA200.8	μg/L	Not Detected	LN	10	1000	10/11/2016	SM
arium, Total EPA200.8 μg/L 55 10 1000 10/11/2016 SM arium, Total EPA200.7 mg/L 220 10 9/30/2016 MP oron EPA200.7 mg/L 0.08 0.05 10/5/2016 MW romide EPA200.7 mg/L 0.2 0.1 9/29/2016 HM ratioum EPA200.7 mg/L 68 0.5 10/5/2016 MW arbonate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP thloridide EPA300.0 mg/L Not Detected 0.05 9/28/2016 LRH Micross Alpha EPA300.0 mg/L 72 1 250 9/29/2016 HM Gross Alpha EPA300.0 mg/L 1.0 0.2 10/19/2016 MW Gross Alpha EPA300.0 mg/L Not Detected E 60 10/5/2016 MW Gross Alpha EPA300.7 µg/L Not Detected	Ammonia-N	SM4500NH3 D	mg/L	Not Detected	IH, PH	0.05		10/3/2016	MW
SM2320B mg/L SM2	Arsenic, Total	EPA200.8	μg/L	1		1	10	10/11/2016	SM
oron EPA200.7 mg/L 0.08 0.05 10/5/2016 MW romide EPA300.0 mg/L 0.2 0.1 9/29/2016 HM ratioum EPA200.7 mg/L 68 0.5 10/5/2016 MW rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 HM OC SM5310C mg/L 1.0 0.2 10/19/2016 MW Iduoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Iduoride EPA300.0 mg/L Not Detected 1<	Barium, Total	EPA200.8	μg/L	55		10	1000	10/11/2016	SM
romide EPA300.0 mg/L 0.2 0.1 9/29/2016 HM ratioum EPA200.7 mg/L 68 0.5 10/5/2016 MW rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP ribioranines SM4500-C1G mg/L Not Detected 0.05 9/28/2016 LRH ribioride EPA300.0 mg/L 72 1 250 9/29/2016 HM ricor SM5310C mg/L 1.0 0.2 10/19/2016 MW ricor SM5310C mg/L 1.0 0.3 0.1 2.0 9/29/2016 HM ricor SM5310C mg/L Not Detected E 6	Bicarbonate (as HCO3-)	SM2320B	mg/L	220		10		9/30/2016	MP
EPA200.7 mg/L 68 0.5 10/5/2016 MW	Boron	EPA200.7	mg/L	0.08		0.05		10/5/2016	MW
Not Detected 10 9/30/2016 MP Not Detected 10 9/30/2016 MP Not Detected 10 9/30/2016 LRH Not Detected 10 9/30/2016 MW Not Detected 10 10/11/2016 MW Not Detected 10 10/11/2016 Not Detected 10 10/11/2016 MW Not Detected 10 10/11/2016 MW Not Detected 10 10/11/2016 Not Detected	Bromide	EPA300.0	mg/L	0.2		0.1		9/29/2016	HM
Not Detected Detec	Calcium	EPA200.7	mg/L	68		0.5		10/5/2016	MW
thloride EPA300.0 mg/L 72 1 250 9/29/2016 HM OC SM5310C mg/L 1.0 0.2 10/19/2016 MW Iluoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Iluoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Isross Alpha EPA900.0 pCi/L 2.52 ± 1.55 E 15 10/10/2016 FGL Ialoacetic Acids EPA552 μg/L Not Detected E 60 10/5/2016 FGL Ialoacetic Acids EPA552 μg/L Not Detected I 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L Not Detected I 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L Not Detected I 10 300 10/5/2016 MW ithium EPA200.8 μg/L 19 1 10/11/2016 SM Ianganesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Ianganese, Dissolved EPA200.7 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.7 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.7 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/5/2016 MW Ianganese, Total EPA200.8 μg/L Not Detected I 10 50 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM Ianganese, Total EPA200.8 μg/L Not Detected I 10 10/11/2016 SM	Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		9/30/2016	MP
OCC SM5310C mg/L 1.0 0.2 10/19/2016 MW Not Detected 10 300 10/5/2016 MW Not Detected 10 50 10/5/2016 MCCAM Not Detected 10 50 10/5/2016 MCCAM Not Detected 10 10/11/2016 SM Not Detected 1	Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		9/28/2016	LRH
Louride	Chloride	EPA300.0	mg/L	72		1	250	9/29/2016	HM
Figure	DOC	SM5310C	mg/L	1.0		0.2		10/19/2016	MW
PA552 pg/L Not Detected E 60 10/5/2016 FGL	Fluoride	EPA300.0	mg/L	0.3		0.1	2.0	9/29/2016	HM
con EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW ijehldahl Nitrogen SM4500-NH3 B,C. mg/L Not Detected 0.5 10/6/2016 BS iithium EPA200.8 μg/L 19 1 10/11/2016 SM Iagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Ianganese, Dissolved EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Ianganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Idethane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Iolybdenum, Total EPA200.8 μg/L Not Detected 10 10 10/11/2016 </td <td>Gross Alpha</td> <td>EPA900.0</td> <td>pCi/L</td> <td>2.52 ± 1.55</td> <td>Е</td> <td></td> <td>15</td> <td>10/10/2016</td> <td>FGL</td>	Gross Alpha	EPA900.0	pCi/L	2.52 ± 1.55	Е		15	10/10/2016	FGL
Description	Haloacetic Acids	EPA552	μg/L	Not Detected	Е		60	10/5/2016	FGL
SM4500-NH3 B,C. mg/L Not Detected 0.5 10/6/2016 BS Ithium EPA200.8 μg/L 19 1 10/11/2016 SM Idagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Idanganese, Dissolved EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idanganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Idethane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Idethane EPA200.8 μg/L 6 1 1000 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idethane EPA200.0 mg/L 1 H 1 45 9/29/2016 HM Idethane EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM Idethane EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM Idethane EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Idethane EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Idethane EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM Idethane EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Iron	EPA200.7	μg/L	Not Detected		10	300	10/5/2016	MW
ithium EPA200.8 μg/L 19 1 10/11/2016 SM dagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW danganese, Dissolved EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW danganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW dercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM dethane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM dolybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM dickel, Total EPA200.8 μg/L Not Detected 10 10 10/11/2016 SM distrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM distrate + Nitrite as NO2-N EPA300.0 mg/L 0.4 H 0.1	Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	10/5/2016	MW
Idagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Idanganese, Dissolved EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idanganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Idethane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Idickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idirate as NO3 EPA300.0 mg/L Not Detected 10 100 10/11/2016 SM Idirate as NO3-N EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Idirate+Nitrite as NO2-N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM	Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected		0.5		10/6/2016	BS
Manganese, Dissolved EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Manganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Mercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Methane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 10 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate +Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrate as NO2-N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM	Lithium	EPA200.8	μg/L	19		1		10/11/2016	SM
Manganese, Total EPA200.7 μg/L Not Detected 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Idethane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Idolybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM Idickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Idirate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Idirate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM Idirate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM Idirate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Magnesium	EPA200.7	mg/L	17		0.5		10/5/2016	MW
Mercury, Total EPA200.8 μg/L Not Detected 0.5 2 10/11/2016 SM Methane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Manganese, Dissolved	EPA200.7	μg/L	Not Detected		10	50	10/5/2016	MW
Methane EPA174/175 μg/L 2.2 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Manganese, Total	EPA200.7	μg/L	Not Detected		10	50	10/5/2016	MW
Molybdenum, Total EPA200.8 μg/L 6 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Mercury, Total	EPA200.8	μg/L	Not Detected		0.5	2	10/11/2016	SM
Lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM Litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM Litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Methane	EPA174/175	μg/L	2.2	ΗE	0.1		10/6/2016	MCCAM
litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Molybdenum, Total	EPA200.8	μg/L	6		1	1000	10/11/2016	SM
litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nickel, Total	EPA200.8	μg/L	Not Detected		10	100	10/11/2016	SM
litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nitrate as NO3	EPA300.0	mg/L	11	Н	1	45	9/29/2016	НМ
litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nitrate as NO3-N	EPA300.0	mg/L	0.2	Н	0.1	10	9/29/2016	НМ
·	Nitrate+Nitrite as N	EPA300.0	mg/L	0.4	Н	0.1		9/29/2016	HM
-Phosphate-P, Dissolved EPA300.0 mg/L 0.1 H 0.1 9/29/2016 HM	Nitrite as NO2-N	EPA300.0	mg/L	0.3	Н	0.1	1.0	9/29/2016	HM
	o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.1	Н	0.1		9/29/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Monterey Bay Analytical Services 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

www.MBASinc.com ELAP Certification Number: 2385

Wednesday, November 02, 2016

Lab Number: AB54458

Collection Date/Time: 9/21/2016 9:30 Sample Collector: LEAR J Client Sample #:
Submittal Date/Time: 9/28/2016 15:30 Sample ID Coliform Designation:

Odbilittai Bato, Illilo. 0/20/2	010 10.00	Campio ID				OOO D	ooignation.	
		Sample	Description:	ASR1				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.4		0.1		9/28/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.13	PH	0.03		10/4/2016	LRH
Potassium	EPA200.7	mg/L	4.0		0.5		10/5/2016	MW
QC Anion Sum x 100	Calculation	%	100%				9/30/2016	MP
QC Anion-Cation Balance	Calculation	%	2				10/7/2016	MW
QC Cation Sum x 100	Calculation	%	105%				10/7/2016	MW
QC Ratio TDS/SEC	Calculation		0.62				10/4/2016	MP
Selenium, Total	EPA200.8	μg/L	2		2	50	10/11/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	33		0.5		10/5/2016	MW
Sodium	EPA200.7	mg/L	71		0.5		10/5/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	763		1	900	9/30/2016	HM
Strontium, Total	EPA200.8	μg/L	308		5		10/11/2016	SM
Sulfate	EPA300.0	mg/L	96		1	250	9/29/2016	HM
TOC	SM5310C	mg/L	1.0		0.2		10/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	471	Н	10	500	9/29/2016	MP
Total Nitrogen	Calculation	mg/L	0.5		0.5		10/6/2016	MP
Total Radium 226	EPA903.0	pCi/L	0.758 ± 0.437	E		3	10/12/2016	FGL
Trihalomethanes	EPA524.2	μg/L	28.9	E		80	10/4/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	1		1	30	10/11/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	10/11/2016	SM
Zinc, Total	EPA200.8	μg/L	87		20	5000	10/11/2016	SM

Sample Comments:

H: Analyzed outside of holding time. (Received at 7 days/6 hours) IH: ICV and/or CCV below acceptance limits

PH: Preserved after the reccomended time. (Pres at 7 days/6 hour

limits.

Report Approved by

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

ternal Laboratory Report attacrimer

D = Method deviates from standard method due to insufficient sample for MS/MSD

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Wednesday, November 02, 2016

Lab Number: AB54459

Collection Date/Time: 9/21/2016 13:00 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 9/28/2016 Sample ID Coliform Designation: 15:30

Ikalinity, Total (as CaCO3) SM2320B mg/L 171 10 9/30/2016 BS Iuminum, Total EPA2200.8 μg/L 13 LN 10 1000 10/11/2016 SM Immonia-N SM4500NH3 D mg/L Not Detected H, PH 0.05 10/3/2016 MW Irsenic, Total EPA200.8 μg/L 6 1 10 10/11/2016 SM Irinity, Total EPA200.8 μg/L 78 10 1000 10/11/2016 SM Irinity, Total EPA200.8 μg/L 78 10 1000 10/11/2016 SM Irinity, Total EPA200.8 μg/L 78 10 1000 10/11/2016 SM Irinity, Total EPA200.7 mg/L 0.05 0.05 10/5/2016 MP Irinity, Total EPA200.0 mg/L 0.05 0.05 10/5/2016 MW Irinity, Total EPA200.0 mg/L 0.2 0.1 9/29/2016 HM Irinity, Total EPA200.7 mg/L 53 0.5 10/5/2016 MW Irinity, Total EPA200.7 mg/L 53 0.5 10/5/2016 MP Irinity, Total EPA200.0 mg/L Not Detected 0.05 9/28/2016 HM Irinity, Total EPA200.0 mg/L 0.9° 0.2 10/19/2016 MW Irinity, Total EPA200.0 mg/L 0.9° 0.2 10/19/2016 MW Irinity, Total EPA200.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Irinity, Total EPA200.7 μg/L 56 10 300 10/5/2016 FGL Irinity, Total EPA200.7 μg/L 56 10 300 10/5/2016 MW Irinity, Total EPA200.7 μg/L 11 2 10/6/2016 SM Irinity, Total EPA200.7 μg/L 11 0.5 10/5/2016 MW Irinity, Total EPA200.8 μg/L 14 1 10/11/2016 SM Irinity, Total EPA200.8 μg/L 14 H 0.1 10/6/2016 MW Irinity, Total EPA200.8 μg/L 14 H 1 10/11/2016 SM Irinity, Total EPA200.8 μg/L 14 H 1 10/11/2016 SM Irinity, Total EPA200.8 μg/L 14 H 1 45 9/29/2016 HM Irinite as NO3 EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Irinite as NO3-N EPA300			Sam	ple Description:	ASR3				
Illuminum, Total	Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Marting Mart	Alkalinity, Total (as CaCO3)	SM2320B	mg/L	171		10		9/30/2016	BS
Page	Aluminum, Total	EPA200.8	μg/L	13	LN	10	1000	10/11/2016	SM
arium, Total EPA200.8 μg/L 78 10 1000 10/11/2016 SM cicarbonate (as HCO3+) SM2320B mg/L 209 10 9/30/2016 MP oron EPA200.7 mg/L 0.05 0.05 10/5/2016 MW romide EPA300.0 mg/L 0.2 0.1 9/29/2016 HM rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP rationate as CaCO3 SM2320B mg/L Not Detected 0.05 9/28/2016 LRH rationate as CaCO3 SM3500-CI G mg/L Not Detected 0.05 9/28/2016 LRH rationate as CaCO3 SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH rationate as CaCO3 SM3510C mg/L Not Detected 0.05 9/28/2016 LRH rationate as CaCO3 SM3510C mg/L 0.9* 0.2 10/19/2016 MW OCC SM5310C mg/L <td>Ammonia-N</td> <td>SM4500NH3 D</td> <td>mg/L</td> <td>Not Detected</td> <td>IH, PH</td> <td>0.05</td> <td></td> <td>10/3/2016</td> <td>MW</td>	Ammonia-N	SM4500NH3 D	mg/L	Not Detected	IH, PH	0.05		10/3/2016	MW
SM2320B mg/L 209 10 9/30/2016 MP	Arsenic, Total	EPA200.8	μg/L	6		1	10	10/11/2016	SM
oron EPA200.7 mg/L 0.05 0.05 10/5/2016 MW romide EPA300.0 mg/L 0.2 0.1 9/29/2016 HM raticium EPA200.7 mg/L 53 0.5 10/5/2016 MW raticium EPA200.7 mg/L Not Detected 10 9/30/2016 MW raticium EPA300.0 mg/L Not Detected 10.0 9/30/2016 MP richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH richoramines SM4500-CI G mg/L Not Detected 0.05 9/28/2016 LRH richoramines SM4500-CI G mg/L 0.9* 0.2 10/19/2016 MW richoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM ricos Alpha EPA300.0 mg/L 4.28 ± 1.73 E 15 10/7/2016 FGL ricos Alpha EPA400.7 µg/L 3 <	Barium, Total	EPA200.8	μg/L	78		10	1000	10/11/2016	SM
romide EPA300.0 mg/L 0.2 0.1 9/29/2016 HM rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP rationate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 LRH rationate as CaCO3 SM4500-C1 G mg/L Not Detected 0.05 9/28/2016 LRH rationate as CaCO3 SM4500-C1 G mg/L 0.9* 0.2 10/19/2016 HM rationate EPA300.0 mg/L 0.9* 0.2 10/19/2016 HM rationate EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM rationate EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM rationate EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM rationate EPA300.0 pCi/L 4.28 ± 1.73 E 15 10/7/2016 FGL rationate EPA300.0 pCi/L 4.28 ± 1.73 E 15 10/7/2016 FGL rationate EPA300.7 µg/L 3 E 60 10/5/2016 FGL rationate EPA200.7 µg/L 56 10 300 10/5/2016 MW rationate EPA200.7 µg/L Not Detected 10 300 10/5/2016 MW rationate EPA200.7 µg/L Not Detected 10 300 10/5/2016 MW rationate EPA200.8 µg/L 11 2 10/6/2016 BS rationate EPA200.7 µg/L 17 0.5 10/5/2016 MW rationate EPA200.7 µg/L 17 0.5 10/5/2016 MW rationate EPA200.7 µg/L 12 10 50 10/5/2016 MW rationate EPA200.7 µg/L 13 10 50 10/5/2016 MW rationate EPA200.7 µg/L 13 10 50 10/5/2016 MW rationate EPA200.8 µg/L 11 0.5 2 10/11/2016 SM rationate EPA200.8 µg/L 1 1 0.5 2 10/11/2016 SM rationate EPA200.8 µg/L 1 1 0.5 2 10/11/2016 SM rationate EPA200.8 µg/L 1 1 0.5 2 10/11/2016 SM rationate EPA200.8 µg/L 1 1 0.5 0 10/5/2016 MCCAM rationate EPA300.0 mg/L 1.4 H E 0.1 100 10/11/2016 SM rationate EPA300.0 mg/L 1.4 H E 0.1 100 10/11/2016 SM rationate EPA300.0 mg/L 1 H 1 1 45 9/29/2016 HM rationate RASIO3 EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM rationate RASIO3.0 mg/L 0.4 H 0.1 10 9/29/2016 HM rationate RASIO3.0 mg/L 0.4 H 0.1 10 9/29/2016 HM rationate RASIO3.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM rationate RASIO3.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM rationate RASIO3.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM	Bicarbonate (as HCO3-)	SM2320B	mg/L	209		10		9/30/2016	MP
EPA200.7 mg/L S3 0.5 10/5/2016 MW	Boron	EPA200.7	mg/L	0.05		0.05		10/5/2016	MW
Airbonate as CaCO3 SM2320B mg/L Not Detected 10 9/30/2016 MP Arbonate as CaCO3 SM4500-Cl G mg/L Not Detected 0.05 9/28/2016 LRH Arboride EPA300.0 mg/L 58 1 250 9/29/2016 HM OC SM5310C mg/L 0.9* 0.2 10/19/2016 MW Iduoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Iduoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Iduoratic Acids EPA300.0 pc/L 4.28 ± 1.73 E 15 10/7/2016 FGL Ialoacetic Acids EPA502.7 µg/L 3 E 60 10/5/2016 FGL Ialoacetic Acids EPA200.7 µg/L 56 10 300 10/5/2016 MW on EPA200.7 µg/L Not Detected 10 300 10/5/2016 MW <td< td=""><td>Bromide</td><td>EPA300.0</td><td>mg/L</td><td>0.2</td><td></td><td>0.1</td><td></td><td>9/29/2016</td><td>HM</td></td<>	Bromide	EPA300.0	mg/L	0.2		0.1		9/29/2016	HM
Not Detected 0.05 9/28/2016 LRH	Calcium	EPA200.7	mg/L	53		0.5		10/5/2016	MW
thloride EPA300.0 mg/L 58 1 250 9/29/2016 HM OC SM5310C mg/L 0.9° 0.2 10/19/2016 MW Iluoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Iluoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Isross Alpha EPA900.0 pCi/L 4.28 ± 1.73 E 15 10/7/2016 FGL Ialoacetic Acids EPA552 μg/L 3 E 60 10/5/2016 FGL Ialoacetic Acids EPA552 μg/L 56 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L 1 2 10/6/2016 BS Ithium EPA200.8 μg/L 14 1 1 10/11/2016 SM Idanganese, Dissolved EPA200.7 μg/L 17 0.5 10/5/2016 MW Idanganese, Dissolved EPA200.7 μg/L 12 10 50 10/5/2016 MW Idanganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 5 2 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 0.5 0 10/5/2016 MCCAM Idercury, Total EPA200.8 μg/L 1 1 0.0 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 1000 10/11/2016 SM Idercury, Total EPA200.8 μg/L 1 1 1 1000 10/11/2016 SM Idercury, Total EPA200.8 μg/L Not Detected 10 10/10/11/2016 SM Idercury, Total EPA200.8 μg/L Not Detected 10 10/10/11/2016 SM Idercury, Total EPA200.0 mg/L 0.2 H 0.1 10 9/29/2016 HM Idercury, Total EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM Idercury, Total EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM	Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		9/30/2016	MP
OCC SM5310C mg/L 0.9* 0.2 10/19/2016 MW Iluoride EPA300.0 mg/L 0.3 0.1 2.0 9/29/2016 HM Ilioride EPA300.0 pCi/L 4.28 ± 1.73 E 15 10/7/2016 FGL Ialoacetic Acids EPA552 µg/L 3 E 60 10/5/2016 FGL Ialoacetic Acids EPA552 µg/L 3 E 60 10/5/2016 FGL Ialoacetic Acids EPA552 µg/L 56 10 300 10/5/2016 MW Ion, Dissolved EPA200.7 µg/L Not Detected 10 300 10/5/2016 MW Ion, Dissolved EPA200.7 µg/L 1 2 10/6/2016 BS Ithium EPA200.8 µg/L 14 1 10/11/2016 SM Ianganesium EPA200.7 µg/L 17 0.5 10/5/2016 MW Ianganese, Dissolved EPA200.7 µg/L 12 10 50 10/5/2016 MW Ianganese, Total EPA200.8 µg/L 1 0.5 2 10/11/2016 SM Iercury, Total EPA200.8 µg/L 1 0.5 2 10/11/2016 SM Ielthane EPA174/175 µg/L 1.4 H E 0.1 10/6/2016 MCCAM Iolybdenum, Total EPA200.8 µg/L 1 1 1000 10/11/2016 SM Itirate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Itirate as NO3-N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM Itirate as NO3-N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 0.1 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		9/28/2016	LRH
Louride	Chloride	EPA300.0	mg/L	58		1	250	9/29/2016	НМ
Gross Alpha EPA900.0 pCi/L 4.28 ± 1.73 E 15 10/7/2016 FGL Ialoacetic Acids EPA552 μg/L 3 E 60 10/5/2016 FGL on EPA200.7 μg/L 56 10 300 10/5/2016 MW on, Dissolved EPA200.7 μg/L Not Detected 10 300 10/5/2016 MW on, Dissolved EPA200.8 μg/L 1 2 10/6/2016 BS ithium EPA200.8 μg/L 14 1 10/11/2016 SM Iagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Ianganese, Dissolved EPA200.7 μg/L 12 10 50 10/5/2016 MW Ianganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW Iercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM Ierthane <t< td=""><td>DOC</td><td>SM5310C</td><td>mg/L</td><td>0.9*</td><td></td><td>0.2</td><td></td><td>10/19/2016</td><td>MW</td></t<>	DOC	SM5310C	mg/L	0.9*		0.2		10/19/2016	MW
FPA552 μg/L 3 E 60 10/5/2016 FGL	Fluoride	EPA300.0	mg/L	0.3		0.1	2.0	9/29/2016	НМ
on EPA200.7 µg/L 56 10 300 10/5/2016 MW on, Dissolved EPA200.7 µg/L Not Detected 10 300 10/5/2016 MW ighldahl Nitrogen SM4500-NH3 B,C. mg/L 1 2 10/6/2016 BS ithium EPA200.8 µg/L 14 1 10/11/2016 SM dagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW danganese, Dissolved EPA200.7 µg/L 12 10 50 10/5/2016 MW danganese, Total EPA200.7 µg/L 13 10 50 10/5/2016 MW dercury, Total EPA200.8 µg/L 1 0.5 2 10/11/2016 SM dethane EPA174/175 µg/L 1.4 H E 0.1 10/6/2016 MCCAM follybdenum, Total EPA200.8 µg/L Not Detected 10 100 10/11/2016 SM lit	Gross Alpha	EPA900.0	pCi/L	4.28 ± 1.73	E		15	10/7/2016	FGL
Not Detected 10 300 10/5/2016 MW	Haloacetic Acids	EPA552	μg/L	3	E		60	10/5/2016	FGL
SM4500-NH3 B,C. mg/L	Iron	EPA200.7	μg/L	56		10	300	10/5/2016	MW
ithium EPA200.8 μg/L 14 1 10/11/2016 SM dagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW danganese, Dissolved EPA200.7 μg/L 12 10 50 10/5/2016 MW danganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW dercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM dethane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM dolybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM dickel, Total EPA200.8 μg/L Not Detected 10 10 10/11/2016 SM distrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM distrate + Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/20	Iron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	10/5/2016	MW
Idagnesium EPA200.7 mg/L 17 0.5 10/5/2016 MW Idanganese, Dissolved EPA200.7 μg/L 12 10 50 10/5/2016 MW Idanganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW Idercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM Idethane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM Idiokel, Total EPA200.8 μg/L Not Detected 10 10/11/2016 SM Idirate as NO3 EPA300.0 mg/L Not Detected 10 10/11/2016 SM Iditrate as NO3-N EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Iditrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM Iditrate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0	Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	1		2		10/6/2016	BS
Manganese, Dissolved EPA200.7 μg/L 12 10 50 10/5/2016 MW Manganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW Mercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM Methane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM Mickel, Total EPA200.8 μg/L Not Detected 10 10 10/11/2016 SM Itirate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Itirate +Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM Itirate as NO2-N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM	Lithium	EPA200.8	μg/L	14		1		10/11/2016	SM
Manganese, Total EPA200.7 μg/L 13 10 50 10/5/2016 MW Mercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM Methane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrate as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Magnesium	EPA200.7	mg/L	17		0.5		10/5/2016	MW
Mercury, Total EPA200.8 μg/L 1 0.5 2 10/11/2016 SM Methane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Manganese, Dissolved	EPA200.7	μg/L	12		10	50	10/5/2016	MW
Methane EPA174/175 μg/L 1.4 H E 0.1 10/6/2016 MCCAM Molybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 1.0 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Manganese, Total	EPA200.7	μg/L	13		10	50	10/5/2016	MW
Molybdenum, Total EPA200.8 μg/L 21 1 1000 10/11/2016 SM lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Mercury, Total	EPA200.8	μg/L	1		0.5	2	10/11/2016	SM
Lickel, Total EPA200.8 μg/L Not Detected 10 100 10/11/2016 SM Litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM Litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM Litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM Litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Methane	EPA174/175	μg/L	1.4	ΗE	0.1		10/6/2016	MCCAM
litrate as NO3 EPA300.0 mg/L 1 H 1 45 9/29/2016 HM litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Molybdenum, Total	EPA200.8	μg/L	21		1	1000	10/11/2016	SM
litrate as NO3-N EPA300.0 mg/L 0.2 H 0.1 10 9/29/2016 HM litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nickel, Total	EPA200.8	μg/L	Not Detected		10	100	10/11/2016	SM
litrate+Nitrite as N EPA300.0 mg/L 0.4 H 0.1 9/29/2016 HM litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nitrate as NO3	EPA300.0	mg/L	1	Н	1	45	9/29/2016	НМ
litrite as NO2-N EPA300.0 mg/L 0.3 H 0.1 1.0 9/29/2016 HM	Nitrate as NO3-N	EPA300.0	mg/L	0.2	Н	0.1	10	9/29/2016	НМ
5	Nitrate+Nitrite as N	EPA300.0	mg/L	0.4	Н	0.1		9/29/2016	HM
-Phosphate-P, Dissolved EPA300.0 mg/L 0.2 H 0.1 9/29/2016 HM	Nitrite as NO2-N	EPA300.0	mg/L	0.3	Н	0.1	1.0	9/29/2016	HM
	o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.2	Н	0.1		9/29/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L: Micrograms per liter (=ppb)

D = Method deviates from standard method due to insufficient sample for MS/MSD

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Monterey Bay Analytical Services
4 Justin Court Suite D, Monterey, CA 93940
831.375.MBAS

www.MBASinc.com ELAP Certification Number: 2385

Wednesday, November 02, 2016

Lab Number: AB54459

Collection Date/Time: 9/21/2016 13:00 Sample Collector: LEAR J Client Sample #:
Submittal Date/Time: 9/28/2016 15:30 Sample ID Coliform Designation:

		Sample	Description:	ASR3				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.5		0.1		9/28/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.27	PH	0.03		10/4/2016	LRH
Potassium	EPA200.7	mg/L	3.6		0.5		10/5/2016	MW
QC Anion Sum x 100	Calculation	%	100%				9/30/2016	MP
QC Anion-Cation Balance	Calculation	%	1				10/7/2016	MW
QC Cation Sum x 100	Calculation	%	102%				10/7/2016	MW
QC Ratio TDS/SEC	Calculation		0.65				10/4/2016	MP
Selenium, Total	EPA200.8	μg/L	3		2	50	10/11/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	29		0.5		10/5/2016	MW
Sodium	EPA200.7	mg/L	59		0.5		10/5/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	657		1	900	9/30/2016	НМ
Strontium, Total	EPA200.8	μg/L	281		5		10/11/2016	SM
Sulfate	EPA300.0	mg/L	72		1	250	9/29/2016	НМ
TOC	SM5310C	mg/L	1.0		0.2		10/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	426	Н	10	500	9/29/2016	MP
Total Nitrogen	Calculation	mg/L	1.5		0.5		10/6/2016	MP
Total Radium 226	EPA903.0	pCi/L	0.178 ± 0.302	E		3	10/12/2016	FGL
Trihalomethanes	EPA524.2	μg/L	61.4	E		80	10/3/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	3		1	30	10/11/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected		5	1000	10/11/2016	SM
Zinc, Total	EPA200.8	μg/L	266		20	5000	10/11/2016	SM

Sample Comments:

H: Analyzed outside of holding time. (Received at 7 days/2.5 hours) IH: ICV and/or CCV below acceptance limit

PH: Preserved after the reccomended time. (Pres at 7 days/2.5 ho

limits.

Report Approved by

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

kternar Laboratory Report attacrime

D = Method deviates from standard method due to insufficient sample for MS/MSD

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Wednesday, November 02, 2016

Lab Number: AB54460

Collection Date/Time: 9/27/2016 10:00 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 9/28/2016 Sample ID Coliform Designation: 15:30

			· <u> </u>				9	
		Sam	ple Description:	ASR2				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	180		10		9/30/2016	BS
Aluminum, Total	EPA200.8	μg/L	Not Detected	LN	10	1000	10/11/2016	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	IH	0.05		10/3/2016	MW
Arsenic, Total	EPA200.8	μg/L	1		1	10	10/11/2016	SM
Barium, Total	EPA200.8	μg/L	83		10	1000	10/11/2016	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	220		10		9/30/2016	MP
Boron	EPA200.7	mg/L	0.06		0.05		10/5/2016	MW
Bromide	EPA300.0	mg/L	0.2		0.1		9/29/2016	НМ
Calcium	EPA200.7	mg/L	60		0.5		10/5/2016	MW
Carbonate as CaCO3	SM2320B	mg/L	Not Detected		10		9/30/2016	MP
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		9/28/2016	LRH
Chloride	EPA300.0	mg/L	64		1	250	9/29/2016	НМ
OOC	SM5310C	mg/L	Not Collected		0.2		9/27/2016	JL
-luoride	EPA300.0	mg/L	0.3		0.1	2.0	9/29/2016	НМ
Gross Alpha	EPA900.0	pCi/L	2.59 ± 2.16	Е		15	10/10/2016	FGL
Haloacetic Acids	EPA552	μg/L	Not Detected	E		60	10/6/2016	FGL
ron	EPA200.7	μg/L	66		10	300	10/5/2016	MW
ron, Dissolved	EPA200.7	μg/L	Not Detected		10	300	10/5/2016	MW
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	1		2		10/6/2016	BS
ithium	EPA200.8	μg/L	14		1		10/11/2016	SM
Magnesium	EPA200.7	mg/L	19		0.5		10/5/2016	MW
Manganese, Dissolved	EPA200.7	μg/L	10		10	50	10/5/2016	MW
Manganese, Total	EPA200.7	μg/L	11		10	50	10/5/2016	MW
Mercury, Total	EPA200.8	μg/L	1		0.5	2	10/11/2016	SM
Methane	EPA174/175	μg/L	1.7	ΗE	0.1		10/6/2016	MCCAM
Molybdenum, Total	EPA200.8	μg/L	6		1	1000	10/11/2016	SM
Nickel, Total	EPA200.8	μg/L	Not Detected		10	100	10/11/2016	SM
Nitrate as NO3	EPA300.0	mg/L	1		1	45	9/29/2016	НМ
Nitrate as NO3-N	EPA300.0	mg/L	0.2		0.1	10	9/29/2016	НМ
Nitrate+Nitrite as N	EPA300.0	mg/L	0.5		0.1		9/29/2016	НМ
Nitrite as NO2-N	EPA300.0	mg/L	0.3		0.1	1.0	9/29/2016	НМ
o-Phosphate-P, Dissolved	EPA300.0	mg/L	0.3		0.1		9/29/2016	НМ

mg/L: Milligrams per liter (=ppm)

ug/L: Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Monterey Bay Analytical Services
4 Justin Court Suite D, Monterey, CA 93940
831.375.MBAS

www.MBASinc.com

ELAP Certification Number: 2385

Wednesday, November 02, 2016

Lab Number: AB54460

Collection Date/Time: 9/27/2016 10:00 Sample Collector: LEAR J Client Sample #:
Submittal Date/Time: 9/28/2016 15:30 Sample ID Coliform Designation:

		Sample	Description: ASR2				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
pH (Laboratory)	SM4500-H+B	pH (H)	7.5	0.1		9/28/2016	BS
Phosphorus, Total	HACH 8190	mg/L	0.25	0.03		10/4/2016	LRH
Potassium	EPA200.7	mg/L	3.8	0.5		10/5/2016	MW
QC Anion Sum x 100	Calculation	%	101%			9/30/2016	MP
QC Anion-Cation Balance	Calculation	%	2			10/7/2016	MW
QC Cation Sum x 100	Calculation	%	105%			10/7/2016	MW
QC Ratio TDS/SEC	Calculation		0.61			10/4/2016	MP
Selenium, Total	EPA200.8	μg/L	2	2	50	10/11/2016	SM
Silica as SiO2, Total	EPA200.7	mg/L	29	0.5		10/5/2016	MW
Sodium	EPA200.7	mg/L	64	0.5		10/5/2016	MW
Specific Conductance (E.C)	SM2510B	µmhos/cm	707	1	900	9/30/2016	НМ
Strontium, Total	EPA200.8	μg/L	300	5		10/11/2016	SM
Sulfate	EPA300.0	mg/L	81	1	250	9/29/2016	НМ
TOC	SM5310C	mg/L	1.1	0.2		10/19/2016	MW
Total Diss. Solids	SM2540C	mg/L	431	10	500	9/29/2016	MP
Total Nitrogen	Calculation	mg/L	1.5	0.5		10/6/2016	MP
Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.246 E		3	10/12/2016	FGL
Trihalomethanes	EPA524.2	μg/L	47.9 E		80	10/4/2016	FGL
Uranium by ICP/MS	EPA200.8	μg/L	1	1	30	10/11/2016	SM
Vanadium, Total	EPA200.8	μg/L	Not Detected	5	1000	10/11/2016	SM
Zinc, Total	EPA200.8	μg/L	317	20	5000	10/11/2016	SM

Sample Comments: IH: ICV and/or CCV below acceptance limits. LN: MS and/or MSD below acceptance limit

Report Approved by

 $mg/L: \ Milligrams \ per \ liter \ (=ppm) \qquad \qquad ug/L: \ Micrograms \ per \ liter \ (=ppb) \qquad \qquad PQL: \ Practical \ Quantitation \ Limit$

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

831.375.MBAS

www.MBASinc.com **ELAP Certification Number: 2385**

Wednesday, November 02, 2016

Lab Number: AB54461

Collection Date/Time: 9/27/2016 11:00 Sample Collector: LEAR J Client Sample #: Submittal Date/Time: 9/28/2016 Sample ID Coliform Designation: 15:30

Sample Description: MW1									
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:		
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		9/28/2016	LRH		
Chloride	EPA300.0	mg/L	47	1	250	9/29/2016	НМ		
Haloacetic Acids	EPA552	μg/L	Not Detected E		60	10/6/2016	FGL		
Trihalomethanes	EPA524.2	μg/L	1.9 E		80	10/3/2016	FGL		

Sample Comments:

Report Approved by

mg/L: Milligrams per liter (=ppm) H = Analyzed ouside of hold time

ug/L: Micrograms per liter (=ppb) E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

PQL: Practical Quantitation Limit

D = Method deviates from standard method due to insufficient sample for MS/MSD

October 14, 2016

Monterey Bay Analytical Services Lab ID : SP 1611647 4 Justin Court Customer : 2-19144

Monterey, CA 93940

Laboratory Report

Introduction: This report package contains total of 14 pages divided into 3 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (9 pages): Results for each sample submitted.

Quality Control (3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
ASR4	09/21/2016	09/30/2016	SP 1611647-001	W
ASR1	09/21/2016	09/30/2016	SP 1611647-002	W
ASR3	09/21/2016	09/30/2016	SP 1611647-003	W
ASR2	09/27/2016	09/30/2016	SP 1611647-004	W
MW1	09/27/2016	09/30/2016	SP 1611647-005	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

551.1	10/03/2016:214445 All analysis quality controls are within established criteria.
	10/04/2016:214446 All analysis quality controls are within established criteria.
	10/03/2016:211902 All preparation quality controls are within established criteria, except: The following note applies to Decafluorobiphenyl: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
552	10/04/2016:211980 All preparation quality controls are within established criteria, except: The following note applies to Monochloroacetic Acid: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

October 14, 2016 **Monterey Bay Analytical Services**

Customer : 2-19144

: SP 1611647

Organic QC

Lab ID

552.2	10/05/2016:214521 All analysis quality controls are within established criteria.
	10/06/2016:214521 All analysis quality controls are within established criteria.

Radio QC

900.0	10/10/2016:214770 All analysis quality controls are within established criteria.
	10/07/2016:214771 All analysis quality controls are within established criteria.
	10/06/2016:212066 All preparation quality controls are within established criteria.
903.0	10/12/2016:214916 All analysis quality controls are within established criteria.
	10/10/2016:212044 All preparation quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

October 14, 2016 Lab ID : SP 1611647-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-10:30

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On: September 30, 2016-12:00

Matrix : Water

Description : ASR4 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	101	80-120	%		551.1	10/03/16:211902	551.1	10/03/16:214445
Bromodichloromethane	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Bromoform	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Chloroform	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Dibromochloromethane	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Total Trihalomethanes	ND		ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	101	70-130	%		552	10/04/16:211980	552.2	10/05/16:214521
Bromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Chloroacetic Acid	ND	2	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Dibromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Dichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Trichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Haloacetic acids (five)	ND		ug/L		552	10/04/16:211980	552.2	10/05/16:214521

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

October 14, 2016 Lab ID : SP 1611647-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-10:30

Sampled By : Jonathan Lear Monterey, CA 93940

Received On: September 30, 2016-12:00

: Water Matrix

Description : ASR4 **Project** : MPWMD

Sample Result - Radio

Constituent	Result ± Error MDA Units MCL		MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	Result ± Ellor	MDA	Omts			Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	3.01 ± 2.64	2.78	pCi/L	15/5	900.0	10/06/16-09:04 2P1612066	900.0	10/07/16-13:00 2A1614771
Total Alpha Radium (226)	0.760 ± 0.438	0.470	pCi/L	3	903.0	10/10/16-17:00 2P1612044	903.0	10/12/16-10:40 2A1614916

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

October 14, 2016 Lab ID : SP 1611647-002

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-09:30

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On: September 30, 2016-12:00

Matrix : Water

Description : ASR1 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	116	80-120	%		551.1	10/03/16:211902	551.1	10/04/16:214446
Bromodichloromethane	7.6	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Bromoform	0.5	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Chloroform	18.8	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Dibromochloromethane	2.0	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Total Trihalomethanes	28.9		ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	106	70-130	%		552	10/04/16:211980	552.2	10/05/16:214521
Bromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Chloroacetic Acid	ND	2	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Dibromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Dichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Trichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521
Haloacetic acids (five)	ND		ug/L		552	10/04/16:211980	552.2	10/05/16:214521

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

October 14, 2016 Lab ID : SP 1611647-002

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-09:30

Sampled By : Jonathan Lear Monterey, CA 93940

Received On: September 30, 2016-12:00

: Water Matrix

Description : ASR1 **Project** : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units MCL/AL Sample Preparation Sampl			e Analysis		
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	2.52 ± 1.55	1.51	pCi/L	15/5	900.0	10/06/16-09:04 2P1612066	900.0	10/10/16-07:00 2A1614770
Total Alpha Radium (226)	0.758 ± 0.437	0.470	pCi/L	3	903.0	10/10/16-17:00 2P1612044	903.0	10/12/16-11:00 2A1614916

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

: SP 1611647-003 October 14, 2016 Lab ID

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-13:00

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On: September 30, 2016-12:00

Matrix : Water

Description : ASR3 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis		
	Kesuit	1 QL	Omts	Note	Method	Date/ID	Method	Date/ID	
EPA 551.1 ^{VOA:1'15}									
Decafluorobiphenyl [‡]	88.7	80-120	%		551.1	10/03/16:211902	551.1	10/03/16:214445	
Bromodichloromethane	15.9	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445	
Bromoform	0.8	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445	
Chloroform	36.7	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445	
Dibromochloromethane	8.0	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445	
Total Trihalomethanes	61.4		ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445	
EPA 552.2 ^{AGT:1'12}									
2,3-Dibromopropionic Acid [‡]	108	70-130	%		552	10/04/16:211980	552.2	10/05/16:214521	
Bromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521	
Chloroacetic Acid	ND	2	ug/L		552	10/04/16:211980	552.2	10/05/16:214521	
Dibromoacetic Acid	1	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521	
Dichloroacetic Acid	2	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521	
Trichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/05/16:214521	
Haloacetic acids (five)	3		ug/L		552	10/04/16:211980	552.2	10/05/16:214521	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

Analytical Chemists

October 14, 2016 Lab ID : SP 1611647-003

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 21, 2016-13:00

Sampled By : Jonathan Lear Monterey, CA 93940

Received On: September 30, 2016-12:00

: Water Matrix

Description : ASR3 **Project** : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Effor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	4.28 ± 1.73	1.47	pCi/L	15/5	900.0	10/06/16-09:04 2P1612066	900.0	10/07/16-14:00 2A1614771
Total Alpha Radium (226)	0.178 ± 0.302	0.470	pCi/L	3	903.0	10/10/16-17:00 2P1612044	903.0	10/12/16-11:20 2A1614916

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

: SP 1611647-004 October 14, 2016 Lab ID

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 27, 2016-10:00

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On: September 30, 2016-12:00

Matrix : Water

Description : ASR2 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Samp	le Analysis
	Result	1 QL	Onts	14010	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	98.0	80-120	%		551.1	10/03/16:211902	551.1	10/04/16:214446
Bromodichloromethane	12.0	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Bromoform	0.6	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Chloroform	29.8	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Dibromochloromethane	5.5	0.5	ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
Total Trihalomethanes	47.9		ug/L		551.1	10/03/16:211902	551.1	10/04/16:214446
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	102	70-130	%		552	10/04/16:211980	552.2	10/06/16:214521
Bromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Chloroacetic Acid	ND	2	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Dibromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Dichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Trichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Haloacetic acids (five)	ND		ug/L		552	10/04/16:211980	552.2	10/06/16:214521

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

Analytical Chemists

October 14, 2016 Lab ID : SP 1611647-004

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 27, 2016-10:00

Sampled By : Jonathan Lear Monterey, CA 93940

Received On: September 30, 2016-12:00

: Water Matrix

Description : ASR2 **Project** : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	2.59 ± 2.16	2.05	pCi/L	15/5	900.0	10/06/16-09:04 2P1612066	900.0	10/10/16-09:00 2A1614770
Total Alpha Radium (226)	0.000 ± 0.246	0.470	pCi/L	3	903.0	10/10/16-17:00 2P1612044	903.0	10/12/16-11:40 2A1614916

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

: SP 1611647-005 October 14, 2016 Lab ID

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : September 27, 2016-11:00

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On: September 30, 2016-12:00

Matrix : Water

Description : MW1 **Project** : MPWMD

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Sampl	le Analysis
	Result	1 QL	Omts	TVOIC	Method	Date/ID	Method	Date/ID
EPA 551.1 ^{VOA:1'15}								
Decafluorobiphenyl [‡]	94.3	80-120	%		551.1	10/03/16:211902	551.1	10/03/16:214445
Bromodichloromethane	0.7	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Bromoform	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Chloroform	1.2	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Dibromochloromethane	ND	0.5	ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
Total Trihalomethanes	1.9		ug/L		551.1	10/03/16:211902	551.1	10/03/16:214445
EPA 552.2 ^{AGT:1'12}								
2,3-Dibromopropionic Acid [‡]	105	70-130	%		552	10/04/16:211980	552.2	10/06/16:214521
Bromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Chloroacetic Acid	ND	2	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Dibromoacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Dichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Trichloroacetic Acid	ND	1	ug/L		552	10/04/16:211980	552.2	10/06/16:214521
Haloacetic acids (five)	ND		ug/L		552	10/04/16:211980	552.2	10/06/16:214521

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (AGT) Amber Glass TFE-Cap, (P) Plastic, (VOA) VOA Preservatives: NH4Cl, HNO3 pH < 2, Na2SO3 ‡Surrogate. * PQL adjusted for dilution.

October 14, 2016 Lab ID : SP 1611647 **Monterey Bay Analytical Services** : 2-19144 Customer

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Bromodichloromethane	551.1	10/03/16:211902SBL	Blank	ug/L		ND	< 0.5	
			LCS	ug/L	9.706	116 %	80-120	
			MS	ug/L	9.983	104 %	80-120	
		(SP 1611385-001)	MSD	ug/L	10.35	105 %	80-120	
			MSRPD	ug/L	10.35	4.0%	≤20	
	551.1	10/03/16:214445SBL	CCV	ug/L	83.33	90.8 %	80-120	
			CCV	ug/L	166.7	119 %	80-120	
	551.1	10/04/16:214446SBL	CCV	ug/L	83.33	90.7 %	80-120	
			CCV	ug/L	166.7	90.2 %	80-120	
Bromoform	551.1	10/03/16:211902SBL	Blank	ug/L	0.704	ND	<0.5	
			LCS MS	ug/L	9.706	119 %	80-120	
		(SP 1611385-001)	MSD	ug/L	9.983	102 %	80-120	
		(SP 1011383-001)	MSRPD	ug/L ug/L	10.35 10.35	104 % 5.3%	80-120 ≤20	
	551.1	10/03/16:214445SBL	CCV	ug/L ug/L	83.33	97.7 %	80-120	
	331.1	10/03/10.21 414 33BL	CCV	ug/L ug/L	166.7	120 %	80-120	
	551.1	10/04/16:214446SBL	CCV	ug/L ug/L	83.33	83.2 %	80-120	
	331.1	10/04/10.2144403DL	CCV	ug/L ug/L	166.7	94.2 %	80-120	
Chloroform	551.1	10/03/16:211902SBL	Blank	ug/L	10017	ND	<0.5	
Cinorororin	331.1	10/03/10.211702552	LCS	ug/L	9.706	116 %	80-120	
			MS	ug/L	9.983	99.1 %	80-120	
		(SP 1611385-001)	MSD	ug/L	10.35	101 %	80-120	
			MSRPD	ug/L	10.35	4.9%	≤20	
	551.1	10/03/16:214445SBL	CCV	ug/L	83.33	94.1 %	80-120	
			CCV	ug/L	166.7	116 %	80-120	
	551.1	10/04/16:214446SBL	CCV	ug/L	83.33	86.9 %	80-120	
			CCV	ug/L	166.7	88.9 %	80-120	
Decafluorobiphenyl	551.1	10/03/16:211902SBL	Blank	ug/L	18.72	83.3 %	80-120	
			LCS	ug/L	19.41	91.6 %	80-120	
			MS	ug/L	19.97	77.0 %	80-120	435
		(SP 1611385-001)	MSD	ug/L	20.70	89.0 %	80-120	
		10/02/15 21 11 15 27	MSRPD	ug/L	10.35	18.0%	≤20.0	
	551.1	10/03/16:214445SBL	CCV	ug/L	166.7	99.7 %	80-120	
	551.1	10/04/16 214446CDI	CCV	ug/L	333.3	93.3 %	80-120	
	551.1	10/04/16:214446SBL	CCV CCV	ug/L	166.7	114 %	80-120	
Dibromochloromethane	551.1	10/03/16:211902SBL	Blank	ug/L	333.3	80.1 % ND	80-120 <0.5	
Dibromochioromethane	331.1	10/05/10:2119025BL	LCS	ug/L ug/L	9.706	120 %	80-120	
			MS	ug/L ug/L	9.983	108 %	80-120	
		(SP 1611385-001)	MSD	ug/L ug/L	10.35	109 %	80-120	
		(31 1311131 331)	MSRPD	ug/L	10.35	3.9%	≤20	
	551.1	10/03/16:214445SBL	CCV	ug/L	83.33	98.2 %	80-120	
			CCV	ug/L	166.7	120 %	80-120	
	551.1	10/04/16:214446SBL	CCV	ug/L	83.33	94.8 %	80-120	
			CCV	ug/L	166.7	91.6 %	80-120	
2,3-Dibromopropionic Acid	552	10/04/16:211980sbl	Blank	ug/L	5.000	97.9 %	70-130	
			LCS	ug/L	5.000	117 %	70-130	
		(00 4 444 5 15 00 11	MS	ug/L	5.000	109 %	70-130	
		(SP 1611647-001)	MSD	ug/L	5.000	104 %	70-130	
57		10/04/16 211000 11	MSRPD	ug/L	5.000	5.0%	≤20.0	
Dibromoacetic Acid	552	10/04/16:211980sbl	Blank	ug/L	10.00	ND	<1	
			LCS	ug/L	10.00	98.0 %	70-130	
		(SP 1611647-001)	MS MSD	ug/L	10.00 10.00	106 %	70-130 70-130	
		(31 1011047-001)	MSRPD	ug/L ug/L	5.000	111 % 4.7%	≤20.0	
		1	MINIM D	ug/L	5.000	T. / /0	_20.0	

October 14, 2016 Lab ID

Monterey Bay Analytical Services Customer

Quality Control - Organic

: SP 1611647

: 2-19144

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Dichloroacetic Acid	552	10/04/16:211980sbl	Blank	ug/L		ND	<1	
7.0	552	10/0 // 10/211/00001	LCS	ug/L	10.00	103 %	70-130	
			MS	ug/L	10.00	111 %	70-130	
		(SP 1611647-001)	MSD	ug/L	10.00	119 %	70-130	
		(4	MSRPD	ug/L	5.000	6.5%	≤20.0	
Monobromoacetic Acid	552	10/04/16:211980sbl	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	103 %	70-130	
			MS	ug/L	10.00	107 %	70-130	
		(SP 1611647-001)	MSD	ug/L	10.00	115 %	70-130	
			MSRPD	ug/L	5.000	7.8%	≤20.0	
Monochloroacetic Acid	552	10/04/16:211980sbl	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	109 %	70-130	
			MS	ug/L	10.00	117 %	70-130	
		(SP 1611647-001)	MSD	ug/L	10.00	132 %	70-130	435
			MSRPD	ug/L	5.000	12.5%	≤20.0	
Trichloroacetic Acid	552	10/04/16:211980sbl	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	73.9 %	70-130	
			MS	ug/L	10.00	84.6 %	70-130	
		(SP 1611647-001)	MSD	ug/L	10.00	92.9 %	70-130	
			MSRPD	ug/L	5.000	8.8%	≤20.0	
2,3-Dibromopropionic Acid	552.2	10/05/16:214521SBL		ug/L	50.00	95.6 %	70-130	
			CCV	ug/L	75.00	86.6 %	70-130	
			CCV	ug/L	75.00	89.8 %	70-130	
Dibromoacetic Acid	552.2	10/05/16:214521SBL	CCV	ug/L	100.0	106 %	70-130	
			CCV	ug/L	150.0	110 %	70-130	
			CCV	ug/L	150.0	111 %	70-130	
Dichloroacetic Acid	552.2	10/05/16:214521SBL	CCV	ug/L	100.0	116 %	70-130	
			CCV	ug/L	150.0	114 %	70-130	
			CCV	ug/L	150.0	111 %	70-130	
Monobromoacetic Acid	552.2	10/05/16:214521SBL		ug/L	100.0	111 %	70-130	
			CCV	ug/L	150.0	110 %	70-130	
			CCV	ug/L	150.0	107 %	70-130	
Monochloroacetic Acid	552.2	10/05/16:214521SBL	CCV	ug/L	100.0	130 %	70-130	
			CCV	ug/L	150.0	128 %	70-130	
			CCV	ug/L	150.0	97.9 %	70-130	
Trichloroacetic Acid	552.2	10/05/16:214521SBL	CCV	ug/L	100.0	91.4 %	70-130	
			CCV	ug/L	150.0	93.0 %	70-130	
		<u> </u>	CCV	ug/L	150.0	96.6 %	70-130	

Definition CCV

MS

: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample

matrix affects analyte recovery.

MSD : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries

are an indication of how that sample matrix affects analyte recovery.

MSRPD : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

and analysis.

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

435 : Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

October 14, 2016 Lab ID : SP 1611647

Monterey Bay Analytical Services Customer : 2-19144

Quality Control - Radio

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	10/07/16:214771caa	CCV CCB	cpm cpm	8566	42.3 % 0.100	39 - 47 0.18	
	900.0	10/10/16:214770caa	CCV CCB	cpm cpm	8566	42.3 % 0.100	39 - 48 0.14	
Gross Alpha	900.0	10/06/16:212066RMM (SP 1611632-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4 107.4	1.12 105 % 113 % 127 % 11.2%	3 75-125 60-140 60-140 ≤30	
Alpha	903.0	10/12/16:214916caa	CCV CCB	cpm cpm	8562	42.3 % 0.1200	38 - 47 0.19	
Total Alpha Radium (226)	903.0	10/10/16:212044emv	RgBlk LCS BS BSD BSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	21.86 21.86 21.86 21.86	0.09 102 % 88.7 % 88.1 % 0.7%	2 52-107 43-111 43-111 ≤35.5	

Definition CCV $: Continuing\ Calibration\ Verification\ -\ Analyzed\ to\ verify\ the\ instrument\ calibration\ is\ within\ criteria.$ CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result. LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD are an indication of how that sample matrix affects analyte recovery. : Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS affecting analyte recovery. : Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD the preparation process is not affecting analyte recovery. : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD : BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation

: Data Quality Objective - This is the criteria against which the quality control data is compared.

BSRPD

DQO

and analysis.

www.fglinc.com

CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT

	Monterey Bay Analytica er Number: 2019144 : 4 Justin Court	l Services			ab N []][umber	7_					TES	ST D	ESCI	RIPT	ION	AND	ANA	LYS	SES F	REQU	ÆST	ED				
Project Purcha	Monterey, CA 93940 (831)375-6227 Fax: (83° ddress: info@mbasinc.com Person: David Holland Name: MPWMD se Order Number:	1)641-0734		Grab (G)		VOA (MT)Melai Tuba	Ag Water (AgW)	(GW) Ground Water (DW) Drinkong Water			Other (RPL)Replace	Produce)) HCI 37														
Rush A Rush p Electron Sample	Number: nalysis:	Client Other:		Mathod of Sampling: Composite (C)	Number of Containers	Type of Containers: (G) Glass (P)Pisstic (V)VOA (MT)Metal Tubs	Potable (P) Non-Potable (NP) Ag Wi	(SW) Surface Water (MW) Monttoring Well ((TB) Travel Blank (WW) Waste Water ((SLD) Solid (O) Oil	BecT. (Sys) System (SRC) Source (W) Waste	Bacf. (ROUT)Routine (RPT)Repasi (OTH)Other (RPL)Replace	(LT) Lesf Tissue (PET) Peliale Tissue (PRD) Produce	Preservative: (1) NaOH + ZnAc. (2) NaOH, (3) HCI (4) H2SO4, (5) HNO3. (6) Na2\$2O3. (7) Other	Gross Alpha	наа	Ra 226	THMS										
1.	ASR4	9/21/16	10:30	G							- · · · · ·			х	x	x	x										
2.	ASR1	9/21/16	09:30	G										х	x	x	x					-					-
3.	ASR3	9/21/16	13:00	G										х	x	×	x										
4.	ASR2	9/27/16	10:00	G										х	×	x	x										
5.	MW1	9/27/16	11:00	G											х		x										
																										ĺ	
Remari AB54	457,AB54458,AB54459,AB5446			Reling	nished	0	() P	ate:		ine: 400	F	Relingui G	shed SC)	Γ	Date:	7	ime:		Relinqu	uished		1	Date:	•	l'ime:	
	53346	89+		Receiv	red By:		D	ate:	Ti	me:	F	eceive (\ <u></u>		Date: USO		ime: (2)	- 1	Receiv	•			Date:		Γύπe:	
	rate Offices & Laboratory	Anthropista Commencial and the state of the	Office & Lobe		-1-1-1-1	*** ********			26500					~						-					-		

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2942 Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810 FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:								
1. Number of ice chests/packages re	ceived:	1						
2. Shipper tracking numbers	533468971							
3. Were samples received in a chilled Temps:	d condition?	6 /	/	/	_/	/	/	_/
4. Surface water (SWTR) bact sampl should be flagged unless the time	•		•	•			nether iced	or not,
5. Do the number of bottles received COC?	agree with the	Yes	No	N/A				
6. Verify sample date, time, sampler		Yes	No	N/A				
7. Were the samples received intact? bottles, leaks, etc.)	(i.e. no broken	Yes	No					
8. Were sample custody seals intact	?	Yes	No	N/A				
Sample Verification, Labeling and	Distribution:							
1. Were all requested analyses unde acceptable?	rstood and	Yes	No					
2. Did bottle labels correspond with the	ne client's ID's?	Yes	No					
3. Were all bottles requiring sample properly preserved? [Exception: Oil & Grease, VOA and		Yes	No	N/A F	FGL			
4. VOAs checked for Headspace?		Yes	No	N/A				
5. Were all analyses within holding til receipt?	mes at time of	Yes	No					
6. Have rush or project due dates be accepted?	en checked and	Yes	No	N/A				
Include a copy of the COC for lab de	iverv. (Bacti. Inc	organics a	nd Rad	dio)				
Sample Receipt, Login and Verificati	• ,	•		Reviewed a Approved		awn Peck	Title: Samp	gned by Shawn Peck ble Receiving 4/2016-09:21:43
Discrepency Documentation:			,					
Any items above which are "No" or d	o not meet spec		•	• •	oe resoi	vea.		
1. Person Contacted:			one Nu	ımber:				
Initiated By: Problem:		Dat	te:					
Problem.								
Resolution:								
2. Person Contacted:		Pho	one Ni	ımber:				
Initiated By:		Dat						
Problem:			-					
Resolution:						(00404	144	
						(20191	144)	_

Monterey Bay Analytical Services SP 1611647

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1609D74

Report Created for: Monterey Bay Analytical

4 Justin Court, Suite D Monterey, CA 93940

Project Contact:

David Holland

Project P.O.:

Project Name: MPWMD

Project Received: 09/30/2016

Analytical Report reviewed & approved for release on 10/07/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Monterey Bay Analytical

Project: MPWMD **WorkOrder:** 1609D74

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H samples were analyzed out of holding time

Analytical Report

Client: Monterey Bay Analytical

 Date Received:
 9/30/16 10:30

 Date Prepared:
 10/6/16

 Project:
 MPWMD

WorkOrder: 1609D74

Extraction Method: RSK175 **Analytical Method:** RSK175

Unit: $\mu g/L$

DISSULVEU GASES DV KSIX I	solved Gases by RSK	175
---------------------------	---------------------	-----

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
ASR4	1609D74-001A	Water	09/21/20	016 10:30 GC26	127758
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	1.7	Н	0.10	1	10/06/2016 15:01

Analyst(s): AK

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
ASR1	1609D74-002A	Water	09/21/2016 09:30 GC26	127758
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Methane	2.2	Н	0.10 1	10/06/2016 15:12

Analyst(s): AK

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
ASR3	1609D74-003A	Water	09/21/2016 13:00 GC26	127758
<u>Analytes</u>	<u>Result</u>	Qualifiers	<u>RL</u> <u>DF</u>	Date Analyzed
Methane	1.4	Н	0.10 1	10/06/2016 15:24

Analyst(s): AK

Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
ASR2	1609D74-004A	Water	09/27/2016 10:00	GC26	127758
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Methane	1.7		0.10 1		10/06/2016 15:35

Analyst(s): AK

Quality Control Report

Client:Monterey Bay AnalyticalWorkOrder:1609D74Date Prepared:10/6/16BatchID:127758Date Analyzed:10/6/16Extraction Method:RSK175

Instrument:GC26Analytical Method:RSK175Matrix:AirUnit:μL/L

Project: MPWMD **Sample ID:** MB/LCS-127758

QC Summary Report for RSK175									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
Acetylene	ND	8.61	0.50	10	-	86	70-130		
Ethane	ND	11.4	0.50	10	-	114	70-130		
Ethylene	ND	8.37	0.50	10	-	84	70-130		
Methane	ND	9.50	0.50	10	-	95	70-130		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of

WorkOrder: 1609D74 ClientCode: MBAS

	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	☐ J-flag
Report to:				Ві	ill to:		Requ	uested TAT:	5 days;
David Holland	Email: n	nweidner@mbas	inc.com; Dholla	and@mbas	Accounts Payal	ble			
Monterey Bay Analytical	cc/3rd Party:				Monterey Bay A	Analytical			
4 Justin Court, Suite D	PO:				4 Justin Court,	Suite D	Date	e Received:	09/30/2016
Monterey, CA 93940	ProjectNo: N	//PWMD			Monterey, CA 9	3940	Date	e Logged:	09/30/2016
831-375-6227 FAX: 831-641-0734									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1609D74-001	ASR4	Water	9/21/2016 10:30		Α											
1609D74-002	ASR1	Water	9/21/2016 09:30		Α											
1609D74-003	ASR3	Water	9/21/2016 13:00		Α											
1609D74-004	ASR2	Water	9/27/2016 10:00		Α											

Test Legend:

1	RSK175_W	2	3	4
5		6	7	8
9		10	11	12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	: MONTERE	EY BAY ANALYTIC	AL		Project: MPWMD					Wor	k Order:	1609D74	
Client Conta	Client Contact: David Holland										Q	C Level:	LEVEL 2
Contact's Email: mweidner@mbasinc.com; Dholland@mbasinc.com; 4mbas@sbcglobal.net; info@mbasinc.com					Comments:						Date	Logged:	9/30/2016
		WaterTrax	WriteOn	EDF	Exce	· _	Fax	✓ Email	HardCo	pyThirdParty		-flag	
Lab ID	Client ID	Matrix	Test Name			ontainers omposites	Bottle	& Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1609D74-001A	ASR4	Water	RSK175 <me< td=""><td>thane_4></td><td></td><td>3</td><td>V</td><td>OA w/ HCl</td><td></td><td>9/21/2016 10:30</td><td>5 days</td><td>None</td><td></td></me<>	thane_4>		3	V	OA w/ HCl		9/21/2016 10:30	5 days	None	
1609D74-002A	ASR1	Water	RSK175 <me< td=""><td>thane_4></td><td></td><td>3</td><td>V</td><td>OA w/ HCl</td><td></td><td>9/21/2016 9:30</td><td>5 days</td><td>None</td><td></td></me<>	thane_4>		3	V	OA w/ HCl		9/21/2016 9:30	5 days	None	
1609D74-003A	ASR3	Water	RSK175 <me< td=""><td>thane_4></td><td></td><td>3</td><td>V</td><td>OA w/ HCl</td><td></td><td>9/21/2016 13:00</td><td>5 days</td><td>None</td><td></td></me<>	thane_4>		3	V	OA w/ HCl		9/21/2016 13:00	5 days	None	
1609D74-004A	ASR2	Water	RSK175 <me< td=""><td>thane_4></td><td></td><td>3</td><td>V</td><td>OA w/ HCl</td><td></td><td>9/27/2016 10:00</td><td>5 days</td><td>None</td><td></td></me<>	thane_4>		3	V	OA w/ HCl		9/27/2016 10:00	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

11009074

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD M 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com □ PDF ☐ Excel ☐ Write On (DW) ☐ GeoTracker EDF Telephone: (877) 252-9262 Fax: (925) 252-9269 Report To: David Holland Other Comments Bill To: **Analysis Request** Company: Monterey Bay Analytical Services EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 8015) 4 Justin Ct. Suite D Samples Monterey, Ca 93940 E-Mail: info@mbasinc.com Gas (602 / 8021 + LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) for Metals Tele: (831) 375 - 6227 Fax: (831) 641-0734 MTBE / BTEX ONLY (EPA 602 / 8021) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: Fotal Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: Project Name: MPWMD Yes / No EPA 505/ 608 / 8081 (CI Pesticides) Lead (200.7 / 200.8 / 6010 / 6020) TPH as Diesel / Motor Oil (8015) **Project Location:** EPA 525.2 / 625 / 8270 (SVOCs) EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: Jonathan Lear METHOD MTBE / BTEX & TPH SAMPLING MATRIX Type Containers PRESERVED # Containers LOCATION/ SAMPLE ID Methane Field Point Name Sludge Date Time Water HNO3 Other Other HCL ICE Soil X ASR4 9/21/16 10:30 V X XX AB54457 X X ASR1 9/21/16 09:30 XX AB54458 3 X X 9/21/16 13:00 V XX AB54459 ASR3 AB54460 ASR2 9/27/16 10:00 V X XX * All VOAS had headspace Received By: Relinquished By: ICE/to Date: Time: 9/29 GOOD CONDITION David Holland 1600 HEAD SPACE ABSENT Received By: Relinquished By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS 1030 PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION pH<2

Sample Receipt Checklist

Client Name:	Monterey Bay Analytical			Date and Time Received	9/30/2016 10:30
Project Name:	MPWMD			Date Logged: Received by:	9/30/2016 Maria Venegas
WorkOrder №:	1609D74 Matrix: <u>Water</u>			Logged by:	Maria Venegas
Carrier:	Golden State Overnight			00 ,	Ů
	Chain of C	ustody	/ (COC) Infor	mation	
Chain of custody		Yes	✓	No 🗆	
	signed when relinquished and received?	Yes	✓	No 🗆	
	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time or	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	•	No 🗆	
	Sampl	e Rece	eipt Informati	ion	
Custody seals in	tact on shipping container/cooler?	Yes			NA 🗸
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample containe	rs intact?	Yes	•	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	
Sample/Temp Bl	ank temperature		Temp: 10	.2°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗹	NA \square
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive		Yes	•	No 🗌	
		e: BLl	JE ICE)		
UCMR3 Samples Total Chlorine		Yes		No 🗌	NA 🗸
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗸
=====					
Comments:					