

SUMMARY OF OPERATIONS

MONTEREY PENINSULA ASR PROJECT

WATER YEAR 2013

JUNE 2014

June 30, 2014 Project No. 06-0028

Monterey Peninsula Water Management District Post Office Box 85 Monterey, California 93942-0085

Attention: Mr. Joe Oliver, Water Resources Manager

Subject: Monterey Peninsula ASR Project; Water Year 2013 Summary of Operations Report

Dear Joe:

We are transmitting five copies and a digital image (PDF) of the subject report documenting operations of the Monterey Peninsula ASR Project during Water Year 2013 (WY 2013). WY 2013 was a Dry Water Year on the on the Monterey Peninsula, and as a result a commensurately modest volume totaling 295 acre-feet (af) of water was able to be diverted from the Carmel River system for recharge in the Seaside Groundwater Basin (SGB) via the SM ASR-2 and SMS ASR-3 wells. This contrasts with the over 1,100 af injected in both WY 2010 and WY 2011, which were Above Normal Water Years. To date, a total volume of approximately 4,175 af of excess Carmel River system water has been successfully injected, stored, and recovered in the SBG since the ASR project was initiated in 2001.

We appreciate the opportunity to provide ongoing assistance to the District on this important community water-supply project. Please contact us with any questions.

Sincerely,

PUEBLO WATER RESOURCES, INC.

Robert C. Marks, P.G., C.Hg/.

Principal Hydrogeologist

Stephen P. Tanner, P.E.

Principal Engineer

Copies submitted: 5 hard

1 digital (PDF)

TABLE OF CONTENTS

INTRODUCTIONGENERAL STATEMENT
CENEDAL CTATEMENT
GENERAL STATEMENT
BACKGROUND
PURPOSE AND SCOPE
FINDINGS
WY 2013 ASR OPERATIONS
General Recharge Procedures
Injection Operations Summary
Backflushing
Recovery Operations Summary
WELL PERFORMANCE
Injection Performance
Pumping Performance10
Residual Plugging1
AQUIFER RESPONSE TO INJECTION
WATER QUALITY
General10
Mixing and Dilution1
Injection Water Quality18
Water Quality During Aquifer Storage18
Water Quality at Off-Site Monitor Wells2
Water Quality Summary2
CONCLUSIONS29
RECOMMENDATIONS
CLOSURE
REFERENCES
TABLES
1 WY 2013 Injection Operations Summary - SM ASR-2
2 WY 2013 Injection Operations Summary - SMS ASR-3
3 Injection Performance Summary - SM ASR-1
4 Injection Performance Summary - SM ASR-2
5 Injection Performance Summary - SMS ASR-3
6 Pumping Performance Summary - SM ASR-1
7 Pumping Performance Summary - SM ASR-2
8 Pumping Performance Summary - SMS ASR-3

В

TABLE OF CONTENTS (Continued)

	TABLE OF CONTENTS (Continued)	
9	Residual Plugging Summary - SM ASR-2	14
10	Residual Plugging Summary - SMS ASR-3	14
11	WY 2013 Aquifer Response Summary	15
12	Percent Injectate at Wells During WY 2013	18
13	Summary of WY 2013 Water-Quality Data - Injectate	19
14	Summary of WY 2013 Water-Quality Data - SM ASR-1	20
15	Summary of WY 2013 Water-Quality Data - SM ASR-2	21
16	Summary of WY 2013 Water-Quality Data - SMS ASR-3	22
17	Summary of WY 2013 Water-Quality Data - SM MW-1	23
18	Summary of WY 2013 Water-Quality Data – SMS Deep	24
19	Summary of WY 2013 Water-Quality Data - Off-Site MWs	25
	FIGURES	
Site Lo	ocation Map	1
	SR-1 As-Built Schematic	2
	SR-2 As-Built Schematic	3
	ASR-3 As-Built Schematic	4
	ary of ASR Operations (WY 2001 – WY 2013)	5
	SR-1 Water-Level Data	6
SM AS	SR-2 Water-Level Data	7
	ASR-3 Water-Level Data	8
	SR-2 Water-Level Data – Injection Season	9
	ASR-3 Water-Level Data – Injection Season	10
	Vater-Level Data	11
	W-1 Water-Level Data	12
	a Test Water-Level Data	13
Ord Te	errace Water-Level Data	14
	Water Level-Data	15
	ast Water-Level Data	16
	Water Level-Data	17
	SR-1 Disinfection By-Products Parameters	18
	SR-2 Disinfection By-Products Parameters	19
	ASR-3 Disinfection By-Products Parameters	20
	W-1 Disinfection By-Products Parameters	21
	Deep Disinfection By-Products Parameters	22
	APPENDICES	
Field [Data Sheets	А

Water Quality Laboratory Reports

INTRODUCTION

GENERAL STATEMENT

Presented in this report is a summary of operations of the Monterey Peninsula Aquifer Storage and Recovery (ASR) Project during Water Year 2013 (WY 2013)¹. During WY 2013, approximately 295 acre-feet (af) of excess flows were diverted from the Carmel River system for recharge, storage, and subsequent recovery in the Seaside Groundwater Basin (SGB). This report presents a summary of the project operations during WY 2013, an assessment of ASR well performance, aquifer response and water-quality data, and provides recommendations for ongoing operation of the project.

BACKGROUND

The Monterey Peninsula ASR Project is cooperatively implemented by the Monterey Peninsula Water Management District (MPWMD or District) and California American Water (CAW) and involves the diversion of excess winter and spring time flows from the Carmel River system for recharge and storage in the Seaside Groundwater Basin (SGB). The excess water is captured by CAW wells in the Carmel Valley during periods when flows in the Carmel River exceed fisheries bypass flow requirements, treated to potable drinking water standards, and then conveyed through CAW's distribution system to ASR facilities in the SGB. Recharge is accomplished via injection of these excess flows into specially designed ASR wells drilled in the SGB. The locations of the ASR wells and associated project monitoring wells in the SGB are shown on **Figure 1**. The recharged water is temporarily stored underground utilizing the available storage space within the aquifer system. During periods of high demand, the same ASR wells and/or other existing CAW production wells in the SGB are used to recover the previously recharged water, which in turn allows for reduced extractions from the Carmel River system during seasonal dry periods.

The District and CAW have been cooperatively developing an ASR project on the Monterey Peninsula since 1996. These efforts have evolved over time, from the performance of various technical feasibility investigations, leading to the construction and testing of pilot- and then full-scale ASR test wells to demonstrate the viability and operational parameters for ASR wells in the SGB. Based on the success of the ASR demonstration testing program, MPWMD and CAW are in the process of implementing a full-scale permanent ASR Project.

The Phase 1 ASR Project includes two ASR wells (SM ASR-1 and SM ASR-2) located at the Santa Margarita ASR Facility at 1910 General Jim Moore Blvd. in Seaside. Water Project 1 is capable of recharging up to the State Water Resources Control Board (SWRCB) water right² maximum annual diversion limit of 2,426 acre-feet per year (afy) at a combined permitted injection rate of approximately 3,000 gallons per minute ([gpm] maximum diversion rate of 6.7

¹ Water Year 2013 is the period of October 1, 2012 through September 30, 2013.

² SWRCB water right 20808A for the Phase 1 ASR Project is held jointly by MPWMD and CAW.

cubic feet per second [cfs]), with an average annual yield of approximately 920 afy. SM ASR-1 is designed for an injection capacity of 1,000 to 1,250 gpm and SM ASR-2 is designed for an injection capacity of 1,500 to 1,750 gpm. As-built schematics of SM ASR-1 and SM ASR-2 are presented on **Figures 2 and 3**, respectively.

The Phase 2 ASR Project includes two ASR wells (SMS ASR-3 and SMS ASR-4) located at the Seaside Middle School ASR Facility at 2111 General Jim Moore Blvd. in Seaside. Water Project 2 is designed to be capable of recharging up to SWRCB water right³ maximum annual diversion limit of 2,900 afy at a combined permitted injection rate of approximately 3,600 gpm (maximum diversion rate of 8.0 cfs), with an average annual yield of approximately 1,000 afy. SMS ASR-3 and SMS ASR-4 are both designed for injection capacities of 1,500 to 1,750 gpm. SMS ASR-3 was constructed in 2010, and WY 2012 was the first time injection occurred at this well. An as-built schematic of SMS ASR-3 is presented on **Figure 4**. SMS ASR-4 was recently constructed during the summer/fall of 2012 and is planned to be operational during the WY2015 injection season.

A graphical summary of historical ASR operations in the SGB is shown on **Figure 5**. Shown are the annual injection and recovery volumes since the inception of injection operations at the Santa Margarita ASR Facility in WY 2001 through the current period of WY 2013. Also presented is a delineation of the various phases of project implementation, starting with the Santa Margarita Test Injection Well (SMTIW) in 2001, which became SM ASR-1 as the project transitioned from a testing program to a permanent project in WY 2008 (Phase 1 ASR Project), through construction and operation of the second well (SM ASR-2) at the facility in 2010. As shown, having the Santa Margarita Facility in full operation with two ASR wells injecting simultaneously in since 2010 (combined with above normal rainfall and Carmel River flows during WY 2010 and WY 2011) resulted in significant increases in the volume injected annually. As the two additional Water Project 2 ASR wells come on line in full operation, commensurate increases in annual injection volumes are expected to occur (depending on hydrologic conditions in any given year).

PURPOSE AND SCOPE

The overall purpose of the ongoing ASR program is to recharge the SGB with excess treated Carmel River system water when it is available during wet periods for storage and later extraction (recovery) during dry periods. ASR benefits the resources of both systems by raising water levels in the SGB during the recharge and storage periods and reducing extractions from the Carmel River System during dry periods.

The scope of the ongoing data collection, analysis, and reporting program for the ASR program can be categorized into issues generally associated with:

1) ASR well hydraulics and performance;

-

³ The SWRCB water right 20808C for the Phase 2 ASR Project is held jointly by MPWMD and CAW.

- 2) Aquifer response to injection, and;
- 3) Water-quality issues associated with geochemical interaction and mixing of injected and native groundwaters.

The ongoing data collection and reporting program is intended to monitor and track ASR well performance and aquifer response to injection (both hydraulic and water quality) and to comply with the requirements of the Central Coast Regional Water Quality Control Board (RWQCB) for submitting annual technical reports for the project pursuant to Section 13267 of the California Water Code⁴ and the existing General Waiver for Specific Types of Discharges (Resolution R3-2008-0010).

FINDINGS

WY 2013 ASR OPERATIONS

Recharge operations were performed during WY 2013 during the period of December 4, 2012 through January 16, 2013. WY 2013 was classified as a Dry Water Year⁵ on the Carmel River and a commensurately modest total volume of approximately 295 acre-feet (af) of excess Carmel River system water was diverted by CAW for recharge in the SGB. The recharge water was injected at both SM ASR-2 and SMS ASR-3 (no injection occurred at SM ASR-1 or SMS ASR-4) into the Santa Margarita Sandstone aquifer of the SGB at combined average injection rates ranging from approximately 1,660 to 2,615 gpm (approximately 7.3 to 11.6 acre-feet per day [afd]).

General Recharge Procedures

Recharge of the SGB occurs via injection of diverted flows from the CAW distribution system into ASR wells during periods of available excess Carmel River system flows. The ASR recharge source water is potable (treated) water provided from the CAW distribution system. The water is currently diverted by various production well sources in Carmel Valley and (after treatment and disinfection to potable standards) then conveyed through the Segunda-Crest pipeline network to the ASR Pipeline in General Jim Moore Blvd and then to the Santa Margarita and Seaside Middle School ASR facilities.

Injection water is introduced into the ASR wells via the pump columns. Injection rates are controlled primarily by downhole flow control valves (FCV) installed on the pump columns, and secondarily by valves on the ASR wellhead piping. Injection flow rates and total injected volumes are measured with rate and totalizing meters at each of the wellheads. Positive gauge pressures are maintained at the wellheads during injection to prevent cascading of water into the wells (which can lead to air-binding). Continuous water-level data in each of the ASR wells are collected with submersible pressure transducer data loggers.

_

⁴ Letter from Roger W. Briggs, Executive Officer of the Central Coast RWQCB, to Joseph Oliver, Water Resources Manager for MPWMD, dated April 29, 2009.

⁵ Based on 27,303 af of unimpaired Carmel River flow at the San Clemente Dam site in WY 2013.

Injection Operations Summary

Injection generally occurs at each of the ASR wells on a continuous basis when flows are available, interrupted only for periodic backflushing (discussed in a following section), which typically occurs on an approximate weekly basis. These periods of continuous injection followed by backflushing are termed in this report as numbered "injection periods" at each well. During WY 2013, a total of 6 injection periods occurred at both SM ASR-2 and SMS ASR-3. Summaries of pertinent injection period operations at SM ASR-2 and SMS ASR-3 are presented in **Tables 1 and 2** below, respectively. Field data sheets collected during injection operations are presented in **Appendix A** (not included in draft).

Table 1. WY 2013 Injection Operations Summary - SM ASR-2

Injection Period	Da	tes	Duration	Average Injection Rate	Total Volume
No.	Start	End	(days)	(gpm)	(af)
1	12/4/12	12/5/12	0.7	1,087	3.5
2	12/5/12	12/9/12	4.0	1,325	23.3
3	12/22/12	12/28/12	6.0	1,528	40.5
4	12/28/12	1/3/13	6.1	1,533	41.6
5	1/3/13	1/10/13	6.9	1,133	34.5
6	1/10/13	1/17/13	6.8	1,508	45.3
	SM AS	R-2 Totals	30.5	1,352	188.7

As shown in **Table 1**, the total duration of the 6 injection periods at SM ASR-2 during WY 2013 was approximately 30 days with a total volume of approximately 189 af injected. Injection rates ranged between approximately 1,090 and 1,530 gpm, averaging approximately 1,350 gpm.

Table 2. WY 2013 Injection Operations Summary - SMS ASR-3

Injection Period	Da	tes	Duration	Average Injection Rate	Total Volume
No.	Start	End	(days)	(gpm)	(af)
1	12/5/12	12/6/12	0.7	591	1.8
2	12/7/12	12/9/12	1.7	1,044	8.0
3	12/22/12	12/28/12	6.0	870	23.0
4	12/28/12	1/3/13	6.1	575	15.5
5	1/3/13	1/10/13	7.0	1,081	33.3
6	1/10/13	1/16/13	5.8	822	20.9
	SMS A	SR-3 Total	27.2	830	102.5

As shown in **Table 2**, the total duration of the 6 injection periods at SMS ASR-3 was approximately 27 days, with a total volume of approximately 103 af injected. Injection rates ranged between approximately 575 and 1,080 gpm, averaging approximately 830 gpm.

It is noted that the variability in injection rates at the ASR wells during the injection season is controlled by various factors, including the number of active sources to the CAW system, customer demands on the CAW system, and the ability of CAW's distribution system to maintain piping pressure at the ASR wellheads.

The combined total volume of injection at SM ASR-2 and SMS ASR-3 during WY 2013 was approximately 291 af⁶.

Water-level data collected at SM ASR-1, SM ASR-2 and SMS ASR-3 during WY 2013 are presented in **Figures 6 through 8**, respectively. Water-level data collected at SM ASR-2 and SMS ASR-3 during the injection season are presented in **Figures 9 and 10**, respectively. The water-level data show the response of both SM ASR-2 and SMS ASR-3 to injection, with a maximum water-level drawup of approximately 72 feet at SM ASR-2 and approximately 135 feet at SMS ASR-3, which were well below the maximum recommended drawup levels of approximately 130 and 170 feet, respectively.

Backflushing

Most sources of injection water contain trace amounts of solids that slowly accumulate in the pore spaces in the well's gravel pack and adjacent aquifer materials, and the CAW source water is no exception. Periodic backflushing of ASR wells is therefore necessary to maintain well performance by removing materials deposited/accumulated around the well bore during injection. The procedure is similar to backwashing a media filter to remove accumulated material deposited during filtration.

The operational rule-of-thumb for ASR wells is to backflush at pumping rates that are at least two times the rate of injection in order to create pore-throat velocities sufficient to remove particles that cling to the surfaces of gravel pack and aquifer grains. The trigger for backflushing is when the amount of water-level drawup during injection equals the available drawdown (as measured from the static water level to the top of the pump bowls) in the well for backflushing. This helps to avoid over-pressurization and compression of plugging materials, thereby maximizing the efficiency of backflushing and limiting the amount of residual plugging. This factor is the basis for the maximum recommended drawup levels referenced in the previous section.

_

⁶ The difference between this value and the 295 af value presented on page 3 is due to the relatively small volume of pipeline flushing (approximately 4 af, or 1.4% of the total diversion volume) required to clear particulates from the piping system prior to injection, which was routed to the Santa Margarita ASR Facility backflush pit and allowed to percolate into the groundwater basin.

A weekly backflushing frequency has been determined to be the best operational practice for the project ASR wells when operated at the design injection rates on a continuous basis. The general procedure consists of temporarily stopping injection and then pumping the wells at a rates of approximately 2,000 to 3,000 gpm (i.e., at least twice the rate of injection) for a period of approximately 15 to 20 minutes, and repeated as necessary to effectively remove particulates from the well screen / gravel pack / aquifer matrix. Backflush water is discharged to the Santa Margarita ASR Facility backflush pit, where it percolates back into the groundwater basin.

During backflushing, the initial backflush discharge is usually very turbid and of a deep orange-brown color, becoming cloudy after approximately 5 minutes and then generally clears within 15 to 20 minutes. These observations have been generally consistent throughout the period of operation of the project ASR wells, and were similarly observed during WY2013. Additional "incidental" backflushing was also conducted during the WY 2013 storage period, typically as part of water-quality sampling of the stored water. Following routine backflushing operations and brief periods of water-level recovery, controlled 10-minute specific-capacity tests are typically performed to track well production performance and residual plugging between injection periods (discussed in a following section).

Recovery Operations Summary

Recovery of the volume of water recharged during WY 2013 was performed via existing CAW production wells in the SGB (SM-ASR-1 was non-operational during WY 2013, and SM ASR-2, SMS ASR-3 and SMS ASR-4 have not yet been permitted for recovery into the CAW distribution system) 7. As shown on **Figure 5**, a total of approximately 644 af of recharged water was recovered by CAW wells during WY 2013 - of this volume, approximately 295 af was from the WY 2013 injection, 131 af was from the WY 2012 injection, and approximately 218 af was previously unrecovered water that had been injected during the testing phase of the ASR project (i.e., water injected under temporary SWRCB water rights permits prior to WY 2008). The recovered water was offset by reduced pumping by CAW from the Carmel River system during this period. It is noted that in this context, ASR recovery is essentially an accounting / allocation of CAW's various water rights and pumping from the SGB, and does not represent a "moleculefor-molecule" recovery of the injected water. Rather, the volume recharged essentially increases the operational yield of the SGB by the same amount and can be "recovered" by any of CAW's wells in the SGB and / or the ASR wells themselves. It is anticipated, however, that recovery operations via the ASR wells will occur more extensively in the future, once the wells are fully permitted for production into the CAW distribution system.

⁷ SM ASR-1 was permitted by California Department of Public Health in August 2011 to produce water into the CAW distribution system.

WELL PERFORMANCE

Well performance is generally measured by specific capacity (pumping) and / or specific injectivity (injection), which is the ratio of flow rate (pumping or injection) to water-level change in the well (drawdown or drawup) over a specific elapsed time. The value is typically expressed as gallons per minute per foot of water level change (gpm/ft). The value normalizes well performance by taking into account differing static water levels and flow rates. As such, specific capacity / injectivity data is useful for comparing well performance over time and at differing flow rates. Decreases in specific capacity / injectivity are indicative of decreases in the hydraulic efficiency of a well due to the effects of plugging and/or particle rearrangement.

Injection Performance

Injection performance has been tracked at SM ASR-1 since the inception of the ASR program in WY 2002 by measurement and comparison of 24-hour injection specific injectivities (a.k.a. injection specific capacity).

SM ASR-1. A summary of 24-hour specific injectivity for SM ASR-1 for WY 2002 through 2011 (no injection occurred at this well in WY 2012 or WY 2013) is presented in **Table 3** below.

Table 3. Injection Performance Summary - SM ASR-1

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY2002					
Beginning Period	1,570	81.7	19.2		FCV not installed yet in WY2002.
Ending Period	1,164	199.8	6.4	-67%	No recovery pumping performed.
WY2003					
Beginning Period	1,070	70.0	15.5		Recovery pumping performed following
Ending Period	1,007	49.7	20.3	+31%	WY2003 Injection
WY2004					
Beginning Period	1,383	183.4	7.5		Recovery pumping performed following
Ending Period	1,072	67.4	15.9	+112%	WY2004 Injection
WY2005					
Beginning Period	1,045	46.6	22.4		Injectate dechlorinated in WY2005. No
Ending Period	976	94.1	10.4	-54%	recovery pumping performed.
WY2006					
Beginning Period	1,039	71.5	15.0		Injection procedures consistent and
Ending Period	1,008	62.2	17.5	+17%	performance stable in WY2006. No recovery pumping performed.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY2007					
Beginning Period	1,098	92.4	11.9		Only one injection period in WY2007.
Ending Period					No recovery pumping performed.
WY2008					
Beginning Period	979	25.5	38.4		Formal rehabilitation performed prior to
Ending Period	1,063	33.4	31.8	-17%	WY2008 injection
WY 2009					
Beginning Period	1,119	56.1	19.9		Beginning period low specific injectivity due to high plugging rate during initial
Ending Period	1,069	34.3	31.1	+56%	injection period. No recovery pumping performed.
WY 2010					
Beginning Period	1,080	35.6	30.3		Observed decline in performance due
Ending Period	1,326	54.0	24.6	-19%	to residual plugging.
WY 2011					
Beginning Period	1,367	53.0	25.8		Observed decline in performance due
Ending Period	1,454	63.7	22.8	-10%	to residual plugging.
WY 2012					
Beginning Period	NA	NA	NA		No injection at this well this year
Ending Period	NA	NA	NA	NA	No injection at this well this year.
WY 2013					
Beginning Period	NA	NA	NA		No injection at this well this year
Ending Period	NA	NA	NA	NA	No injection at this well this year.

As shown in **Table 3** and as noted previously, no injection occurred at SM ASR-1 during WY 2012 or WY 2013 because the pump was non-operational.

SM ASR-2. A summary of the beginning and ending injection performance at SM ASR-2 for WY 2010 through WY 2013 is presented in **Table 4** below.

Table 4. Injection Performance Summary - SM ASR-2

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY 2010					
Beginning Period	1,017	156.5	6.5		Significant residual plugging.
Ending Period	237	85.0	2.8	-57%	Significant residual plugging.
WY 2011					
Beginning Period	1,497	39.5	37.9		Significant improvement as a result of well rehabilitation. No residual plugging during year.
Ending Period	1,292	34.3	37.7	-0.5%	
WY 2012					
Beginning Period	1,830	56.1	32.6		Observed decline in performance
Ending Period	1,817	63.4	28.7	-12%	due to residual plugging.
WY 2013					
Beginning Period	1,087	32.7	33.2		See discussion below.
Ending Period	1,508	44.2	34.1	+3%	See discussion below.

As shown in **Table 4**, the 24-hour specific injectivity at the beginning of WY 2013 was 33.2 gpm/ft and at the end of WY 2013 it was 34.1 gpm/ft, representing a slight increase of approximately 3 percent, indicating that no residual plugging occurred at SM ASR-2 over the course of the WY 2013 injection season.

SM ASR-3. A summary of the beginning and ending injection performance at SM ASR-3 during WY 2013 is presented in **Table 5** below.

Table 5. Injection Performance Summary - SM ASR-3

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments
WY 2013					
Beginning Period	1,044	87.0	12.0		Con discussion below
Ending Period	822	99.6	8.3	-31%	See discussion below.

As shown in **Table 5**, the 24-hour specific injectivity at the beginning of WY 2013 was 12.0 gpm/ft and at the end of WY 2013 it was 8.3 gpm/ft, representing a decrease of approximately 31 percent, indicating that residual plugging occurred at SM ASR-3 over the course of the WY 2013 injection season.

Pumping Performance

Pumping performance has also been tracked at ASR-1 since the inception of the SMTIW testing program by measurement and comparison of specific capacity. Following routine backflushing operations and periods of water-level recovery, controlled 10-minute specific-capacity tests are typically performed to track well pumping performance, similar to the tracking of injection performance from 24-hour specific injectivity discussed above.

SM ASR-1. A summary of injection season beginning and ending 10-minute specific capacity at ASR-1 for WY 2002 through 2013 is presented below in **Table 6**.

Table 6. Pumping Performance Summary - SM ASR-1

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY2002					
Pre-Injection	2,825	45.1	62.6		ECV not installed yet in WV2002
Post- Injection	2,800	95.3	29.4	-53%	FCV not installed yet in WY2002
WY2003					
Pre-Injection	2,775	81.9	33.9		Recovery pumping performed
Post- Injection	2,600	91.7	28.4	-16%	following WY2003 Injection
WY2004					
Pre-Injection	2,000	51.8	38.6		Recovery pumping performed
Post- Injection	1,700	81.2	20.9	-46%	following WY2004 Injection
WY2005	<u>'</u>		<u> </u>	•	,
Pre-Injection	1,900	49.8	38.1		Injectate dechlorinated in WY2005. No recovery pumping performed.
Post- Injection	1,500	87.1	17.2	-55%	
WY2006			l	l	
Pre-Injection	1,500	82.4	18.2		Injection procedures consistent and
Post- Injection	1,600	74.1	21.6	+19%	performance stable in WY2006. No recovery pumping performed.
WY2007					
Pre-Injection	1,500	81.7	18.4		Only one injection period in WY2007.
Post- Injection	1,500	79.4	18.9	+3%	No recovery pumping performed.
WY2008					
Pre-Injection	1,980	31.0	63.8		Formal rehabilitation performed prior
Post- Injection	2,000	55.6	36.0	-44%	to WY2008 injection. No recovery pumping performed.

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2009					
Pre-Injection	2,000	52.0	38.5		No recovery pumping performed
Post- Injection	1,900	62.7	30.3	-21%	No recovery pumping performed.
WY 2010					
Pre-Injection	1,900	62.5	30.4		Derformance acceptibility stable
Post- Injection	2,000	64.2	31.1	+2%	Performance essentially stable.
WY 2011					
Pre-Injection	2,000	64.2	31.1		Derformance acceptibility stable
Post- Injection	2,000	64.6	30.1	-3%	Performance essentially stable.
WY 2012					
Pre-Injection	2,400	74.7	32.1		No injection during WY 2012.
Post-Injection	NA	NA	NA	NA	Datalogger damaged in June 2012.
WY 2013			•		
Pre-Injection	NA	NA	NA		No injection during WY 2013.
Post- Injection	NA	NA	NA	NA	Pump non-operational

As shown in **Table 6**, the production specific capacity at ASR-1 declined from approximately 63 to 18 gpm/ft over the course of the six-year period of WY 2002 through WY 2007, an overall decline of approximately 70 percent. In particular, a decline of over 50 percent occurred after the initial injection season at this well (this observation has relevance to the performance of SMS ASR-3, discussed below). Further review of **Table 6** shows that following rehabilitation in 2007, the production specific capacity increased to 63.8 gpm/ft, slightly greater than the WY 2002 pre-injection specific capacity. These results are comparable to the injection performance, which similarly indicated the efficacy of rehabilitation in restoring the well's hydraulic performance. These findings regarding the effectiveness of rehabilitation of SM ASR-1 in 2007 are comparable to the results recently observed at SM ASR-2.

SM ASR-2. A summary of injection season beginning and ending 10-minute specific capacity for SM ASR-2 is presented below in **Table 7**.

Table 7. Pumping Performance Summary - SM ASR-2

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments	
WY 2009						
Pre-Injection	3,200	72.3	44.3		Injection testing performed with	
Post- Injection	2,200	117.7	18.7	-58%	source water from MCWD.	

06-0028_WY2013_SOR_rpt_final_2014-06-30.doc

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2010					
Pre-Injection	2,200	117.7	18.7		Pre-injection is after MCWD testing
Post- Injection	2,300	136.9	16.8	-10%	(refer to WY 2009 Summary of Operation report)
WY 2011					
Pre-Injection	3,100	83.9	36.9		Formal rehabilitation performed prior
Post- Injection	3,100	93.5	33.2	-10%	to WY 2011 injection season. Relatively stable during season.
WY 2012					
Pre-Injection	2,800	84.5	33.1		Minor residual plugging acquired
Post- Injection	2,700	92.3	29.3	-11%	Minor residual plugging occurred.
WY 2013					
Pre-Injection	2,700	92.3	29.3		See discussion below.
Post- Injection	3,000	87.7	34.2	+17%	See discussion below.

As shown in **Table 7**, the pumping performance of SM ASR-2 declined significantly following initial injection in WY 2009, similar to the initial decline experienced at SM ASR-1. SM ASR-2 performance improved significantly in WY 2011 compared to WY 2010 as a result of rehabilitation of the well prior to the WY 2011 injection season. During WY 2013, pumping performance improved approximately 17 percent. This compares with the injection performance results, which showed an approximate 3 percent improvement in performance over the course of WY 2013.

SMS ASR-3. A summary of injection season beginning and ending 10-minute specific capacity for SMS ASR-3 is presented below in **Table 8**.

Table 8. Pumping Performance Summary - SMS ASR-3

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2012					
Pre-Injection	3,200	107.1	29.9		Significant residual plugging
Post- Injection	2,400	186.4	12.9	-57%	occurred.
WY 2013	•				
Pre-Injection	2,400	186.4	12.9		Con discussion balance
Post- Injection	2,000	174.3	11.5	-11%	See discussion below.

As shown in **Table 8**, the pumping performance of SMS ASR-3 declined significantly following initial injection in WY 2012, similar to the declines experienced at both SM ASR-1 and SM ASR-2 following initial injection. During WY 2013, performance was relatively stable, but did

decline slightly. With these results an ASR well performance pattern has emerged, with all three ASR wells having experienced comparably significant declines in performance following initial injection, followed by a period of relative performance stability. It is currently believed the observed loss in performance is due to particle rearrangement (mechanical jamming) and/or chemical precipitation, as opposed to the normal and relatively slow plugging caused by particulates. This phenomenon will be evaluated further during the upcoming baseline injection testing program at SMS ASR-4. It is noted that while SMS ASR-3 experienced a significant decline in performance following initial injection, it is expected that rehabilitation would result in significantly improved performance as has been observed at both SM ASR-1 and SM ASR-2.

Residual Plugging

Experience at injection well sites around the world shows that all injection wells are subject to some amount of plugging, because no water source is completely free of particulates, bionutrients, or oxidants, all of which can contribute to well plugging; the CAW source water is no exception. During injection, trace amounts of suspended solids are continually being deposited in the gravel pack and aquifer pore spaces, much as a media filter captures particulates in the filter bed. The effect of plugging is to impede the flow of water from the injection well into the aquifer, causing increased injection heads in the well to maintain a given injection rate, or reduced injection rates at a given head level. Well plugging reduces injection and extraction capacity, and consequently, well life.

Relative measurements of the particulate matter in the injectate have historically been made at the Santa Margarita site through silt density index (SDI) testing during injection. The SDI was originally developed to quantitatively assess particulate concentrations in reverse-osmosis feed waters. The SDI test involves pressure filtration of source water through a 0.45 micron membrane, and observation of the decrease in flow over time; the resulting value of SDI is dimensionless, and used as a comparative value for tracking relative well plugging rates during an injection season (i.e., plugging rates tend to vary with SDI). During WY 2013 injection operations, SDI values at the beginning of the injection season were slightly less than 5 and fell to less than 1 after the first week of injection.

Residual plugging is the plugging that remains following backflush pumping. Residual plugging increases drawdown during pumping and drawup during injection, and is manifested as declining specific capacity / injectivity. The presence of residual plugging is indicative of incomplete removal of plugging particulates during backflushing and has the cumulative effect of reducing well performance and capacity through time.

As discussed previously, routine 10-minute specific capacity tests were performed at SM ASR-2 and SMS ASR-3 following backflushing events during WY 2013. Presented in **Tables 9**

and 10 below are summaries of the residual plugging calculations for SM ASR-2 and SMS ASR-3⁸, respectively, during WY 2013.

Table 9. Residual Plugging Summary - SM ASR-2

		Pumping	10-min	10-min	Normalize-	Normalized	Residual	Cumulative
Test		Rate	Drawdown	Q/s ¹	ation	Drawdown ²	Plugging	Plugging
No.	Date	(gpm)	(ft)	(gpm/ft)	Ratio	(ft)	(ft)	(ft)
Pre-Injection	4/23/12	2,700	92.3	29.3	1.1	102.5		
1	12/5/12	2,900	88.5	32.8	1.0	91.6	-11.0	-11.0
2	12/12/12	2,900	87.9	33.0	1.0	90.9	-0.6	-11.6
3	12/28/12	2,900	92.5	31.3	1.0	95.7	4.8	-6.8
4	1/3/13	3,000	91.3	32.9	1.0	91.3	-4.4	-11.3
5	1/10/13	3,000	90.2	33.3	1.0	90.2	-1.1	-12.4
6	1/23/13	3,000	87.7	34.2	1.0	87.7	-2.5	-14.9
	Averages	2,914	90.1	32.4	1.0	92.8	-2.5	
			-		Wat	er Year 2013 C	Cumulative	-14.9

Notes:

- 1 Specific Capacity. Ratio of pumping rate to draw down.
- 2 Normalized based on ratio of 3,000 gpm to actual test pumping rate.

Table 10. Residual Plugging Summary – SMS ASR-3

		Pumping	10-min	10-min	Normalize-	Normalized	Residual	Cumulative
Test		Rate	Drawdown	Q/s ¹	ation	Drawdown ²	Plugging	Plugging
No.	Date	(gpm)	(ft)	(gpm/ft)	Ratio	(ft)	(ft)	(ft)
Pre-Injection	4/23/12	2,400	186.4	12.9	0.8	155.3		
1	12/6/12	2,200	153.7	14.3	0.9	139.7	-15.6	-15.6
2	12/12/12	2,100	156.8	13.4	1.0	149.3	9.6	-6.0
3	12/28/12	2,000	177.3	11.3	1.0	177.3	27.9	21.9
4	1/3/13	2,100	173.0	12.1	1.0	164.8	-12.5	9.4
5	1/10/13	2,000	168.4	11.9	1.0	168.4	3.6	13.1
6	1/16/13	2,000	174.3	11.5	1.0	174.3	5.8	18.9
	Averages	2,114	170.0	12.5	0.9	161.3	3.2	
		•			Wat	er Year 2013 C	Cumulative	18.9

Notes:

1 - Specific Capacity. Ratio of pumping rate to draw dow n.

2 - Normalized based on ratio of 2,000 gpm to actual test pumping rate.

⁸ Quantification of the amount of residual plugging (as measured in feet of drawdown) requires normalization of drawdown to a reference pumping rate, which allows for comparison of data that have different pumping rates. For SM ASR-2 and SMS ASR-3, a reference pumping rate of 3,000 gpm was utilized, as this was the typical maximum short-term pumping rate for each well.

As shown on **Figure 9**, the injection water level was maintained significantly below the recommended maximum available drawup at SM ASR-2 (130 feet) during WY 2013, and as shown in **Table 9**, residual plugging cumulatively decreased during WY 2013. These results indicate that backflushing was completely effective at removing residual plugging materials during WY 2013 and suggests that the injection rate can be increased slightly in WY 2014.

As shown on **Figure 10**, the injection water level was also maintained below the recommended maximum available drawup at SM ASR-3 (170 feet) during WY 2013, and as shown in **Table 10**, residual plugging was observed and was limited to 18.9 ft at the end of the season. The amount of residual plugging at SM ASR-3 during WY 2013 was manifested as measurable declines in the specific capacity and injectivity of the well over the course of the injection season (refer to **Tables 5 and 8**). It is noted that the amount of residual plugging that occurred during WY 2013 (18.9 ft) was significantly less than the cumulative amount of *apparent* residual plugging of 132.6 ft that occurred at SMS ASR-3 during WY 2012. As discussed in the Well Performance section, a similar loss of performance phenomena was also observed at both SM ASR-1 and SM ASR-2 following the initial injection trials at these wells.

AQUIFER RESPONSE TO INJECTION

The response of the regional aquifer system to injection has been monitored since the SMTIW project was initiated in WY 2002. Submersible water-level transducer/data logger units have been installed at seven offsite monitoring well locations in the SGB as well as three onsite monitoring wells. The locations of each offsite monitoring well are shown on **Figure 1**, and water-level hydrographs for the monitoring wells during WY 2013 are graphically presented on **Figures 11 through 19**. A summary of the regional water-level observations during the WY 2013 injection season is presented in **Table 11** below.

Table 11. WY 2013 Aquifer Response Summary

Well ID	Distance from Nearest Active ASR Well (feet)	Aquifer Monitored	Figure No.	Pre- Injection DTW (ft. btoc)	Shallowest Injection DTW (ft. btoc)	Maximum Drawup Response (ft.)	
SMS (Shallow)	25 (SMS ASR-3)	QTp	11	No Data			
SMS (Deep)	25 (SWS ASK-3)	Tsm	""	370.0	318.3	51.7	
SM MW-1	190 (SM ASR-2)	Tsm	12	373.5	348.8	24.7	
Paralta Test	650 (SM ASR-2)	QTp & Tsm	13	344.8	328.3	16.5	
Ord Grove Test	1,820 (SM ASR-2)	QTp & Tsm	14		No Data		
Ord Terrace (Shallow)	2,550 (SM ASR-2)	Tsm	15	No Dis	cernable Resp	onse	
FO-7 (Shallow)	2 700 (CMC ACD 2)	QTp	16	No Data			
FO-7 (Deep)	3,700 (SMS ASR-3)	Tsm	16				
FO-9 (Deep)	6,130 (SMS ASR-3)	Tsm	17		No Data		

Well ID	Distance from Nearest Active ASR Well (feet)	Aquifer Monitored	Figure No.	Pre- Injection DTW (ft. btoc)	Shallowest Injection DTW (ft. btoc)	Maximum Drawup Response (ft.)	
PCA East (Shallow)	6,200 (SMS ASR-3)	QTp	40	No Discernable Response			
PCA East (Deep)	6,200 (SIVIS ASK-3)	Tsm	18	93.7	84.8	8.9	
FO-8 (Deep)	6,450 (SMS ASR-3)	Tsm	19	400.4	392.2	8.2	

Notes:

QTp - Quaternary / Tertiary-age Paso Robles Formation aquifer

Tsm – Tertiary-age Santa Margarita Sandstone aquifer

DTW - Depth to Water

As shown on the water-level hydrographs, water levels in the Santa Margarita Sandstone (Tsm) aquifer at the start of the WY 2013 recharge season ranged between approximately 10 to 40 feet below sea level. Positive response to injection during WY 2013 was observed at 5 of the 9 monitoring wells completed in the Santa Margarita Sandstone aquifer (3 Tsm dataloggers were non-operational for a variety of reasons during the water year). For the 5 monitoring wells with sufficient data (see **Table 11** above), apparent water-level responses ranged between approximately 8 to 52 feet, decreasing with distance from the ASR wells, as is the typical and expected aquifer response to hydraulic stresses (i.e., injection or pumping). These WY 2013 responses are comparable to those observed in previous water years.

The available water-level data also show that at the Tsm-only monitoring wells, water levels consistently remained below sea level throughout the injection season. Under these water-level conditions, little to no groundwater flow from the Tsm aquifer offshore would be expected to occur and any "losses" associated with ASR project operations from water potentially migrating offshore are highly unlikely.

The limited available data for wells completed in the Paso Robles Formation (QTp) show no discernible response to injection and water levels in this aquifer remained above the water levels in the underlying Tsm aquifer during WY 2013. Under these water-level conditions, little to no flow of water from the Tsm to the QTp aquifer would be expected to occur.

It is further noted that the Ord Terrace monitoring well (refer to **Figure 15**) continues to not show a discernible response to injection operations, as has been observed during previous injection seasons. Nor do many project monitoring wells show a discernable response to the pumping of CAW's Ord Grove production well. These observations suggest that the Ord Terrace Fault or a parallel branch of the fault may represent a hydraulic barrier in the Tsm aquifer.

WATER QUALITY

General

Source water for injection is supplied from the CAW municipal water system, primarily from Carmel River system wells which are treated at the CAW Begonia Iron Removal Plant

(BIRP) for iron and manganese removal. The BIRP water is also disinfected and maintains a free chlorine residual. A phosphate-based corrosion inhibitor is also added to the filtered water before entering the CAW distribution system. The finished product water meets all California Department of Public Health (CADPH) Primary and Secondary water quality standards.

As in previous years, water quality was routinely monitored at the ASR well sites during WY 2013 injection and aquifer storage operations. Far-field water quality was also monitored at the CAW Paralta production well and at the PCE-East Deep monitoring well (PCA-E Deep). Summaries of the collected water-quality data during WY 2013 are presented in **Tables 12 through 18** below⁹, and are graphically presented in **Figures 20 through 24**. Analytic laboratory reports are presented in **Appendix B** (not included in draft). A discussion of the water-quality data collected during WY 2013 is presented below.

Mixing and Dilution

Because injection operations have occurred annually at SM ASR-1 over the past 11 Water Years (injection began at this well in WY 2002), the proximate groundwater quality has been altered from the natural subsurface conditions, making a clear distinction between "native" and "non-native" water quality both complex and somewhat subjective. In the past, the most illustrative basis for discussing water-quality changes for the ASR project was to consider groundwater conditions immediately prior to the injection season as a baseline; however, establishing baseline conditions is more complex now that injection is occurring at multiple wells, and is further complicated as a result of the significant volume of injection that occurred in WY 2010 and WY 2011 (approximately 1,111 and 1,117 af, respectively). Because the issue of precisely defining baseline water-quality conditions is increasingly difficult as injection occurs at multiple wells, the practice has been dropped in this report.

To track the general mixing, dilution, and interaction between injected and native groundwaters, chloride ion (Cl⁻) has historically been used for the SGB ASR project as a natural tracer. Chloride ion is very stable, highly soluble and is present in both injected and native ground waters; albeit at a 400 percent concentration differential. The historical "native" Cl⁻ concentration of the groundwaters within the Tsm has averaged approximately 120 - 130 milligrams per liter (mg/L) in this area of the basin. Presented in **Table 12** below is a summary of the relative percentages of injection water at each of the monitored wells before WY 2013 injection operations and at the end of the WY 2013 storage period. Calculation of the injected versus native groundwater (NGW) contribution in a given sample is based on the historical NGW and injected water Cl⁻ concentrations.

06-0028_WY2013_SOR_rpt_final_2014-06-30.doc

⁹ It is noted that both the Santa Margarita and Seaside Middle School ASR Facilities were undergoing various phases of facility construction during WY 2013. As a result, there were numerous service interruptions at the facilities that limited water-quality sampling such that the sampling frequency could not be performed at all wells in strict accordance with the Sampling and Analysis Plan for the project. Facility retrofit and construction is currently nearing completion at both sites and sampling interruptions should be reduced as construction activities at both sites approach completion over the next year.

Table 12. Percent Injectate at Wells during WY 2013 (based on 2001 Tsm NGW CI content vs 2013 CAW Injectate CI)

	Pre-Inje	ection C	onditions	End-Sto	rage Co	onditions	WY 2013		
Well	Sample	CI	% Injectate	Sample	CI	% Injectate	Change	Comments	
	Date	(mg/l)	in Water	Date	(mg/l)	in Water	(%)		
SM ASR-1	10/31/12	110	11					No data. Pump out for repairs.	
SM ASR-2	8/2/12	85	37	7/24/2013	72	51	14	188.7 af injected. No recovery.	
SM MW-1	11/1/12	34	91	7/24/2013	30	96	4	Located between SM ASR-1 and SM ASR-2	
SMS ASR-3	10/30/12	90	32	7/25/2013	67	56	24	102 af injected. No recovery.	
SMS Deep	10/30/12	90	32	4/17/2013	30	96	64	25 ft. from SMS ASR-3.	
Paralta	11/26/12	116	4	7/23/2013	101	20	16		
PCA-E Deep	10/31/12	92	30	7/30/2013	99	22	-7		

As **Table 12** above shows, only two (ASR-3 and SMS Deep) of the seven well locations had the same water quality prior to WY 2013 injection, and each represents a different percentage mix of injectate and native groundwater (NGW) and water from the multiple previous injection and recovery seasons. These results range from an estimated 91 percent injectate water at SM MW-1 to 4 percent injectate water at CAW's Paralta well prior to the WY 2013 injection season. By the end of the WY 2013 recovery period, the concentration of injected water at most wells increased, with the exception of PCA-E Deep, which declined slightly compared to pre-injection conditions.

Although in past years the calculation of a "normalized concentration" of water-quality parameters based on injected and NGW chloride ion concentrations has been used to correct for the dilution effects of this intermixing of waters in the past, the substantial and repeated dilution/intermixing that has occurred is now more error-prone due to the variation in CAW injectate water quality from year to year, and the significant spatially-non-uniform dilutions and intermixing and the variations in Cl⁻ concentrations around the ASR project sites. Normalized data are therefore not included in the current (nor in future) data presentations.

Injection Water Quality

Injection water quality from the CAW system during WY 2013 is presented in **Table 13** below; the data show injection water quality was typical of recent years. Levels of Trihalomethanes (THM) and Haloacetic Acid (HAA) compounds, as well as bionutrients (oxygen, nitrogen, phosphorous, and organic carbon), were all present at levels similar to previous years.

Water Quality During Aquifer Storage

Tables 14 through 16 present summaries of water-quality data collected at the three ASR wells (SM ASR-1, SM ASR-2 and SMS ASR-3, respectively). **Tables 17 and 18** present similar data collected at the on-site monitoring wells SM MW-1 and SMS Deep, respectively; and **Table 19** presents the water-quality data collected at the off-site monitoring wells (PCA-E Deep and Paralta). Data for the ASR wells include baseline water quality taken prior to WY 2013 injection (end of WY 2012 Storage) and stored water quality (WY 2013 Storage) collected periodically from the aquifer after WY 2013 injection operations were terminated.

Table 13. Summary of WY 2013 Water Quality Data - Injectate

				- "
				Results CAW Injectate
Parameter	Unit	PQL	MCL	12/5/12
1 drumeter	Ome		escription	Injectate
Major Cations				•
Calcium	mg/L	0.5		47
Magnesium	mg/L	0.5		15
Potasium	mg/L	0.5		3.4
Sodium	mg/L	0.5		49
Major Anions				
Alkalinity, Total (as CaCO3)	mg/L	2	050	143
Chloride Sulfate	mg/L	1	250	34 81
Nitrate (as NO3)	mg/L mg/L	1	250 45	ND
Nitrite (as Nitrogen)	mg/L	1	1	ND
General Physical	9/2	,	•	.,,,
pH	Std Units			7.5
Specific Conductance (EC)	uS	1	900	558
Total Dissolved Solids	mg/L	10	500	340
Metals				
Arsenic (Total)	ug/L	1	10	ND
Barium (Total)	ug/L	10	1000	68
Iron (Dissolved)	ug/L	10		20
Iron (Total)	ug/L	10	300	133
Lithium	ug/L	1		7
Manganese (Dissolved)	ug/L	10		ND
Manganese (Total)	ug/L	10	50	ND
Molybdenum Nickel	ug/L	1	1000	2 ND
Selenium	ug/L ug/L	10 2	100 50	ND ND
Strontium (Total)	ug/L ug/L	5	30	241
Uranium (by ICP/MS)	ug/L	1	30	ND
Vanadium (Total)	ug/L	1	1000	1
Zinc (Total)	ug/L	10	5000	208
Miscellaneous				
Ammonia-N	mg/L	0.05		ND
Boron	mg/L	0.05		ND
Chloramines	mg/L	0.05		0.12
Gross Alpha	pCi/L		15	1.31 +/- 1.50
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND
Methane	ug/L	0.1		1.1
Nitrogen (Total)	mg/L	0.5		ND 0.05
o-Phosphate-P Phosphorous (Total)	mg/L mg/L	0.05 0.03		0.35 0.52
Radium 226	pCi/L	0.03	3	0.050 +/- 0.257
Organic Analyses	POWE	l	Ū	0.000 17 0.201
Haloacetic Acids (Total)	ug/L	1.0	60.0	13.2
Dibromoacetic Acid		1.0	-	3.7
Dichloroacetic Acid		1.0		5.5
Monobromoacetic Acid	ug/L	1.0		ND
Monochloroacetic Acid	ug/L	2.0		ND
Trichloroacetic Acid		1.0		4.0
Organic Carbon (Dissolved)	mg/L	0.2		1.0
Organic Carbon (Total)	mg/L	0.2	20.5	1.2
Trihalomethanes (Total)	ug/L	1.0	80.0	26.5
Bromodichloromethane Bromoform		0.5 0.5		8.9 2.0
Chloroform		0.5		7.9
Dibromochloromethane		0.5		7.7
Field Parameters				
Temperature	° C	0.1		
Specific Conductance (EC)	uS	1.0	900	546
pH	Std Units	0.1	6.5 - 8.5	7.1
ORP	mV	1.0		
Free Chlorine Residual	mg/L	0.1	2 - 5	
Dissolved Oxygen	mg/L	0.01		
Silt Density Index	Std Units	0.1		
Gas Volume H₂S	mL mg/l	2.0 0.1		
Notae:	mg/L	0.1		

Table 14. Summary of WY 2013 Water-Quality Data - SM ASR-1

				Results			
				S	M ASR-1		
Parameter	Unit	PQL	MCL	3/21/01	10/31/12		
Florand Characa Time	In	Sample D	escription	NGW	WY 2012 Storage 191		
Elapsed Storage Time Volume Purged at Sampling	Days 1,000 gals				191		
Major Cations	1,000 gais						
Calcium	mg/L	0.5		85	86		
Magnesium	mg/L	0.5		19	22		
Potasium	mg/L	0.5		5.3	5.2		
Sodium	mg/L	0.5		88	93		
Major Anions							
Alkalinity, Total (as CaCO3)	mg/L	2		224	223		
Chloride	mg/L	1	250	120	110		
Sulfate	mg/L	1	250	95 ND	102		
Nitrate (as NO3) Nitrite (as Nitrogen)	mg/L mg/L	1	45 1	ND	ND ND		
General Physical	ilig/L	,	,		ND		
pH	Std Units			7.1	7.5		
Specific Conductance (EC)	uS	1	900	1015	987		
Total Dissolved Solids	mg/L	10	500	618	614		
Metals			•				
Arsenic (Total)	ug/L	1	10	ND	1		
Barium (Total)	ug/L	10	1000	52	81		
Iron (Dissolved)	ug/L	10			27		
Iron (Total)	ug/L	10	300	120	42		
Lithium	ug/L	1			32		
Manganese (Dissolved)	ug/L	10	===		23.0		
Manganese (Total)	ug/L	10	50	40	24		
Molybdenum Nickel	ug/L	1 10	1000 100		7 ND		
Selenium	ug/L ug/L	2	50	ND	ND ND		
Strontium (Total)	ug/L ug/L	5	30	ND	402		
Uranium (by ICP/MS)	ug/L	1	30		1		
Vanadium (Total)	ug/L	1	1000		2		
Zinc (Total)	ug/L	10	5000	10	181		
Miscellaneous			•				
Ammonia-N	mg/L	0.05		0.33	0.12		
Boron	mg/L	0.05		0.14	0.13		
Chloramines	mg/L	0.05			ND		
Gross Alpha	pCi/L		15		5.57 +/- 2.32		
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND		
Methane	ug/L	0.1 0.5			3.2 ND		
Nitrogen (Total) o-Phosphate-P	mg/L mg/L	0.05		0.46	ND ND		
Phosphorous (Total)	mg/L	0.03		0.40	0.30		
Radium 226	pCi/L	0.00	3		0.881 +/- 0.335		
Organic Analyses		•					
Haloacetic Acids (Total)	ug/L	1.0	60.0		0.0		
Dibromoacetic Acid		1.0			ND		
Dichloroacetic Acid		1.0			ND		
Monobromoacetic Acid		1.0			ND		
Monochloroacetic Acid		2.0			ND		
Trichloroacetic Acid	Ŭ	1.0			ND		
Organic Carbon (Dissolved)	mg/L	0.2			0.76		
Organic Carbon (Total)	mg/L	0.2	80.0	6.3	0.99		
Trihalomethanes (Total) Bromodichloromethane	ug/L	1.0 0.5	80.0		9.8 2.4		
Bromodicniorometnane Bromoform		0.5			ND		
Chloroform	Ŭ	0.5			7.4		
Dibromochloromethane		0.5			ND		
Field Parameters							
Temperature	⁰ C	0.1			23.0		
Specific Conductance (EC)	uS	1.0	900	1015	971		
рН	Std Units	0.1	6.5 - 8.5	7.1	6.94		
ORP	mV	1.0			-165		
Free Chlorine Residual	mg/L	0.1	2 - 5		ND		
Dissolved Oxygen	mg/L	0.01					
Silt Density Index	Std Units	0.1					
Gas Volume H ₂ S	mL mg/L	2.0 0.1		1.5	0.06		
Notes:	my/L	0.7		1.5	0.00		

Table 15. Summary of WY 2013 Water Quality Data – SM ASR-2

				Results			
					SM ASR-2		
Parameter	Unit	PQL	MCL	12/4/12	4/17/13	7/24/13	
Tlancad Charges Time	IDa.:a	Sample D	escription	WY 2012 Storage		Storage	
Elapsed Storage Time	Days			225	90	188	
Volume Purged at Sampling Major Cations	1,000 gals						
Calcium	mg/L	0.5		89	42		
Magnesium	mg/L	0.5		24	13		
Potasium	mg/L	0.5		5.4	3.0	3	
Sodium	mg/L	0.5		88	46	`	
Major Anions	IIIg/L	0.0		00	40		
Alkalinity, Total (as CaCO3)	mg/L	2		227	136	1	
Chloride	mg/L	1	250	118	35		
Sulfate	mg/L	1	250	100	62		
Nitrate (as NO3)	mg/L	1	45	ND	ND.		
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND	1	
General Physical	9.2			.,,5			
oH	Std Units			7.1	7.6		
Specific Conductance (EC)	uS	1	900	1018	508	7	
Total Dissolved Solids	mg/L	10	500	623	306	4	
Metals	ıy	,,,,	000	323	300		
Arsenic (Total)	ug/L	1	10	2	2		
Barium (Total)	ug/L ug/L	10	1000	136	70		
Iron (Dissolved)	ug/L ug/L	10	1000	62	50		
Iron (Total)	ug/L ug/L	10	300	1097	3101	2	
Lithium	ug/L ug/L	10	300	38	5101		
Manganese (Dissolved)		10		31	23	1	
Manganese (Total)	ug/L ug/L	10	50	43	40	'	
		10	1000	11	6		
Molybdenum Nickel	ug/L	10		4	ND		
Selenium	ug/L		100 50	2	8	ı	
Strontium (Total)	ug/L	2	50	448	220	3	
Uranium (by ICP/MS)	ug/L	5 1	20	2	1		
Vanadium (Total)	ug/L	1	30	5	5		
Zinc (Total)	ug/L ug/L	10	1000 5000	348	248	3	
Miscellaneous	ug/L	10	3000	340	240		
Ammonia-N	mg/L	0.05		0.1	ND		
Boron	_	0.05		0.12	ND ND	0.	
Chloramines	mg/L	0.05		0.12 ND	ND ND	0.	
	mg/L	0.05	15			2.52 +/- 1	
Gross Alpha	pCi/L mg/L	0.5	15	3.48 +/- 2.82	0.627 +/- 1.23	2.52 +/- 1	
Kjehldahl Nitrogen (Total)	_	0.5		0.3	0.3		
Methane	ug/L	0.1		2.5	0.5	0.	
Nitrogen (Total)	mg/L	0.5		ND	ND		
o-Phosphate-P	mg/L	0.05		0.1	0.2	(
Phosphorous (Total)	mg/L	0.03	2	0.27	0.54	0.007 . / 0.45	
Radium 226	pCi/L	<u> </u>	3	0.313 +/- 0.243	0.348 +/- 0.323	0.087 +/- 0.17	
Organic Analyses							
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	5.9		
Dibromoacetic Acid		1.0		ND	ND 10		
Dichloroacetic Acid		1.0		ND	1.9		
Monobromoacetic Acid		1.0		ND	ND	1	
Monochloroacetic Acid		2.0		ND	ND 4.0		
Trichloroacetic Acid		1.0		ND	4.0	1	
Organic Carbon (Dissolved)	mg/L	0.2		0.88	1.0		
Organic Carbon (Total)	mg/L	0.2		0.83	1.5	0	
Trihalomethanes (Total)	ug/L	1.0	80.0	7.3	67.4		
Bromodichloromethane		0.5		1.7	19.0		
Bromoform		0.5		ND	1.6		
Chloroform		0.5		4.6	37.0		
Dibromochloromethane	ug/L	0.5		1.0	9.8	(
Field Parameters	10.0		,			1	
Temperature	°C	0.1		21.9			
Specific Conductance (EC)	uS	1.0	900	1008			
ρΗ	Std Units	0.1	6.5 - 8.5	6.8			
ORP	mV	1.0		-108			
Free Chlorine Residual	mg/L	0.1	2 - 5	ND		<u> </u>	
Dissolved Oxygen	mg/L	0.01		1.37			
	Std Units	0.1		4.6	l	l	
Silt Density Index Gas Volume H ₂ S	mL mg/L	2.0		ND			

Table 16. Summary of WY 2013 Water Quality Data – SMS ASR-3

						Results SMS ASR-3			
Parameter	Unit	PQL	MCL	10/22/2010	10/30/12	4/17/13	7/25/13		
i didilioto.	O.I.I.		escription	NGW	WY 2012 Storage		Storage		
Elapsed Storage Time	Days				190	90	189		
Volume Purged at Sampling	1,000 gals								
Major Cations				•	•	-	•		
Calcium	mg/L	0.5		76	68	42	50		
Magnesium	mg/L	0.5		18	18	13	17		
Potasium	mg/L	0.5		4.5	4.8	3.1	3.8		
Sodium	mg/L	0.5		102	87	47	60		
Major Anions									
Alkalinity, Total (as CaCO3)	mg/L	2		304	223	140	190		
Chloride	mg/L	1	250	107	90	31	67		
Sulfate	mg/L	1	250	56	58	68	70		
Nitrate (as NO3)	mg/L	1	45	1	ND	ND	2.0		
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND	ND	NE		
General Physical									
рН	Std Units			7.7	7.3	7.7	7.3		
Specific Conductance (EC)	uS	1	900	954	850	510	723		
Total Dissolved Solids	mg/L	10	500	575	503	300	428		
Metals									
Arsenic (Total)	ug/L	1	10	4	5	13			
Barium (Total)	ug/L	10	1000	50	77	56	85		
Iron (Dissolved)	ug/L	10		21	93	35	15		
Iron (Total)	ug/L	10	300	21	156	150	219		
Lithium	ug/L	1		36	32	6	21		
Manganese (Dissolved)	ug/L	10		27	25	20	19		
Manganese (Total)	ug/L	10	50	27	26	28	20		
Molybdenum	ug/L	1	1000		8	46	20		
Nickel	ug/L	10	100	ND	ND	ND	NE		
Selenium	ug/L	2	50	ND	2	8	3		
Strontium (Total)	ug/L	5		403	335	214	307		
Uranium (by ICP/MS)	ug/L	1	30		2	2	5		
Vanadium (Total)	ug/L	1	1000		4	ND	2		
Zinc (Total)	ug/L	10	5000		72	118	152		
Miscellaneous									
Ammonia-N	mg/L	0.05		249	ND	ND	NE		
Boron	mg/L	0.05		ND	0.09	ND	0.06		
Chloramines	mg/L	0.05		0.08	ND	ND	ND		
Gross Alpha	pCi/L		15		4.12 +/- 1.97	2.74 +/- 1.32	3.83 +/- 1.71		
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	ND	ND	NE		
Methane	ug/L	0.1		ND	0.61	0.35	0.54		
Nitrogen (Total)	mg/L	0.5		ND	ND	ND	NE		
o-Phosphate-P	mg/L	0.05		ND	ND	0.1	0.2		
Phosphorous (Total)	mg/L	0.03		0.03	0.22	0.38	0.18		
Radium 226	pCi/L		3		0.426 +/- 0.256	0.000 +/- 0.194	0.306 +/- 0.257		
Organic Analyses									
Haloacetic Acids (Total)	ug/L	1.0	60.0	ND	0.0	6.8	12.7		
Dibromoacetic Acid	ug/L	1.0		ND	ND	ND	ND		
Dichloroacetic Acid	ug/L	1.0		ND	ND	3.5	4.3		
Monobromoacetic Acid	ug/L	1.0		ND	ND	ND	ND		
Monochloroacetic Acid	ug/L	2.0		ND	ND	ND	ND		
Trichloroacetic Acid	ug/L	1.0		ND	ND	3.3	8.4		
Organic Carbon (Dissolved)	mg/L	0.2		0.71	0.66				
Organic Carbon (Total)	mg/L	0.2		0.70	0.73	1.2	0.65		
Trihalomethanes (Total)	ug/L	1.0	80.0	ND	6.3	104.7	50.0		
Bromodichloromethane	ug/L	0.5		ND	1.8				
Bromoform	ug/L	0.5		ND	0.5	1.7	1.2		
Chloroform	ug/L	0.5		ND	2.7	61.0	27.0		
Dibromochloromethane	ug/L	0.5		ND	1.3	14.0	8.8		
Field Parameters									
Temperature	⁰ C	0.1		26.2	23.9		19.2		
Specific Conductance (EC)	uS	1.0	900	991	829		715		
pH	Std Units	0.1	6.5 - 8.5	7.0	7.1		7.28		
ORP	mV	1.0		-82	-192		-15		
Free Chlorine Residual	mg/L	0.1	2 - 5	ND	ND		NE		
Dissolved Oxygen	mg/L	0.01			-		2.29		
Silt Density Index	Std Units	0.1					-		
Gas Volume	mL	2.0					-		
H ₂ S	mg/L	0.1		0.60	0.05		NE		

Table 17. Summary of WY 2013 Water Quality Data – SM MW-1

				Results			
					SM MW-1	=/0.1/10	
Parameter	Unit	PQL Sample D	MCL escription	11/1/12 WY 2012 Storage	4/17/13	7/24/13 Storage	
Elapsed Storage Time	Days	Janiple D	escription	192	90	188	
Volume Purged at Sampling	1,000 gals			132	30	100	
Major Cations	1,000 gaio	<u> </u>					
Calcium	mg/L	0.5		47	43	4	
Magnesium	mg/L	0.5		12	11	1	
Potasium	mg/L	0.5		2.9	3.3	2	
Sodium	mg/L	0.5		47	46		
Major Anions	3						
Alkalinity, Total (as CaCO3)	mg/L	2		144	135	14	
Chloride	mg/L	1	250	34	31		
Sulfate	mg/L	1	250	69	72	(
Nitrate (as NO3)	mg/L	1	45	ND	ND	1	
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND	N	
General Physical		•					
pH	Std Units			7.5	7.3	7	
Specific Conductance (EC)	uS	1	900	540	507	51	
Total Dissolved Solids	mg/L	10	500	340	306	32	
Metals		•		-1			
Arsenic (Total)	ug/L	1	10	2	2		
Barium (Total)	ug/L	10	1000	21	27	2	
Iron (Dissolved)	ug/L	10		ND	ND	N	
Iron (Total)	ug/L	10	300	ND	16	N	
Lithium	ug/L	1		8	7		
Manganese (Dissolved)	ug/L	10		ND	68	N	
Manganese (Total)	ug/L	10	50	ND	68	N	
Molybdenum	ug/L	1	1000	4	6		
Nickel	ug/L	10	100	ND	ND	N	
Selenium	ug/L	2	50	2	15		
Strontium (Total)	ug/L	5		247	220	24	
Uranium (by ICP/MS)	ug/L	1	30	1	1	_	
Vanadium (Total)	ug/L	1	1000	2	1		
Zinc (Total)	ug/L	10	5000	13	ND.	N	
Miscellaneous	-5-						
Ammonia-N	mg/L	0.05		ND	ND	N	
Boron	mg/L	0.05		ND	ND	N	
Chloramines	mg/L	0.05		ND	ND	N	
Gross Alpha	pCi/L	0.00	15	2.95 +/- 1.44	3.21 +/- 1.39	2.81 +/- 1.3	
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	ND	N	
Methane	ug/L	0.1		0.12	0.24	0.1	
Nitrogen (Total)	mg/L	0.5		ND	ND.	N.	
o-Phosphate-P	mg/L	0.05		ND	0.1	N N	
Phosphorous (Total)	mg/L	0.03		0.06	0.23	0.0	
Radium 226	pCi/L	0.00	3	0.027 +/- 0.157		0.218 +/- 0.2	
Organic Analyses	POWE			0.021 17 0.101	0.000 17 0.000	0.210 17 0.2	
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	0.0	0	
Dibromoacetic Acid		1.0	00.0	ND	ND	N	
Dichloroacetic Acid		1.0		ND ND	ND ND	N	
Monobromoacetic Acid		1.0		ND ND	ND ND	N	
Monochloroacetic Acid		2.0		ND ND	ND ND	N	
INIONOCHIOLOGUC ACIU		1.0		ND ND	ND ND	N N	
Trichloropootic Acid	uy/L	1.0			0.89	0.7	
Trichloroacetic Acid	ma/l	იი		0.61		0.1	
Organic Carbon (Dissolved)	mg/L	0.2		0.61		Λ.	
Organic Carbon (Dissolved) Organic Carbon (Total)	mg/L	0.2	80 O	0.7	1.00		
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total)	mg/L ug/L	0.2 1.0	80.0	0.7 58.7	1.00 28.7	26	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane	mg/L ug/L ug/L	0.2 1.0 0.5	80.0	0.7 58.7 12.0	1.00 28.7 9.0	26 4	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform	mg/L ug/L ug/L ug/L	0.2 1.0 0.5 0.5	80.0	0.7 58.7 12.0 0.5	1.00 28.7 9.0 ND	26 4 N	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform	mg/L ug/L ug/L ug/L ug/L	0.2 1.0 0.5 0.5	80.0	0.7 58.7 12.0 0.5 42.0	1.00 28.7 9.0 ND 17.0	26 4 N 21	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane	mg/L ug/L ug/L ug/L	0.2 1.0 0.5 0.5	80.0	0.7 58.7 12.0 0.5	1.00 28.7 9.0 ND	26 4 N 21	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Field Parameters	mg/L ug/L ug/L ug/L ug/L ug/L	0.2 1.0 0.5 0.5 0.5 0.5	80.0	0.7 58.7 12.0 0.5 42.0	1.00 28.7 9.0 ND 17.0	26 4 N 21.	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 1.0 0.5 0.5 0.5 0.5		0.7 58.7 12.0 0.5 42.0 4.2	1.00 28.7 9.0 ND 17.0	26 4 N 21 1	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC)	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.1 1.0	900	0.7 58.7 12.0 0.5 42.0 4.2 19.6 530	1.00 28.7 9.0 ND 17.0	266 4 N 21 1 1 16	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chioroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC) pH	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.1 1.0		0.7 58.7 12.0 0.5 42.0 4.2 19.6 530 7.47	1.00 28.7 9.0 ND 17.0	26 4. N 21. 1.	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC) pH ORP	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.1 1.0 0.1	900 6.5 - 8.5	0.7 58.7 12.0 0.5 42.0 4.2 19.6 530 7.47 -84	1.00 28.7 9.0 ND 17.0	26 4. N 21. 1.	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichioromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC) pH ORP Free Chlorine Residual	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.5 0.1 1.0 0.1	900	0.7 58.7 12.0 0.5 42.0 4.2 19.6 530 7.47 -84	1.00 28.7 9.0 ND 17.0	26 4 N 21. 1. 16 76 7	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC) pH ORP Free Chlorine Residual Dissolved Oxygen	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.1 1.0 0.1 1.0 0.1	900 6.5 - 8.5	0.7 58.7 12.0 0.5 42.0 4.2 19.6 530 7.47 -84 ND	1.00 28.7 9.0 ND 17.0	0.5 26 4. N 21. 1. 16 76 7	
Organic Carbon (Dissolved) Organic Carbon (Total) Trihalomethanes (Total) Bromodichioromethane Bromoform Chloroform Dibromochloromethane Field Parameters Temperature Specific Conductance (EC) pH ORP Free Chlorine Residual	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.2 1.0 0.5 0.5 0.5 0.5 0.5 0.1 1.0 0.1	900 6.5 - 8.5	0.7 58.7 12.0 0.5 42.0 4.2 19.6 530 7.47 -84	1.00 28.7 9.0 ND 17.0	26 4 N 21. 1. 16 76 7	

Table 18. Summary of WY 2013 Water Quality Data – SMS Deep

Volume Purged at Sampling	Unit Days 1,000 gals mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL Sample D 0.5 0.5 0.5 0.5 1 1 1 1	MCL escription 250 250 250	\$M\$ 10/30/12 WY 2012 Storage 190 666 111 4.1 90 203 90 54	4/17/13 WY 2013 Storage 90 48 10 2.8 47
Elapsed Storage Time Volume Purged at Sampling 1 Major Cations Calcium Magnesium Potasium Rajor Anions Alkalinity, Total (as CaCO3) Chloride sulfate nitrate (as NO3) nitrite (as Nitrogen) General Physical pH Specific Conductance (EC) Total Dissolved Solids Metals Arsenic (Total) Barium (Total)	Days 0,000 gals mg/L mg/L	0.5 0.5 0.5 0.5 0.5	250 250	866 110 666 111 4.1 90 203 90	WY 2013 Storage 90 48 10 2.8 47
Volume Purged at Sampling	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.5 0.5 0.5 0.5 0.5	250 250	190 66 111 4.1 90 203 90	90 48 10 2.8 47
Volume Purged at Sampling	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.5 0.5 0.5 2 1 1	250	66 11 4.1 90 203 90	48 10 2.8 47
Major Cations Calcium n Magnesium n Potasium n Sodium n Major Anions Alkalinity, Total (as CaCO3) n Chloride m Sulfate n Nitrite (as NO3) n Nitrite (as NO3) n General Physical p pH S Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total) u	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.5 0.5 0.5 2 1 1	250	11 4.1 90 203 90	10 2.8 47 141
Calcium n Magnesium n Potasium n Potasium n Major Anions Alkalinity, Total (as CaCO3) n Chloride n Sulfate n Nitrate (as NO3) n Nitrite (as Nitrogen) n General Physical pH Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.5 0.5 0.5 2 1 1	250	11 4.1 90 203 90	10 2.8 47 141
Magnesium n Potasium n Sodium n Major Anions Alkalinity, Total (as CaCO3) n Chloride n Sulfate n Nitrate (as NO3) n Nitrite (as Nitrogen) n General Physical pH Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.5 0.5 0.5 2 1 1	250	11 4.1 90 203 90	10 2.8 47 141
Potasium no Sodium no Sulfate no	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.5 0.5 2 1 1	250	4.1 90 203 90	2.8 47 141
Sodium n Major Anions Alkalinity, Total (as CaCO3) n Chloride n Nitrate (as NO3) n Nitrite (as Nitrogen) n General Physical pH S Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total)	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.5 2 1 1	250	90 203 90	47 141
Alkalinity, Total (as CaCO3) Chloride Mulfate Mitrate (as NO3) Mitrite (as Nitrogen) General Physical pH Specific Conductance (EC) Total Dissolved Solids Metals Arsenic (Total) Barium (Total)	ng/L ng/L ng/L ng/L ng/L std Units	1 1 1	250	90	
Chloride nr Sulfate nr Nitrate (as NO3) nr Nitrate (as Nitrogen) nr General Physical pH S Specific Conductance (EC) ur Total Dissolved Solids nr Metals Arsenic (Total) ur Barium (Total) ur	ng/L ng/L ng/L ng/L ng/L std Units	1 1 1	250	90	
Sulfate n Nitrate (as NO3) n Nitrite (as Nitrogen) n General Physical p BH S Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total) u	ng/L ng/L ng/L Std Units	1 1	250		22
Nitrate (as NO3) nr Nitrite (as Nitrogen) nr General Physical DH Specific Conductance (EC) ur Total Dissolved Solids nr Metals Arsenic (Total) ur Barium (Total) ur	ng/L ng/L Std Units	1		54	30
Nitrite (as Nitrogen)	ng/L Std Units JS		45	04	66
General Physical pH S Specific Conductance (EC) u Total Dissolved Solids m Metals u Arsenic (Total) u Barium (Total) u	Std Units uS	1		ND	ND
pH S Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total) u	ıS	- 1	1	ND	ND
Specific Conductance (EC) u Total Dissolved Solids n Metals Arsenic (Total) u Barium (Total) u	ıS			1	
Total Dissolved Solids m Metals Arsenic (Total) u Barium (Total) u				7.4	7.6
Metals Arsenic (Total) u Barium (Total) u		1	900	796	510
Arsenic (Total) u Barium (Total) u	ng/L	10	500	468	306
Barium (Total) u	ıg/L	ا ہ	10	7	20
	ıg/L ıg/L	1 10	10 1000	43	20
	ıg/L	10	1000	ND	ND
	ıg/L	10	300	ND ND	14
	ıg/L	1		29	6
	ıg/L	10		11	ND
	ıg/L	10	50	12	ND
Molybdenum u	ıg/L	1	1000	7	39
Nickel u	ıg/L	10	100	ND	ND
	ıg/L	2	50	2	7
	ıg/L	5		413	347
	ıg/L	1	30	3	3
	ıg/L	1	1000	6	3
Zinc (Total) u Miscellaneous	ıg/L	10	5000	17	ND
	ng/L	0.05		0.06	ND
	ng/L	0.05		0.08	ND ND
1	ng/L	0.05		ND	ND
	Ci/L	0.00	15	3.34 +/- 2.58	5.58 +/- 1.80
	ng/L	0.5		ND	ND
	ıg/L	0.1		0.6	0.30
Nitrogen (Total)	ng/L	0.5		ND	ND
o-Phosphate-P	ng/L	0.05		ND	ND
	ng/L	0.03		0.12	0.2
	Ci/L		3	0.663 +/- 0.292	0.099 +/- 0.237
Organic Analyses				Ī	
` '	ıg/L	1.0	60.0	0.0	13.7
Dibromoacetic Acid u		1.0		ND ND	ND
Dichloroacetic Acid u		1.0		ND ND	3.7
Monobromoacetic Acid u Monochloroacetic Acid u		1.0 2.0		ND ND	ND ND
Trichloroacetic Acid u		1.0		ND ND	10
	ng/L	0.2		0.55	0.93
	ng/L	0.2		0.59	1.30
	ıg/L	1.0	80.0	10.3	79.5
Bromodichloromethane u		0.5		3.0	22.0
Bromoform u		0.5		0.7	1.5
Chloroform u	ıg/L	0.5		4.3	44.0
Dibromochloromethane u	ıg/L	0.5		2.3	12.0
Field Parameters				•	
	C	0.1		25	
	ıS	1.0	900	777	
	Std Units	0.1	6.5 - 8.5	7.21	
	nV ng/l	1.0	2 5	155.4	
	ng/L ng/L	0.1 0.01	2 - 5	ND 	
	Std Units	0.01			
	nL	2.0			
	ng/L	0.1		0.05	

Table 19. Summary of WY 2013 Water Quality Data – Off-Site Monitoring Wells

Parameter Volume Pumped at Sampling Major Cations Calcium Magnesium Potasium Sodium	Unit 1,000 gals mg/L mg/L	0.5	MCL escription	10/31/12 WY 2012 Storage	7/30/13 WY 2013 Storage	Par 11/26/12 WY 2012 Storage	7/24/13
Volume Pumped at Sampling Major Cations Calcium Magnesium Potasium Sodium	1,000 gals	Sample D		WY 2012 Storage			
Major Cations Calcium Magnesium Potasium Sodium	mg/L	0.5	escription	Ĭ	WY 2013 Storage	WY 2012 Storage	WY 2013 Storage
Major Cations Calcium Magnesium Potasium Sodium	mg/L						
Calcium Magnesium Potasium Sodium				F4			
Magnesium Potasium Sodium					49	72	60
Potasium Sodium	IIIg/L	0.5		51 10	10	73 18	69 17
Sodium	mg/L	0.5		3.9	3.8	ND	ND
	mg/L	0.5		91	87	94	94
Major Anions	····9· –		l		-		-
Alkalinity, Total (as CaCO3)	mg/L	2		185	187	229	221
Chloride	mg/L	1	250	92	99	116	101
Sulfate	mg/L	1	250	32	31	68	67
Nitrate (as NO3)	mg/L	1	45	ND	ND	ND	NE
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND		ND
General Physical		_					1
pH	Std Units			7.5	7.6		
Specific Conductance (EC)	uS	1	900	737	740	959	826
Total Dissolved Solids Metals	mg/L	10	500	440	434	548	504
Arsenic (Total)	ug/l	1	10	8	6	2	2
Barium (Total)	ug/L ug/L	10	1000	68	67	ND	ND ND
Iron (Dissolved)	ug/L ug/L	10	1000	35	ND	ND ND	ND ND
Iron (Total)	ug/L	10	300	44	27	ND ND	ND ND
Lithium	ug/L	10	000	23	25	140	140
Manganese (Dissolved)	ug/L	10		99	119		26
Manganese (Total)	ug/L	10	50	101	122	24	25
Molybdenum	ug/L	1	1000	11	11	ND	ND
Nickel	ug/L	10	100	ND	ND	ND	ND
Selenium	ug/L	2	50	ND	ND	ND	ND
Strontium (Total)	ug/L	5		271	270	400	400
Uranium (by ICP/MS)	ug/L	1	30	ND	ND		
Vanadium (Total)	ug/L	1	1000	1	1	ND ND	ND
Zinc (Total)	ug/L	10	5000	ND	ND	ND	ND
Miscellaneous Ammonia-N	/I	0.05		ND	0.06	ND	0.17
Boron	mg/L mg/L	0.05		0.10	0.06	ND ND	109
Chloramines	mg/L	0.05		ND	ND	IND	103
Gross Alpha	pCi/L	0.00	15	0.236 +/- 1.52	0.783 +/- 1.38		
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	ND.	ND	0.58
Methane	ug/L	0.1		0.64	0.79		
Nitrogen (Total)	mg/L	0.5		ND	ND		
o-Phosphate-P	mg/L	0.05		ND	ND	ND	ND
Phosphorous (Total)	mg/L	0.03		0.28	ND	ND	ND
Radium 226	pCi/L		3	0.080 +/- 0.173	0.180 +/- 0.306		
Organic Analyses							
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	0.2	1.0	0.8
Dibromoacetic Acid		1.0		ND.	ND	ND	ND
Dichloroacetic Acid	- 3	1.0		ND ND	ND ND	ND	ND
Monobromoacetic Acid	- U	1.0		ND ND	ND ND	ND	ND
Monochloroacetic Acid		2.0 1.0		ND ND	ND ND	ND ND	ND ND
Organic Carbon (Dissolved)	mg/L	0.2		ND			0.82
Organic Carbon (Dissolved) Organic Carbon (Total)	mg/L	0.2		0.29	0.24 ND	0.95	0.82
Trihalomethanes (Total)	ug/L	1.0	80.0	0.29	0.0	1.8	4.7
Bromodichloromethane		0.5	00.0	ND	ND	ND	1.2
Bromoform		0.5		ND	ND	ND	ND
Chloroform		0.5		ND	ND	1.8	3.5
Dibromochloromethane		0.5		ND	ND	ND	ND
Field Parameters							
	°C	0.1		26.5		24.6	23.9
Temperature		1.0	900	719		910	930
Specific Conductance (EC)	uS						
Specific Conductance (EC) pH	Std Units	0.1	6.5 - 8.5	7.3		6.9	
Specific Conductance (EC) pH ORP	Std Units mV	0.1 1.0		-165.2		-250	-238
Specific Conductance (EC) pH ORP Free Chlorine Residual	Std Units mV mg/L	0.1 1.0 0.1	6.5 - 8.5 2 - 5				-238 ND
Specific Conductance (EC) pH ORP Free Chlorine Residual Dissolved Oxygen	Std Units mV mg/L mg/L	0.1 1.0 0.1 0.01		-165.2		-250 ND 	-238 ND
Specific Conductance (EC) pH ORP Free Chlorine Residual	Std Units mV mg/L	0.1 1.0 0.1		-165.2		-250	7.1 -238 ND 0.64

Review of water-quality parameters gathered at the active WY 2013 ASR injection wells (SM ASR-2 and SMS ASR-3), including major anions and cations, redox potential (ORP), and conductivity all showed similar effects of dilution / intermixing with native groundwaters during aquifer storage. This is unremarkable when compared to years prior to WY 2012 and WY 2013 due to the larger volume of water injected (i.e., over 1,000 af in both WY 2010 and WY 2011) in previous years.

Additional observations regarding the water quality data reported in **Tables 14 through 19** include the following:

- SM ASR-1 water quality (**Table 14**) has no WY2013 injection or storage/recovery period data, as the well pump was non-operational and out for repair / retrofit. This is why no injection or recovery was performed at this well during WY 2013.
- SM ASR-2 water quality, as reported in Table 15 and Figure 21, is unremarkable, and as expected for its being in active injection service. The transition from 35 to 72 mg/L chloride between post injection and 188 days of storage is indicative of aquifer mixing and a subsurface gradient moving injected water away from the well. It should also be noted that arsenic was near non-detect levels (refer to SMS ASR-3 discussion below). THM's showed the expected ingrowth and decay, and HAA's were quickly and completely degraded to non-detect levels.
- Water quality at MW-1 at the SM site was dominated by injectate throughout the injection and storage period, which is unremarkable given its proximity and downgradient position to SM ASR-2. MW-1 also showed the typical ingrowth and decay of THM's and the completed degradation of HAA's.
- SMS ASR-3 saw active injection of approximately 102 af of water over 27 days, and although water quality issues were generally unremarkable, several issues were observed:
 - 1. Chloride levels during storage showed relative stability during the first few months of storage, but then showed significant dilution/mixing as the 90 day storage Cl level was 31 mg/L (i.e., 95+% injectate) but Day 188 showed Cl at 67 mg/L (i.e., 56% injectate).
 - Concurrently with chloride variation, arsenic (As) was non-detect in the singular CAW injectate sample in December, yet on Day 90 of storage As was 13 ug/L, dropping to 7 ug/L by Day 188.
 - 3. Similarly, the nearby SMS Deep (only 25 feet north of ASR-3) showed As at 20 ug/L on Day 90 of storage. (No late-season sample was collected from SMS Deep).
- The above noted spikes and variation in As appears to be present only in the vicinity of SMS ASR-3 (and SMS Deep), and were not observed in the injectate, nor any ASR or MW's at the SM site, nor any of the off-site monitored wells. Although there is insufficient data to be conclusive, it appears that the spike in As decreased with time and mixing/dilution, suggesting that the spike is not associated with native

groundwater conditions. Further sampling and analysis is needed at SMS ASR-3, SMS Deep, and SMS ASR-4 (now in service) to better identify the conditions surrounding the As spike.

 Also noteworthy at SMS ASR-3 is the fact that it (and SMS Deep) are the only wells exhibiting a persistent presence of HAA's through injection and storage; historically HAA's have degraded completely in 90-100 days at the SM site. This phenomenon also warrants further sampling and analysis at SMS ASR-3 and SMS ASR-4 in WY 2014.

As found in previous ASR operations at the site, the most significant water-quality changes observed during aquifer storage other than simple dilution/mixing were redox-related (and likely biologically mediated) reactions; these were primarily evidenced by the degradation of HAA and THM compounds and absence of hydrogen sulfide even in mixed NGW and injected waters. Disinfection Byproducts (DBPs) parameters at the on-site wells during WY 2013 are graphically presented on **Figures 20 through 24**:

- THMs at the ASR wells showed their typical initial and significant ingrowth during the storage period, which results from the presence of free chlorine and trace levels of organic carbon in the injected water. THM ingrowth generally peaks in concentration approximately 60-90 days after the cessation of injection, followed by a gradual decline during the storage period. After approximately 90 to 150 days of storage, THMs typically degraded to below the initial injection levels. It is noted that THMs were below the Maximum Contaminant Level (MCL) of 80 ug/L throughout WY 2013, with the exception of a short-term spike of THM's to 104.7 ug/L at SMS ASR-3 during the peak in-growth period; this THM level dropped to 50 ug/L by the end of the storage season.
- There was insufficient data from the on-site monitoring wells to observe similar ingrowth and decay patterns as the ASR wells this year; additional data will be collected in WY 2014 to track this trend in comparison with previous years.

The decline in THMs observed at the ASR and on-site monitoring wells followed the characteristic process: rapid degradation of Bromoform and the highly brominated species with much slower decline in Chloroform.

Water Quality at Off-Site Monitor Wells

Water Quality data were collected from off-site wells in WY 2013 as in previous years – these data are presented in **Table 18** and discussed below.

Samples from PCA-E Deep were collected prior to and following the WY 2013 injection season. The samples were analyzed for DBP's and for trace minerals which might indicate influence from the operation of the ASR wells. As discussed previously and as shown in **Table 12**, evaluation of chloride ion concentrations indicate that some previously injected water had reached the off-site wells prior to the WY 2013 injection season. Data from PCA-East Deep show a slightly lower-than-historical chloride concentration; however the presence of dissolved

methane, manganese ion (at 101 and 122 ug/L - exceeding the MCL of 50 ug/L), and the absence of DBP's and hydrogen sulfide gas suggest that the influence of recharge operations is negligible to date at this site.

Data from the nearest CAW production well to the ASR wells (Paralta), also included pre- (11/26/2012) and post- (7/24/2013) injection season samples in WY 2013; these data show a slight influence of injected water from SM ASR-2 and/or SMS ASR-3 (Paralta located is between the two, at down- or cross-gradient), vis-à-vis slightly lowered chloride ion levels and the presence of trace levels of THM's at 4.7 ug/L post season. The slightly elevated levels of EC and TDS at Paralta are not unusual considering the normal variability of Tsm native ground waters; these levels were also reduced during the injection period, as the CAW injection source water is substantially lower in dissolved salts than native Tsm ground water. It is also important to note that EC and TDS are CADPH and USEPA Secondary Drinking Water Standards and are not related to public health and safety.

Water Quality Summary

Overall, water-quality data from WY 2013 showed no significant deviations from previous years; however, as noted in the WY 2011 and WY 2012 Summary of Operations Reports, the determination of precisely where the injected waters travel will become more challenging as multiple wells at different ASR sites are operational. The only deviation from the norm for the ASR program is the anomalous spikes in arsenic and the persistence of HAA's at the SMS ASR-3 / SMS Deep sites; additional investigation in WY 2014 will be needed to establish if these anomalies are simple sampling / analyses errors of if there is a hydraulic or geochemical mechanism associated with these observations.

The most important factors regarding ASR operations to date are that:

- a) No evidence of adverse geochemical reactions have been observed during aquifer storage, and;
- b) Injection is showing direct and measurable benefit to the basin water quality vis-à-vis reductions in salinity, dissolved solids, hardness, and aesthetic parameters such as manganese and sulfide ion, which impart color and odor to the consumers' drinking water.

These improvements are likely to continue as ASR operations continue and expand in the future.

CONCLUSIONS

Based on the findings developed from operation of Monterey Peninsula ASR Project during WY 2013, we conclude the following:

WY 2013 Recharge Operations

WY 2013 was classified as a Dry Water Year on the Monterey Peninsula and as a result, a commensurately modest total volume of 295 af of water was recharged into the Seaside Groundwater Basin at the Santa Margarita and Seaside Middle Schools ASR Facilities during the WY 2013 injection season.

ASR Well Performance

SM ASR-1. No injection or pumping occurred at this well during WY 2013 because the well pump was non-operational.

SM ASR-2. Pertinent well performance conclusions for SM ASR-2 during WY 2013 are summarized below:

- <u>Injection Rates:</u> Ranged between approximately 1,200 to 1,500 gpm, averaging approximately 1,350 gpm.
- Water Levels: Generally maintained greater than 300 ft. bgs with 50 ft. of available "freeboard" remaining below the maximum recommended drawup level.
- Specific Injectivity: Ranged between approximately 20 to 40 gpm/ft (depending on duration of injection) and overall trend in 24-hr specific injectivity was positive.
- <u>Residual Plugging:</u> No residual plugging was observed.
- General Conclusions: SM ASR-2 performed very well during WY 2013 with no evidence of residual plugging. The positive trend in performance and available "freeboard" at injection rates ranging between 1,200 to 1,500 gpm suggests the injection rate can be increased slightly in WY 2014 without adversely affecting the well's performance.

SMS ASR-3. Pertinent well performance conclusions for SM ASR-3 during WY 2013 are summarized below:

• <u>Injection Rates:</u> Ranged between approximately 500 to 1,200 gpm, averaging approximately 850 gpm.

- Water Levels: Generally maintained greater than 220 ft bgs with 40 ft of available "freeboard" remaining below the maximum recommended drawup level.
- <u>Specific Injectivity:</u> Ranged between approximately 8 to 13 gpm/ft (depending on duration of injection) and overall trend in 24-hr specific injectivity was slightly negative.
- Residual Plugging: A slight amount of residual plugging was observed, corresponding to the slight decline in specific capacity and injectivity.
- General Conclusions: SM ASR-3 performance was relatively stable compared to the significant declines observed in WY 2012. The pattern of relative performance stabilization followed by the initial significant decline in well performance observed at SMS ASR-3 is very similar to the pattern observed at both SM ASR-1 and SM ASR-2 when they were brought on-line. The slight declining trend in performance at injection rates ranging between 500 to 1,200 gpm suggests the injection rate should be slightly decreased in WY 2014 to avoid further residual plugging that may adversely affect the well's performance.

Water Quality

Significant conclusions regarding the water-quality investigation during WY 2013 include the following:

- Consistent with previous observations, no significant ion exchange, acidbase, or precipitation reactions were observed at the ASR sites.
- THMs at the ASR sites showed characteristic and significant initial "ingrowth" that peaked at approximately 30 to 90 days of storage, followed by a gradual decline over the next 90 to 150 days of storage.
- HAAs showed little "ingrowth" following the cessation of injection and degraded completely during aquifer storage.
- MCL exceedances observed in the April 2013 samples are considered anomalous and it is anticipated that water-quality conditions during WY 2014 will return to historical levels.

RECOMMENDATIONS

Based on the WY 2013 ASR program results and our experience with similar ASR projects, we offer the following recommendations for continued and future operations of the Monterey Peninsula ASR Project wells:

SM ASR-1 Well Operational Parameters (based on WY 2011 findings)

- Water-Level Drawup: Under the present local water-level conditions, the
 amount of water-level drawup should be limited to approximately 100 feet.
 This amount of water-level drawup during injection equals the typical
 available drawdown in the well for backflushing. This helps to avoid overpressurization and compression of plugging materials, thereby maximizing
 the efficiency of backflushing and limiting the amount of residual plugging.
- <u>Injection Rate</u>: Based on the lack of overall residual plugging during WY 2011, SM ASR-1 can be operated at an injection rate up to approximately 1,500 gpm (6.6 afd) to avoid excessive plugging during injection. This represents a 50 percent increase in the design injection rate of 1,000 gpm.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 100 feet, whichever occurs first.

SM ASR-2 Well Operational Parameters

- Water-Level Drawup: Under the present local water-level conditions, the amount of water-level drawup should be limited to approximately 130 feet, which is equal to the typical amount of available drawdown in the well for backflushing. Again, this helps to avoid over-pressurization and compression of plugging materials and limiting the amount of residual plugging.
- <u>Injection Rate</u>: Based on the lack of residual plugging that occurred during WY 2013 with the well injecting up to 1,500 gpm, we recommend the injection rate be increased slightly but be limited to approximately 1,750 gpm in order to limit residual plugging and maintain long-term performance.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 130 feet, whichever occurs first.

SMS ASR-3 Well Operational Parameters

 The SMS ASR-3 baseline injection testing program should be completed in WY 2014. This includes the following steps:

- 1. 7-day constant rate injection test;
- 2. Backflushing between each injection test, and;
- 3. Post-injection production performance testing
- Based on the results of WY 2013, injection rates at this well should be limited to approximately 1,000 gpm until further testing can be performed.
- Following the completion of the baseline injections testing program, specific recommendations for long-term operation of SMS ASR-3 should be developed, including maximum recommend water-level drawup, injection rate, and backflushing frequency. Recommendations for formal rehabilitation of SMS ASR-3 to improve well performance and injection capacity, similar to that performed at SM ASR-1 and SM ASR-2, should also be developed.

SMS ASR-4 Well Startup Conditioning and Baseline Injection Testing

We recommend that SMS ASR-4 undergo injection "conditioning" at startup (currently planned for WY 2015) in an effort to limit the amount of apparent residual plugging that has historically been observed at all three of the existing ASR wells following their initial injection operations. This conditioning should consist of initial injection at relatively low rates and durations, being incrementally increased following thorough backflushing and only upon confirmation that well performance is successfully being maintained. It is envisioned that this conditioning will likely occur over the course of several days until the design injection rate is achieved.

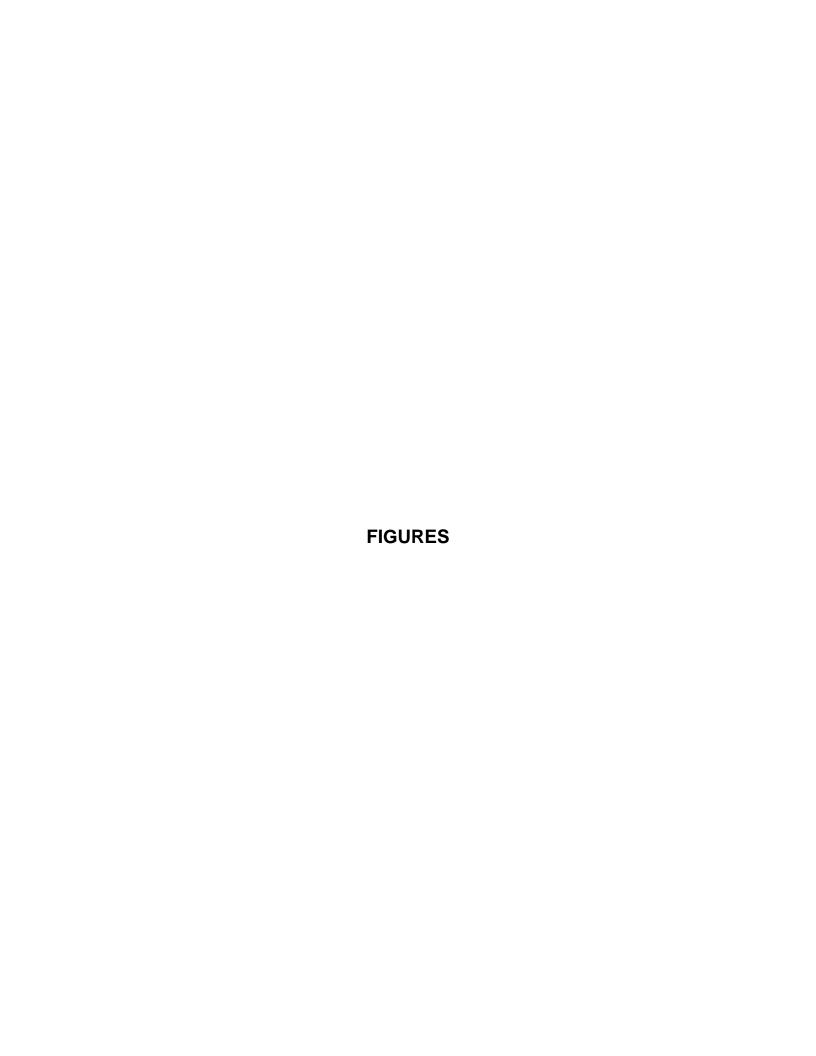
Following successful completion of injection well conditioning, a baseline injection testing program should be implemented that includes the following tests:

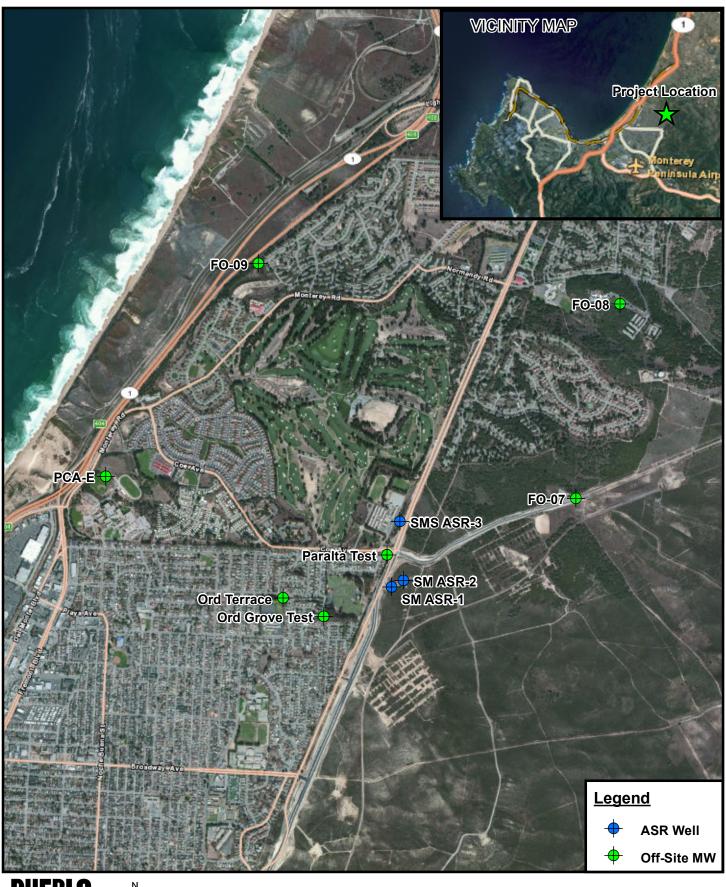
- 1. 8-hr variable rate injection test (combined with downhole velocity surveys);
- 2. 24-hr constant rate injection test;
- 3. 7-day constant rate injection test;
- 4. Backflushing between each of the above injection tests, and;
- 5. Post-injection production performance testing.

At the conclusion of the baseline injection testing program, recommendations for the long-term injection operations during the remainder of the WY 2015 recharge season and beyond can then be provided.

CLOSURE

This report has been prepared exclusively for the Monterey Peninsula Water Management District for the specific application to the ASR Project on the Monterey Peninsula. The findings and conclusions presented herein were prepared in accordance with generally accepted hydrogeologic and engineering practices. No other warranty, express or implied, is made.




REFERENCES

- Clark, J.C., Dupré, W.R., and Rosenberg, L.I. (1997), Geologic Map of the Monterey and Seaside 7.5-Minute Quadrangles, Monterey County, California: a Digital Database, U.S. Geological Survey Open-File Report 97-30.
- Driscoll, Fletcher, G., (1986), *Groundwater and Wells, Second Edition*, published by Johnson Screens.
- Fugro West, Inc. (1997), *Hydrogeologic Assessment, Seaside Coastal Groundwater Subareas, Phase III Update, Monterey County, California*, prepared for Monterey Peninsula Water Management District.
- Fugro West, Inc. (1997), Reconnaissance-Level Feasibility Study for Seaside Basin Injection/Recovery Project, prepared for Monterey Peninsula Water Management District.
- Huisman, L., and Olsthoorn, T.N. (1983), *Artificial Groundwater Recharge*, Delft University of Technology, Pitman Advanced Publishing Program.
- Nicholson, B.C., Dillon, P.J., and Pavelic, P. (2002), Fate of Disinfection By-Products During Aquifer Storage and Recovery, American Water Works Association Research Project No. 2618.
- Padre Associates, Inc. (2001), Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2002), Summary of Operations, Water Year 2002 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2004), Summary of Operations, Water Year 2003 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2005), Summary of Operations, Water Year 2004 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2006), Summary of Operations, Water Year 2005 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.

- Pueblo Water Resources, Inc. (2007), Summary of Operations, Water Year 2006 Injection Testing, Santa Margarita Test Injection Well, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2008), Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well No. 2, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), Summary of Operations, Phase 1 ASR Project, Water Year 2007, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), Summary of Operations, Phase 1 ASR Project, Water Year 2008, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2010), *Summary of Operations, Phase 1 ASR Project, Water Year 2009*, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2011), Summary of Operations, Phase 1 ASR Project, Water Year 2010, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), Summary of Operations, Well Construction and Testing, Seaside Middle School Test Well, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), Summary of Operations, Phase 1 ASR Project, Water Year 2011, prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2013), Summary of Operations, Monterey Peninsula ASR Project, Water Year 2012, prepared for Monterey Peninsula Water Management District.
- Pyne, R.D. (1994), Ground Water Recharge and Wells, Boca Raton, Florida, CRC Press.
- Raines, Melton & Carella, Inc. (2002), *Plan B Project Report*, prepared for the Water Division of the California Public Utilities Commission.
- Theis, C.V. (1935), Relationship Between Lowering of Piezometer Surface on the Fate and Duration of Discharge of a Well Using Ground Water Storage, Transactions of the Geophysical Union, vol. 16, pp. 519-524.

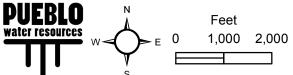
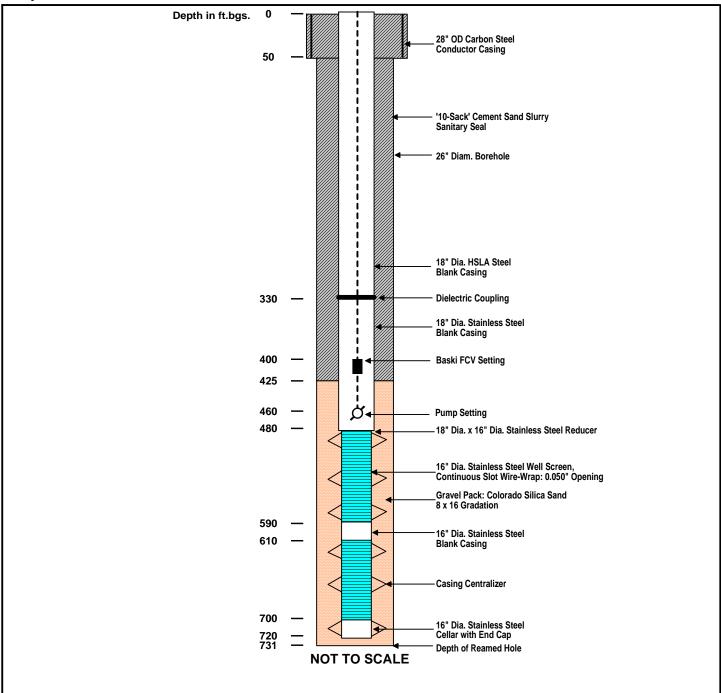
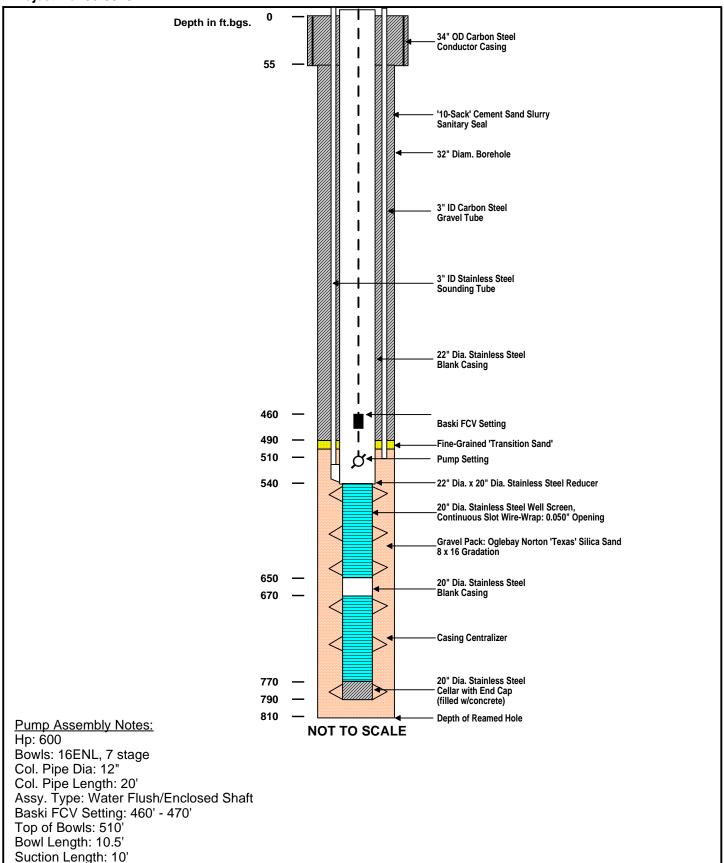



FIGURE 1. SITE LOCATION MAP WY 2012 ASR Program Monterey Peninsula Water Management District

Pump Assembly Notes:


Hp: 600

Bowls: 16ENL, 7 stage Col. Pipe Dia: 12" Col. Pipe Length: 20'

Assy. Type: Water Lube/Open Shaft Baski FCV Setting: 400' - 410'

Top of Bowls: 460' Bowl Length: 10.5' Suction Length: 10' Intake: 480.5'

Intake: 530.5'

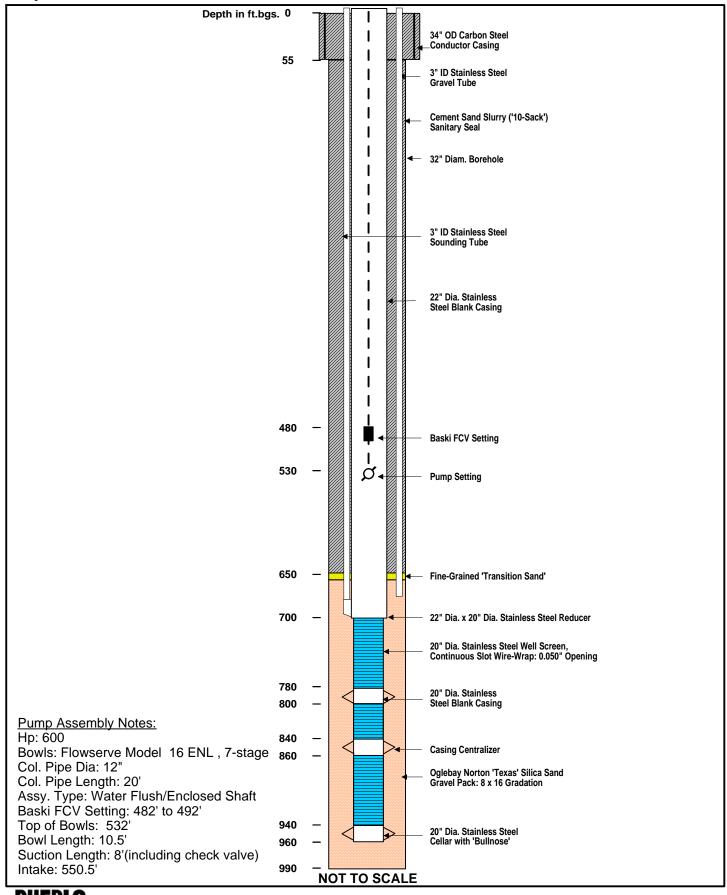


FIGURE 4. SMS ASR-3 AS-BUILT SCHEMATIC
WY 2013 ASR Program
Monterey Peninsula Water Management District

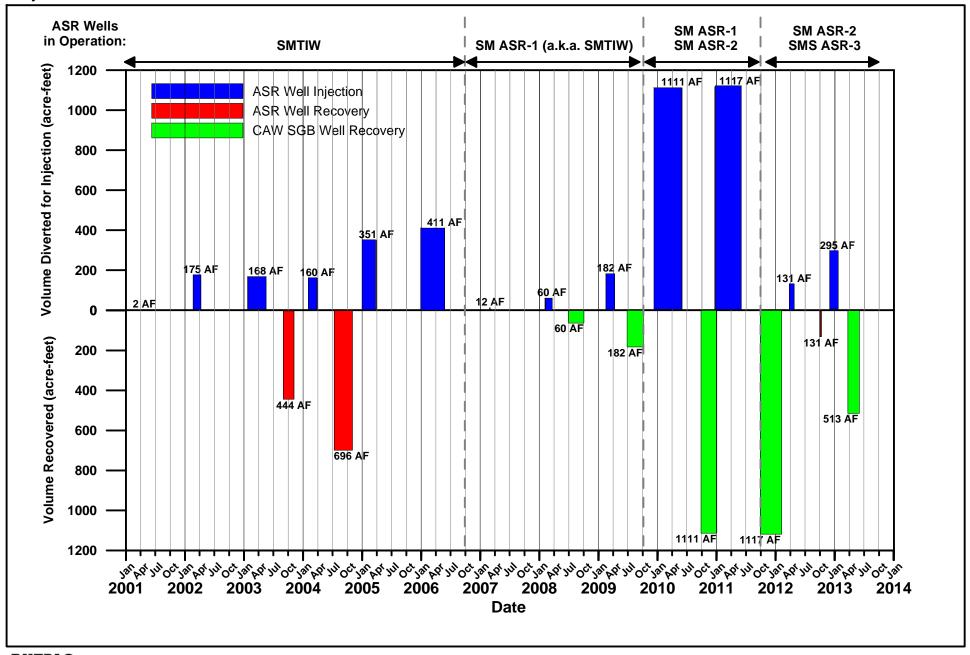


FIGURE 5. SUMMARY OF ASR OPERATIONS (WY 2001 - WY 2013)
WY 2013 ASR Program
Monterey Peninsula Water Management District

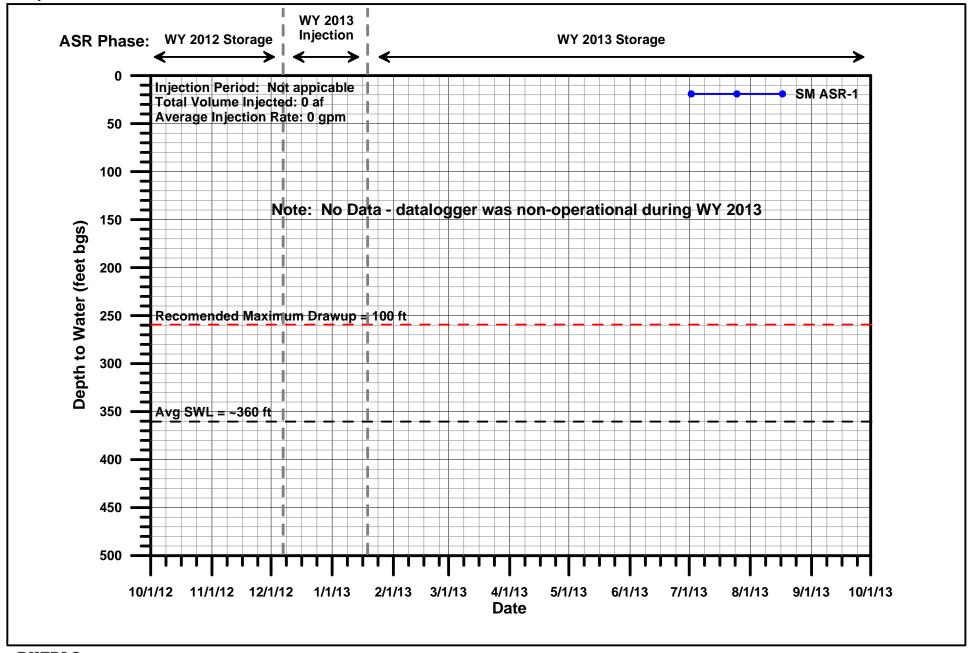


FIGURE 6. SM ASR-1 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

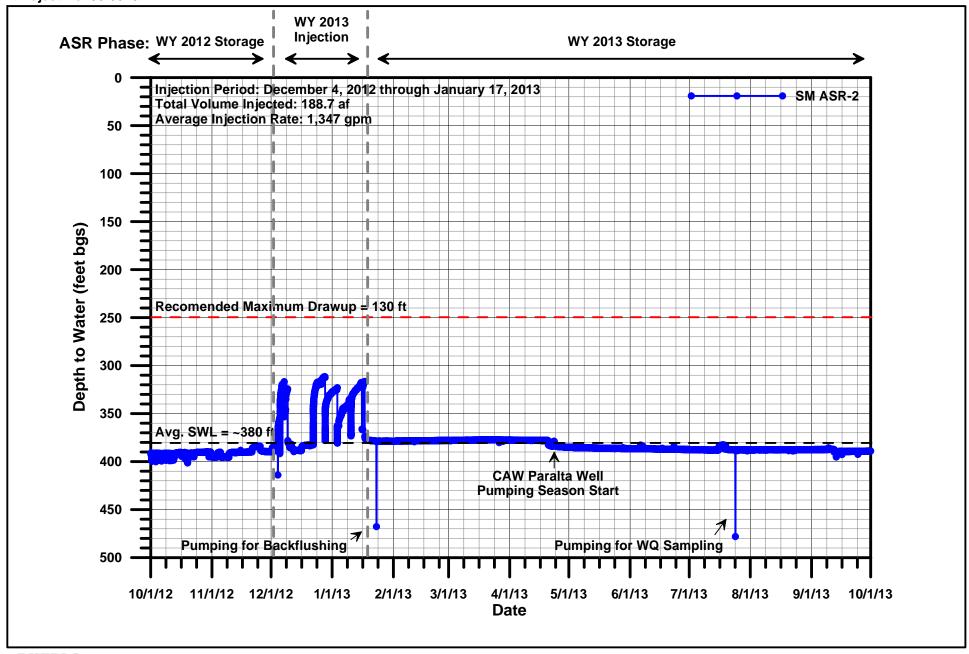


FIGURE 7. SM ASR-2 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

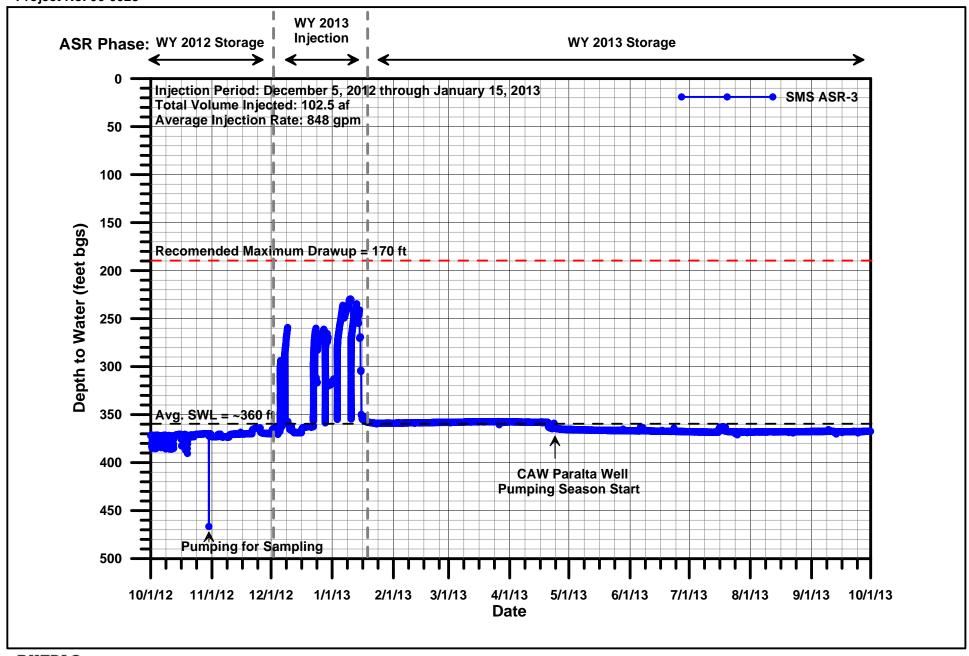


FIGURE 8. SMS ASR-3 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

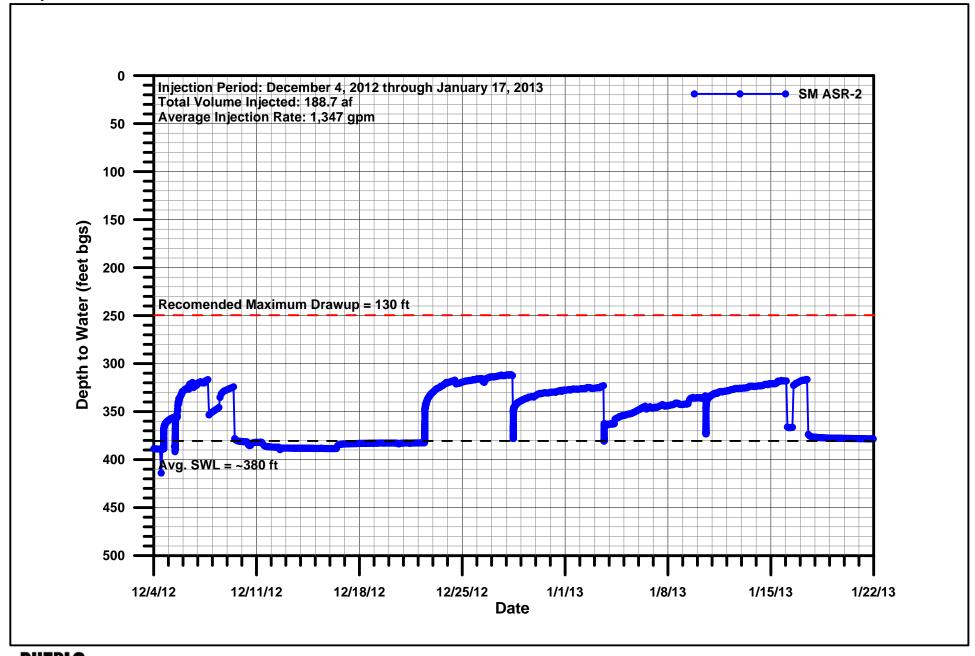


FIGURE 9. SM ASR-2 WATER-LEVEL DATA - INJECTION SEASON
WY 2013 ASR Program
Monterey Peninsula Water Management District

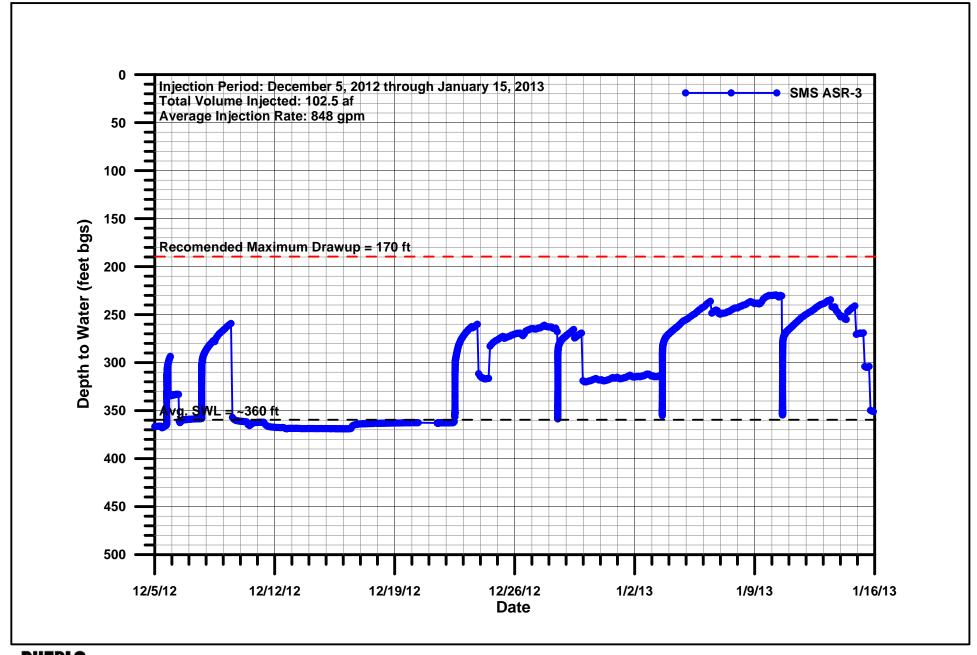


FIGURE 10. SMS ASR-3 WATER-LEVEL DATA - INJECTION SEASON
WY 2013 ASR Program
Monterey Peninsula Water Management District

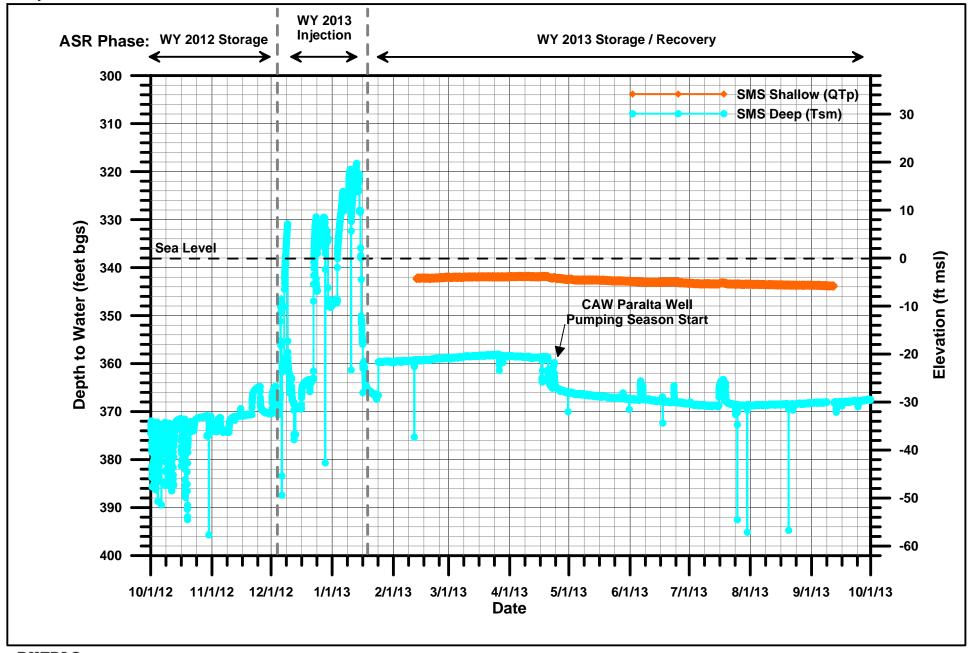


FIGURE 11. SMS WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

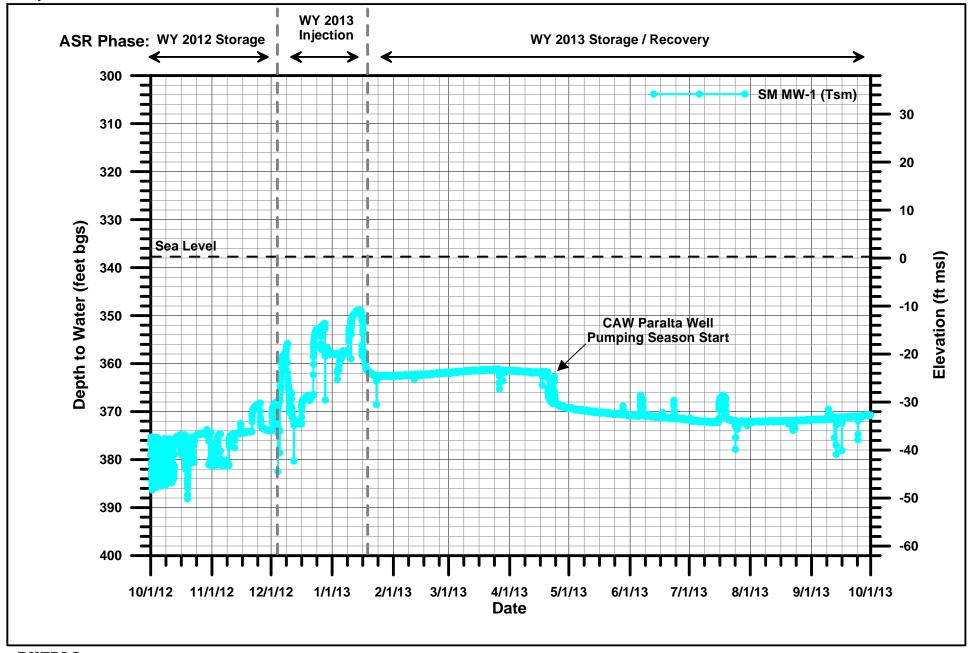


FIGURE 12. SM MW-1 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

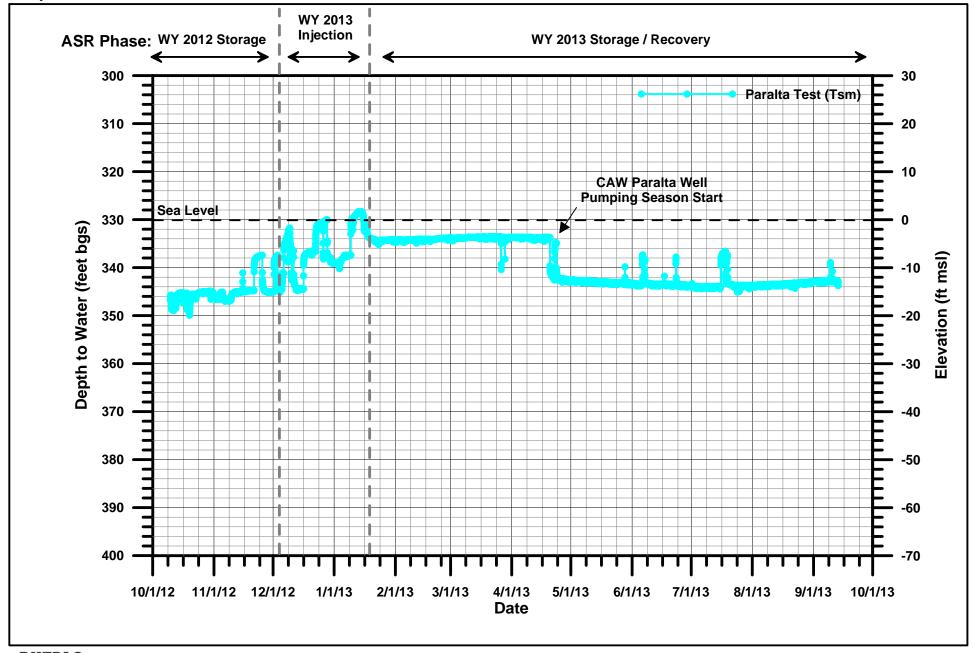


FIGURE 13. PARALTA TEST WATER-LEVEL DATA
WY 2013 ASR Program
Monterey Peninsula Water Management District

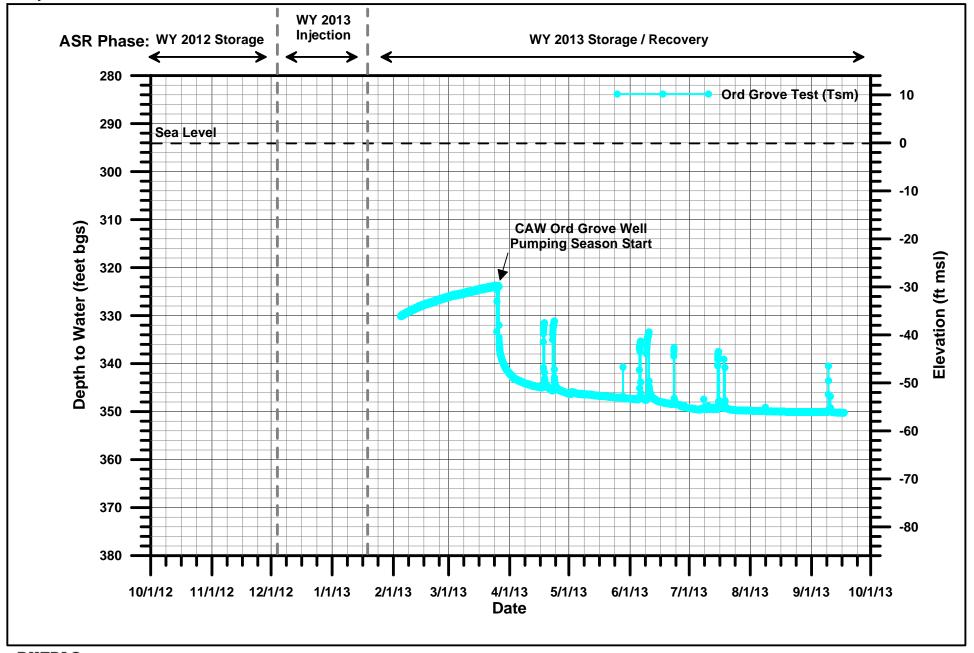


FIGURE 14. ORD GROVE TEST WATER-LEVEL DATA
WY 2013 ASR Program
Monterey Peninsula Water Management District

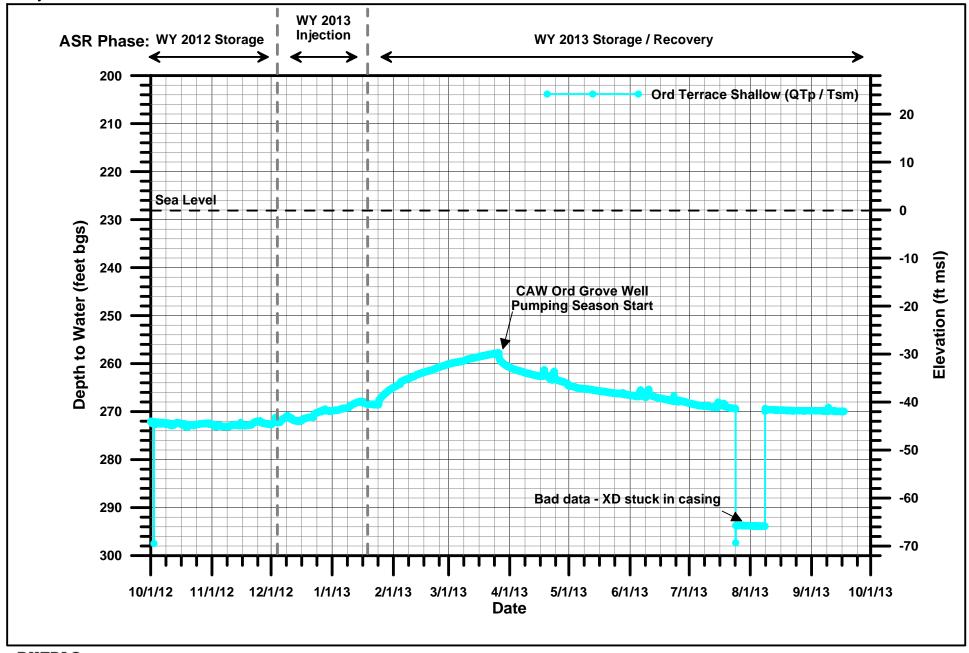


FIGURE 15. ORD TERRACE WATER-LEVEL DATA
WY 2013 ASR Program
Monterey Peninsula Water Management District

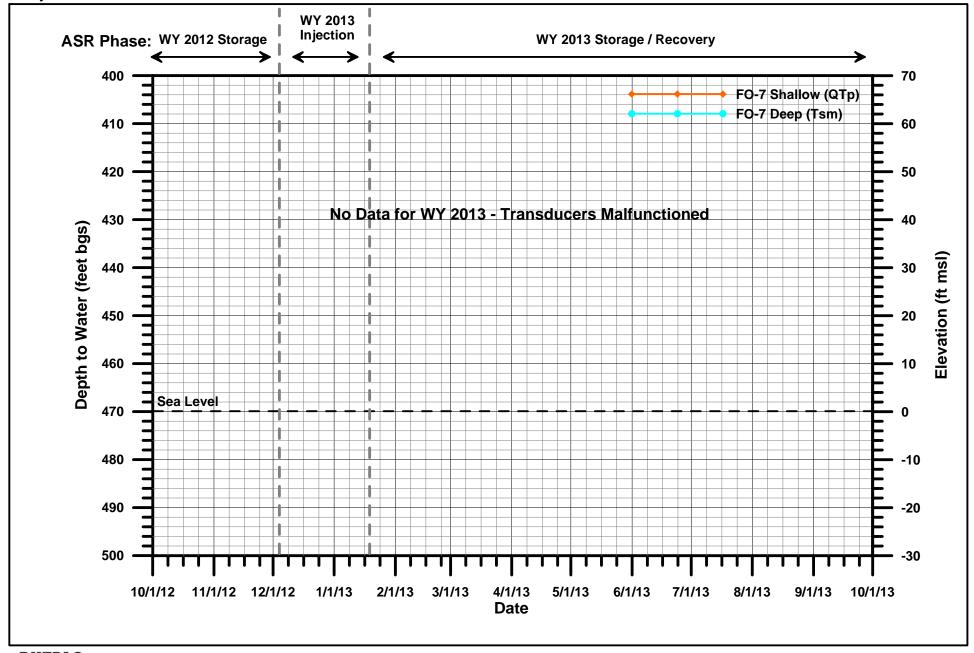


FIGURE 16. FO-7 WATER-LEVEL DATA
WY 2013 ASR Program
Monterey Peninsula Water Management District

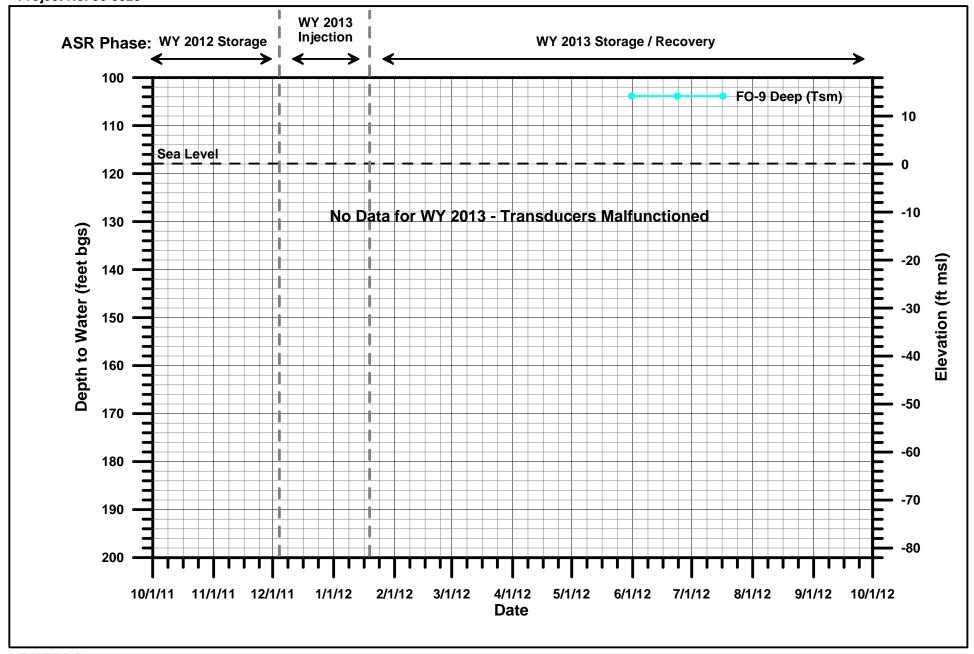


FIGURE 17. FO-9 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District

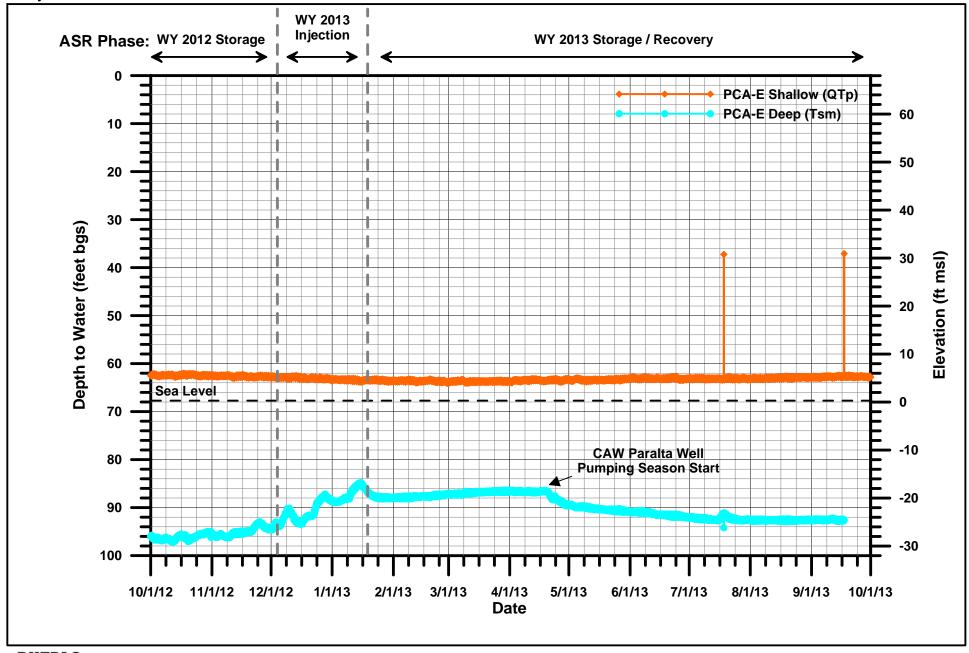
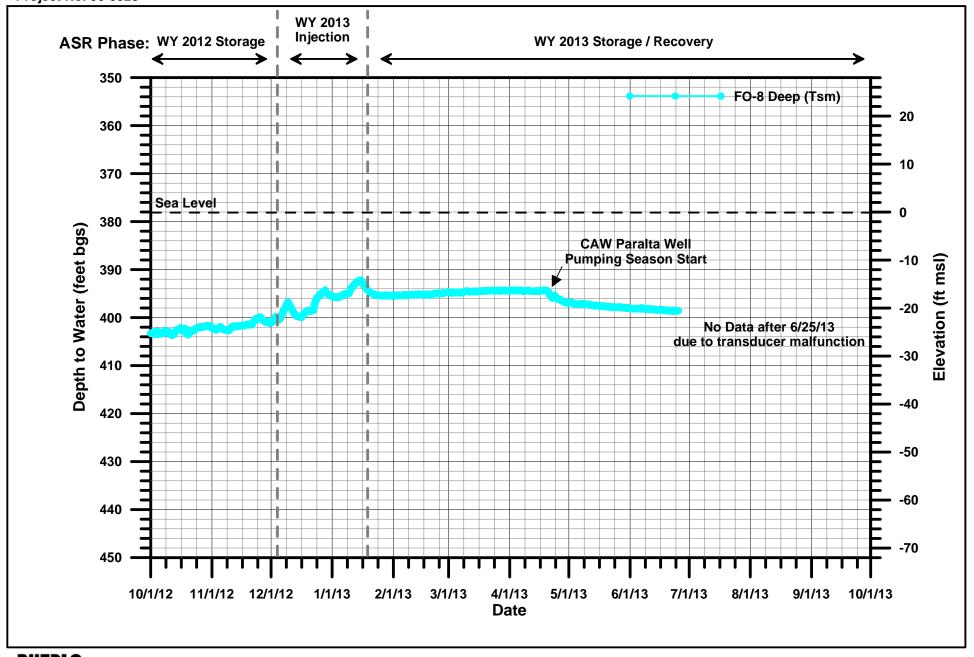
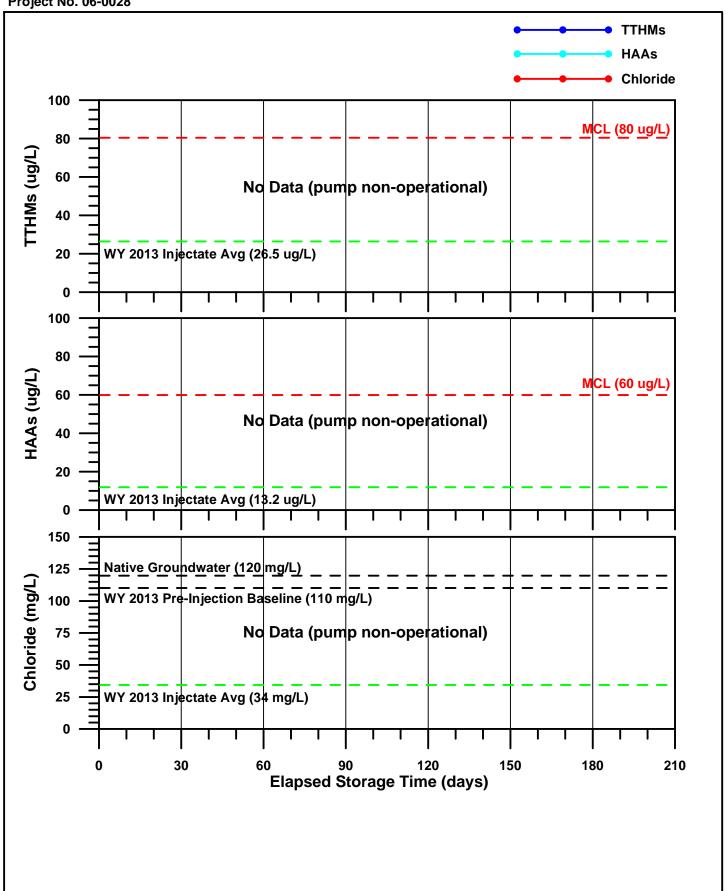
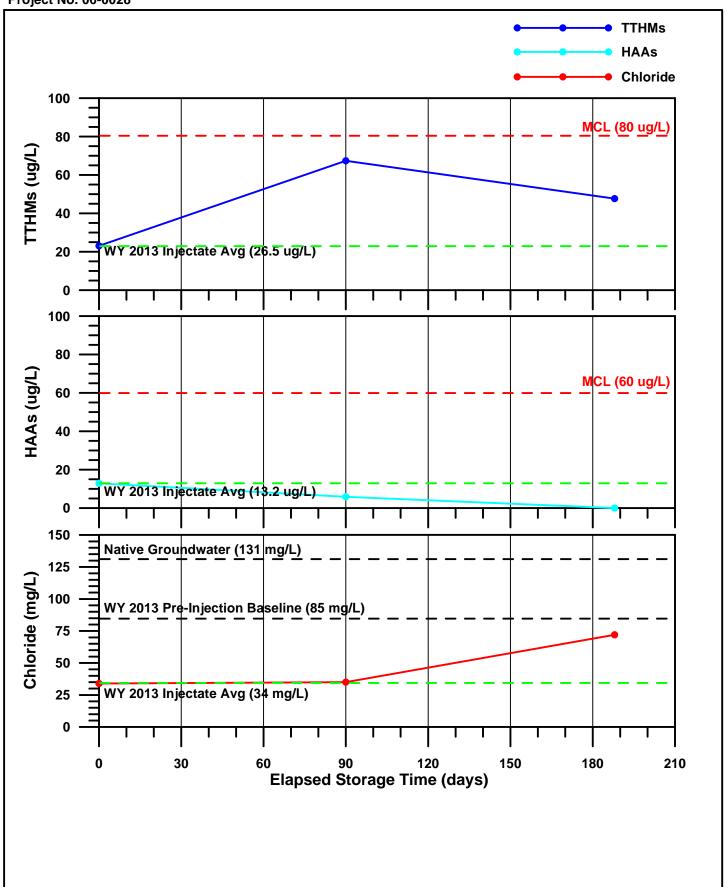
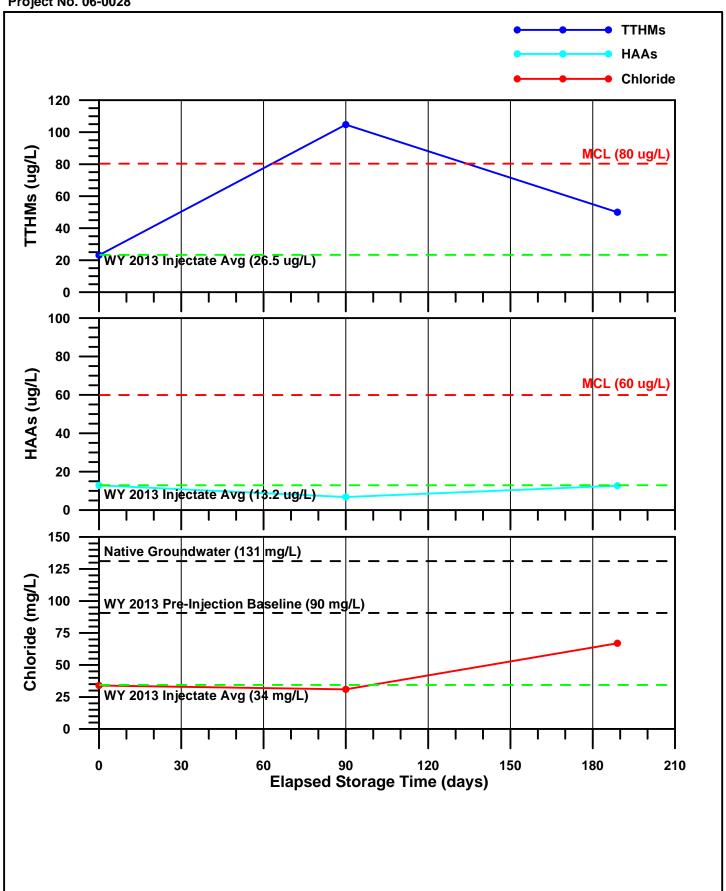
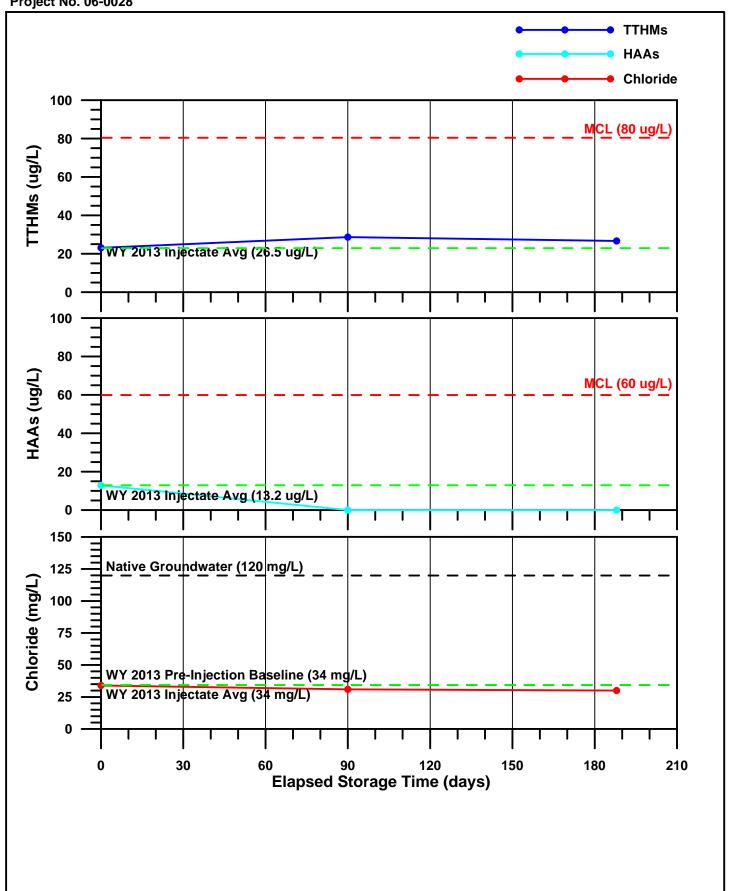
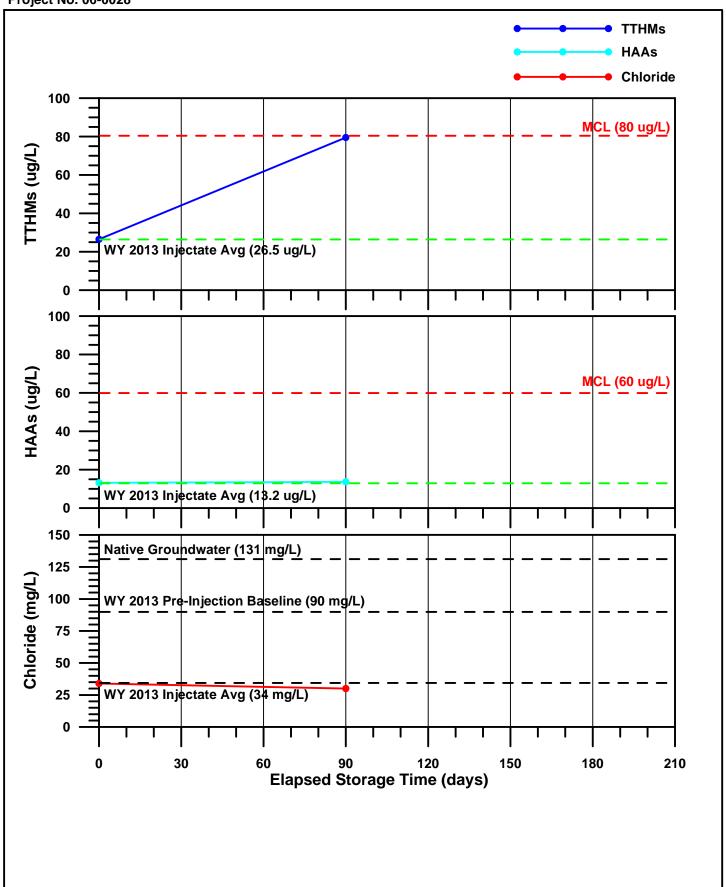


FIGURE 18. PCA-EAST WATER-LEVEL DATA
WY 2013 ASR Program
Monterey Peninsula Water Management District


FIGURE 19. FO-8 WATER-LEVEL DATA WY 2013 ASR Program Monterey Peninsula Water Management District





MPWMD PHASE 1 AQUIFER STORAGE AND RECOVERY PROJECT

Well: SM AS12-1 Test: WY 2013 pre-MSRTesTs - line flushing of ASR-1

Sheet No. ____ of ____

	ET	Rate	Totalizer	Pre	ssure (psi)	DTW	Drawup	
Date/Time	(min)	(gpm)	(gallons)		Head			(ft)	Comments/Other
		(3.)							setup for 301
12-3-12									056259 pod casto @ 18/2-1
5210145	0								
	,								R 1150184 ×1000 315R-) F 195989 ×1000
			. M. I.	_					F 195989 X1000)
									·
									FCV = 330 (ASPEN) Tank = 1350
						•	. W		cruz, Gullemo, Arzel, JimN, TL, JL, JO
									ý <u></u>
						11/21/2014			$70 \frac{5}{5}$ $1 - \frac{52}{20} = 0.82 / 5 = 100$ $75 \frac{3'42''}{200} = 5.5$ $710 \frac{4'35''}{15 \frac{4'50}{200}} = 2905 = 01775 gpm$
									T(3'42")
									110 4135"
			***************************************		ļ				7154.50 = 2905 01775 Gpm
					ļ				
					i			#2	To = 32 TS 170 TS 170 TW 3'44" TS 4'20" TS 4'20" TE 200 TE
									7 7/41" 32 K ~
					.				10 3 17 Z60 3.8
									157
Marian Communication Communica								#3	To 44 To 24
									7. 44 To 24 TE 130 TE 135
									T10 180
							•		7. 44 7. 24 75 130 75 135 7.0 180 7.5 10 715 835
								***************************************	and least C
									24/2-2
			PART SERIE AND STORY OF THE SERIES	_					24/235 =5.99
					Emmana and the second of the s	,,,,			old 1.12 ds 0 1653
									QUX 612305 9 1659
	MANAGEMENT AND THE PROPERTY OF							Made same an again to a second	BF = 0566666000 .
.,					***************************************				
									R=1150339 X1000
	National Control of the Control of t							<u> </u>	F= 195989 ×1000
The same of the same and the sa									
V AND									
								•	

MPWMD PHASE 1 AQUIFER STORAGE AND RECOVERY PROJECT

Well: #Z

Test: <u>W1 Z013 #1</u>

Sheet No. _/_ of _/

	ET	Rate	Totalizer	Pre	ssure (psi)	DTW	Drawup	
Date/Time	(min)	(gpm)	(gallons)		Head	FCV	(ft btst)	(ft)	Comments/Other
12-4-12 1608		Ø	34269000)	88	P	340	389.5		F=15544 x 1000 Tank=1300 R=34252 x1000, Then fill Col. Pipe.
16'0		630			i '		380.3		R=34252 ×1000, Then fill Col. Pipe.
16.18 16.38	10	1002	3427700	68	32 32	215	367.9	19.1	
1638	30	1025	342770	67	32	215	367.9	23.1	F=15558(000) after filling Col Dipe
165%	50	1030	34317000	66	32	216	366.4	23.1	F= 15558/100) after f: hing Col Dipe R= 34269 (000) " " (4 ")
			**************************************	ñ.					1
									1600 Tank : 1200 psi
- F 13 0010		1170	35379 [000]	7-7	7,	211	1777	77 -	000
12-5-12 0910.		1139	25549 (000)	64	51	216	755.96	77.5	1 = 15558 (006) 09° (onk = 1700 psi
		***************************************							F = 15558 (006) 0910 Tank = 1200 psi 915 Begin Closing FCV
0925		0	35396000	8/	35	300			429 Flow stops BF mile. = 27785470001
			/ / / / / / / / / / / / / / / / / / / /	06		,,,,,			· · · · · · · · · · · · · · · · · · ·
									Backflushing ET NTU 950 Start Pump. 1 6.3 380/3000 pm 2 43.0 (7m/Mc Motors) S 31.1
	AND THE PROPERTY OF THE PROPER	And the first of the first of the second							950 Start Pump. 1 600
									2900/3000 non 2 430
									(7m/Me Metus) 5 31.1
									10 5, 45
									Res. C/2 = 1.06 mg/4 15 9:90
									10 5, 75 Res. Cl ₂ = 1.06 mg/L 15 A:30 20 2.65
			***************************************	######################################					100 stop Pump
									1
* .				·					10-1110 015 1030 Start Pump
	-								1020 Start 175mp
									Totalizes DTW ETO 15617 (COO) 289.7
									ETO 15617 (OCT) 279.7 ETO 15646 (OCT) 478.3 A 28/OCT) 58.5
									25/0001 84.5
₹									
		4							(V5 = 2900/98.5 = (32.7 g)
					<				
and the second s									Br Meder = 277547600
				Addition to the second second					
			Atabata and an atabata atabata and an analas and an an						
ļ					····				
i:									

Max DUP: 56L = 39C Pump = 530'

MPWMD PHASE 1 AQUIFER STORAGE AND RECOVERY PROJECT

Well: 5M 452-2

Test: wy 2013 #2

Sheet No. ___ of ___

				MAG(R)						
		ET	Rate	Totalizer		ssure (DTW	Drawup	
Date/Ti		(min)	(gpm)	(gallons)		Head	FCV	(ft btst)	(ft)	Comments/Other
12/5/12	1120	<u> </u>	0	35397(00)	86	35 33	345	389.7	0	13F Motor = 277947(000) Tank = 1200,051
l	1125	5	775 920	35405000	78)))	215	377,2 371.6	17.8	Tig Mag F = 15648000
	140	70 35	1480	22,102(600)	45	28	205	358,2	31.5	1/50 Leave Site.
				Cambo Con Company Con Control Con Control Con Control			رسم			
4	Z 30		1355	35 372 [300]	40	27	210	-		Take readings after turning on flowe HSK-;
						1. 1500 0000 0 0000 0 000		-		# 1000 Jpm. Reset FCV to ZOZ ps: THAS (F)= 15649 - 1100 BF = 277947600 Jve
	(4.5-5		7550	35700,000	31	27_	202		<u> </u>	Reset FCV 16 1202 psi
		***************************************		***************************************						FIAG. (+1= 15647 × 1650 BF = 27+747600) June
7/	615		7550	75 81/2 pact	40	30	2.00			Line reactive to investigation 75 miles
		Market School Co., Ch. Co. C.			1.0	ang James Sarana				Line press just jusped up from 35 psi gu
1	725		1530	35939/000	31	28	204	336.6	53.1	No adj. Rem
				•						
12/6/12	80		1645	37394(vw)	30	28	201	324.8	64, 9	No adj. RCM
	1/03		1675	376391000	33	70	201			
		Manage as a contract of the co	1975	5+057(000)		29	204			No adj Juo
1.	415		1660	37971(000)	33	30	203	•m.		No adj. SDI: to - 20 secs RCm
			7000),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					and account of the first of the control of the cont	6 - 22
1.	620		1680	38176 (000)	34	29	202	319.2	70.5	Reduce in rate/ =10 - 23 11.3
	- 1									increase FCU psi to -25
/6	650		1510	38222000	42	33	209	325.3	64.4	:Rcm
10/7/10	c/35		1540	39725(000)	40	33	206	320.4	69.3	65714 306111 12102
12/7/12	<i>D</i>		15-10	27723(000)	10		200	320.1	04.5	SDI: to - 20 Secs Tunk 2 1190 psi
J	700		1620	40483,000	36	33	205	316,1		close (t,0 - 22 (0.87) Rcm
	I			(communication)						FLU 16,4 - 23
1	7/0		740	40495	76	34	221	362,5		Slightly, to reduce rate. Rem
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1176						55			
12/8/12	1130		840	41359 600	<u> </u>	7. N	2-0	333.3	35,4	- La 1200 - 1
<u> </u>	1130		-4130		52	2.L	_C12	27 1.)	32,:	Tomk=1200 psi
										Stopped by and falked awhile - I want
		***************************************								to office to cot key for building -
				1116775				-2211		
12/9/12	1030 1040		1,205	429 75/0007	74	32 35	216 305	324.5		- Shut down , tank @12/0 ps/ Flow stop 1039
12/4/10	10,40		<u> У</u>	47982600)	7~(/3	1 05	343.8	MIN 10 100 100 100 100 100 100 100 100 100	Flow 510P 1039
L	L		Li							

MPWMD ASR DATA SHEET

Well: ASR2

Sheet 1

MONTEREY PENINSULA TER MANAGEMENT DISTRICT

Test: BACKFLOSH +

of

Date	Time	Tiger [F] (gal)	Tiger [R] (gal)	BF (gal) ×≀⊗⊝	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments JL/JO/TL
12.12.12	1320	15649	42982	277947	305	75	34	1200	387.4	DV O	/3F √3000	ENLUBE METER OGYIZE
12-1212	1330	15679	42982	277976	305	75	34	1200	475.3	P.78	% 3000	SpC => 200/87.9 => 32.94MFT
ヒルフル	1340	15708	42982	278007	305	15	34	12:00	387.4	٥	Ø	Ti=190, Tz=15, Ts=33, Tio=6, 1, Trs-3, Tho=
					26							
12.12.12	1530											TRNHOON MW1 47020 FAL
) Prime				•					LF RATE	
12-22-12		15713	42982	278007	307	75	Ø	1150	382.7	Ø	LF MIC	LINE FLUSHING HUZO CLOSED
										2		SDI @ 1000 gdm
30 3 8 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												O 27 sec
			· ·									5 30 127/45=0.4
												10 37 Sec = 4.0
			1									15 45 sec
9												SDI @ 1700 gpm (highest w/in press)
									,			0 29 sec
									-			5 30 sec 129/= 0.04
12-22-12	1075	15718	42982	278063								10 31 sec 31 0.41
12.22.12		15=20	42982	278063	307	85	2,	1 60	1222 501	ø	d	
	1040	15726	42982	278063	209	82	36 35	1150	347.7	£34.9		BEGENNING INJECTION (50)
,		13	16 10 6	27000		*********		1130	Suger Style	7	1502	TEST 3
12-23-12	1115	15720	45194	278063	198	26	22	1,100	325.05	57:53	1525	TL
					· .							
12-24-12	1150	15720	47551	278063	192	28	22	1100	317.51	65.07	1650	- Upon arrival

12-24-12 1230

198

1543 - After adjust ment Julo

38258@ PU = 0 I maybet Houses 382.58(?) TL (correct!)

MPWMD ASR DATA SHEET

vell: ASR2

Test: WY 2013 TEST 3

Sheet 2

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Date	. Time	Tiger [F] (gal) ≿(∪ბბ	Tiger [R] (gal) X (රථප	BF (gal) % / 0 ላ ⊅	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments
12-25-1	2 0900	15720	49491	278063	200	30	28	1100	318.3	64.28	1520	no adj male (50)
12-26-1	1045	15720	51841	278063	199	30	28	1,100	319,27	63.3/	1520	NO ADJ, Cal-Am bf Paralter to
12271	1045	15720	54026	278063	198	30	28	4100	313.12	69.46	1520	NO ADS.
12-28-17	0910	15720	56057	278063	199	30	28	1090	311.50	71.08	1510	
		,								4,		
12-28-1	1048	15720	56192	278063	310	NE	NA	1096	372.25		35000	Begin BF , 2900/92.53 = 31.3
12-2812	1058	15726	56192	278092	310	NA	NA	1090	464.78	92.53		TI = 23/-Ta=31, Tg=22, To=5, T. = 6, To=57
12281	2 1108	15779	56192	278124	310			1090		•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	<u> -</u>										\	
									0000			
122812	- 1110	15779	56192	278124	310	72	٥	1090	328,64	0	0	Luxe of 06473 ft3 (JOTL, JL
12.28-12	- 1130	15779	56200	278128	204	40	30				1320	4,000 gal line blish
12-29-1	1 1640	15779	58189	278128	198	30	28	1,070	335.54	43.1	1490	No say leu (TL) from CAW +2 px
12-30-	21150	15779	60496	278128	199	32	28	1,100	331.14	47.5	1565	NOADS, SHILL LEAKING From CAW - TL
12-31-12	1450	15779	63025	278128	199	32	29	1090	328.45	50.19	1570	No ali, & notify C. Evans about leak. I
1-11-12	1130	15779	64961	278128	199	33	30	1090	327-21	51.43	1570	No ali. J
1-2-13	0810	15779	66946	279778	Zoi	33	31	1650	326.16	52,48	154	No adj. (TL)
1-3-13	0900	15779	69223	278128	199	34	32	1040	3 25-21			NO ADS (JL) LEAK STOPPED PERAL
1-3-13	1500	15779	69761	278128	340	36	Ø	1025	376.35	Ø	35 × 290	3000/91.29 => \32.99m/FT]
1-3-10		15840		278158	340	36	Ø	1025	467.64	91.29	8+T 2990	Ti(156) T2(27) T5(23) Ti(6) T5(3) Teo(
	20m	1	69761	278190			7					LURE LINE => 6516161 CF
				278.194								4000 gal Ine Flush

4

It is now 2013!

MPWMD ASR DATA SHEET

Well: ASR-2 4TH CYCLE
Test: WY 2013

Sheet_

of

MONTEREY PENINSULA MANAGEMENT DISTRICT

	Date [.]	Time	Tiger [F] (gal)	Tiger [R] (gal) 火l∞⊝	BF (gal) ∀ loo0	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments
	1-3-13	7540	15840	69761	278194	340	38	35	1025	382.10	Ø	ø	BEGIN NEW TEST & 1000 GAM
0	1-3-12	1549	15840	69761	278194	221	37	32	1025	382.10	Ø	970	RESTARTED LOG INTERVAL
	1-4-13	0815	15840	70488	278194	226	63	33	1000	362.95	19.15	725	
	1-4-13	10830		, S		216	60	33				930	Adj FCV to were rate (4)
7	1-4-199	1620	15840	70945	378194	216	55	31	1,000	355151	26.59	995	
	1-5-13	P950	15840	72015	278194	214	52	31	1000	352.50	29.60	1055	NO ADJ (TL)
	1-6-13	1100	15840	73765	278 194	206	39	30	1000	344.77	37.33	1275	No adj (T2)
1	1-6-13	1215	_	-	-	210	-	-	_			1175	Minor FCV adj to decrease rate (To)
	-7-13	0830	15840	75320	278 194	210	44	31	950	345.20	36.90	1205	No adj (JO)
	1.8.13	1060	15840	77199	278194	210	43	3	940	344.2	37.90	1260	NO ADS (JL)
I	1-9-13	0900	15840	78923	278174	210	43	31	940	343.1	1.8.	1225	NOADZ (JL)
_	1.10113	1315	15840	81017	278194	340	435	Ø	950	270,31	Ø	d	STOPPED 4 BACKFLUSH, LUBG
	j	1325	15871	81017	278224	1	١	1	1	460.49	90.19	2000	SC = 3000/90.19 => B3.39PMf+
_ [¥	1335	15900	81017	278255	y	7	V	V	370.3	Ø		T, (214) To (16) Tro (4) Tro (3) To (5)
ها	1-10-13	1400	15900	81017	275258	340	25	Ø	950	370,3	ø	ø	NEWTEST STARTED STUCYCLE
	1.10.13	1401	15900	81017	278258	200	75	33	950	370.3		1405	3000 GAL LINE FLUSH
	1-11-13	0835	15900	82685	278258	198	30	27	900	330.q	39.4.	1515	NO NOT (TL)
	1-4-13	1140	15900	85145	278258	196	28	25	975	326.6	43.7	1505	No Ads. (TL)
		1150	15500	87319	278288	197	28	2.6	950	324,3	46.0	1510	NO ADJICTL
	1-14-13	0840	15900	89219	278258	198	380	28	900	323.5	46.8	1515	No ADS FTO
	-		-										,

11.

MPWMD ASR DATA SHEET

Well: ASR 2

PENINSULA TER

Test: BACKFOUSH & VALUE TESTING

					- ,								•
[Date	Time	Tiger [F] (gal)	Tiger [R] (gal)	BF (gal) → 1000	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments
1.2	23.13	1000	15965	95766	278258	330		-	800				TESTING CLANAUS
1.2	23 ·3	1042	15967	95766	278270							7	ACCT 40 THS ON NEWT 12,000 GAL
- 10	23.13	1020	15967	95766	278270			,		378.57		8F 3000	FMOTER READ WASAIR ZK -JL
1.2	23.13	1100	15967	95766	278300					466,23		2950	T1(359)T2(26) T5(21) T10(3) T15(4) T20(
1.3	23.13	1116	16026	95766	278329								Tr(354) Tr(26) Tr(21) Tro(3) Tr(4) Tro(5x = 3000/87,66 => 34.2 9pm/4+
													Luke =>
													NO FLOW IN CR => NO NEW INJ
													POWNLOADED TEST.
													[(12] = 0,34 mg/L
					<i>:</i>				-				
					<u> </u>								
			6				,						
									-				**.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
		•								·			
									-				
										·	***************************************		
											-		

MPWMD / CAW PHASE AQUIFER STORAGE AND RECOVERY PROJECT

Well: SMS ASR-3

Test: WY 2013 #2

Sheet No. ___ of ___

	ET	Rate	Totalizer		ssure (DTW	Drawup	
Date/Time	(min)	(gpm) ک	(gallons) 72ਕੋਦਦੀ	Line /のナ	Head 40	FCV 350	(ft btst) 35%, &	(ft)	Comments/Other
12/7/12/7-38 1743 1748	250	975 980		94	40	350 21 9 218	3139 308,2	50.6	Comments/Other BFMeta=002698[000], 7, Mag = 720 [00] Prior to filling coll/Durging air Rem/74
l i	10		730[000]	92		218	308,2	50.6	
12/8/2 1/20		1,040	1800/2021	900	40	220			4 ant = 6400
1245		1,050							e cheered after increasing flow @ ASP#2
12/9/12				~.~	7/3	720			
11 10 11 20		1,100	3323 5007				259.4		tante = 2,475 Legin stut down (viver Low) Flow stops 11:15 ~245 RCV
1/20		Ø	3333000	97	YZ	305	35%		~ 245 RCV
				N Washing				ne com al all it see	
<u> </u>									
						and the second section of the section			

		MANAGEMENT SERVICES							
							,		
		MANUFACTOR CONTRACTOR							
								<u> </u>	

365-190 = 165, note Down 2810 6g5

MPWMD / CAW PHASE 2 AQUIFER STORAGE AND RECOVERY PROJECT (WATER PROJECT 2)

Well: SMS ASR-3

Test: WY2013#1

Sheet No. ___ of ___

Date/Time	ET (min)	Rate (gpm)	Totalizer (gallons)		ssure (Head		DTW (ft btst)	Drawup (ft)	Comments/Other
12/5/12 1640	0 2 5	300	119500	96	41	247 230 225	365.4	P	1400 BF Meter = 002510 DOX) Tunk 2750
16 ⁵⁰ 1710 1710	5 /0 20 30	485 840 990 960	134(000)	82 82	46 40	218 218 218	348,2 332,3 314.1 312.4	33.1 53.6	Tilling Metris Ofoso psi Start like Flushing a ~ 975 gpm, 16" SDI = 4.9, 3to Cflushing, 15F Metris = 002624600] (17'5 Leave Site, RCM
12/6/12 845		415	698600	87	40	232	333.5	31.9	Note: CAW reduced rate last night due to system demand/Prod
12/4/12 935		\$	719 [900]	93	NR	345	361.31	9.69	due to system demand/Prod. in 66:1.ty to keep up. (@~2215) Shut down for 1ST BF Switched No TANK => 1700psi
				. , , , , , , , , , , , , , , , , , , ,					Backflushing meter = 2625/000]
				V					1040 Start Dump, Pinch bock HU 805 to reduce Q to ~2000 gpm/40 ps; Collect Tu data (see was Field Book) 1100 Stop Dump.
									10-Min Q/s Totalizer DTW
									ETO 002698000 5/72 A 2200/153.7 = 19.3 \$pm/+1 pcm

MPWMD ASR DATA SHEET

Well:	ASR-3
AAGII.	A / . A

352.85

Sheet

Test: WY 2013

	rest.	000000								OI.		•
Date	Time	Tiger [F] (gal)	Tiger [R] (gal)	BF (gal)	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments
12-30-12	1205	NA	13246	2941	233	86	41	2300	318.34	34.51	455	avaged 10 par - NO ADJ NOW -TL.
12-31-12	1500	NA	13966	2941	233	88	41	2270	316.60	36.25	455	I spoke with a Brans - system cannot support increase at this time - No odj.
1-1-13	1200	NA	14530	2941	232	86	41	2290	315-48	37.37	452	No adj To
1-2-13	0875	M	158947	2941	232	88	40	2200			945	No cels.
1-3-13	0900	AN	15746	2941	232	86	40	2200			844	NO ADJ (JL)
1-3-13	# 146D	NA	15883	2941	232	86	40	2200	312.98		450	STOP FOR BF.
13-13		NA	15884	2941	340	97	30	2200	356.18	Ø	BF.	21000/173 = 121
	10 min	NA	15884	2962	340	97	90		529,18		2050	
V		NA	15884	2983	540	97	90					T,673/72(43), T5(A) TES (8) TES (6)
			-							***		LUBS LINE => 76/810]
-												
1-3-13	1445	M	15 884	2983	219	80	40	2250	356.18	Ø	1015	New test (FL/JO)
1-4-13		m	16974	2983	220		40	2200			1068	NO ADJ, (TL)
1-4-13		M	12523	2983	221	86	41	2300	259.65	*9653	1093	NO ADJ. (tt.)
1-5-13	-		18659	2983	220		41	2200	i		1,130	No ADJ. desplectes (TL)
1-6-13		NA	20469	2983	218	80	41	2210	235.68		1,200	
1-6-13		-	~	<u> </u>	223	_		_	248.18	108,00	1,085	Minor PCVad; to decrease rate (30
1-7-13	0820	NA	21783	2983	223	83	41	2200	247.98	108.20	1,025	No adj (TO)
1-8-13	930	NA	23381	z983	223	563	41	2150	240,30	116.55	1070	NO ADJ (JC)
1.9.13	0830	NA	24875	2983	223		41	2150	238,20	7	1660	NOADT
1.10.13	0900	NA	26403	2983	222	81	40	2140	231.2		1041	NO AOT
1.10.13	1315	NA	7	2983	222	80	40	2200	330.7		1050	
13,10,13		W	26732	2983	350	80	6	2200	346	Ø	<u> </u>	BOCKERUSH
4	1.100			00		<u> </u>	1	1=	C44	1684	BF 2000	1850

1440 NA

350 80 \$ 2200 514.4 * Be sure to Jum power "off"
on analog sounder!

MPWMD ASR DATA SHEET

Well: ASR3

MONTEREY PENINSULA
T E R
MANAGEMENT DISTRICT

Test: BACKFLUSH +

of _____

Date	Time	Tiger [F] (gal) ⊁/∞o	Tiger [R] (gal)	BF (gal)	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments FNAW 1515 (afficient		
12112:12	1455		NA	2697	302	97	40 -	2390	368.8	ø.	Ø	LUBE 69/840) FINALC 1515 69/120]		
7		3333	NA	2718	340	97	40	2390	525.6	DD 156.8	BF 2000	SP=> 2100/156,8=> 13.4/GAL/FT		
		3333	NA	2738	340	97	40	2390	368.8		ø	T. (103), T. (225), T. s (228), T. s (13), T. s (6) T. d. 4		
12.12.12	1520				340						Control Contro	STARTED SSMSD 112920 GAL		
. *														
*****									,					
			, 20 , 1							٠.		***		
		, , , , , , , , , , , , , , , , , , ,	. %									`		
, sa ^{ra}														
	·						-							
						.,								
		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A												
	\								<u> </u>					
								1.			-			
-														
							<u> </u>							

MPWMD ASR DATA SHEET

Sheet _____

540 top of bowls

380 low DTW

160 - keep DU < this amount MONTEREY PENINSULA TER

Test: WY 2013 Log#2

Well:

ASR-3 MANAGEMENT DISTRICT

	Date	Time	Tiger [F] (gal)	Tiger [R] (gal) × / రిరిం	BF (gal) 火≀∿ỏ₀	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)	DTW (feet)	Draw Up (feet)	Inj Rate (GPM)	Comments
	12-22-12	1130	NA	3335	002874	350	94	٥	2350	361.60	0	1000 (LF)	Prepare to inject. LF first
CF-[12.22,12	ļ	NV	3360	878500	350	78	HO	2356	361.6	٥	ø	STOPPED LF
	12.22.12	1215	NV	3361	602898	350	98	40	2350	361.6	Ø	4	AFTER FILLING CASING
	12.22.12		NA	3361	002898	218	81	40	2350	3473		1005	BEGAN INS.
	12-25-12	1140	NA	258H	002898	220	80	40	2350	263.04	98,56	1105	Adj FCV~1230 to reduce DU+Q
	12-24-12	1210	NA	5910	002898	232	79	40	2350	316.25	45.35	450	CE had swentrimmed FCV@ 12/23 2100 hr 50 After adjustment to 800gpm per CE
	12-24-12	1225	,	_	,,,,,,	222	-			286.16	75.44	798	After adjustment to 800gpm per CE
	12-25-12		NA	6939	2898	222	79	40	2290	272.35	89.25	872	Make very minor adj to PCV; regulator
	12-25-12			→	-	224	-	.~	-	274,70	-	850	reads 232 ps; when isolated; don't frust it 50
	12-26-12	1030	NA	8276	2898	222	79	40	2300	271.5%	90.04	270	· .
	12-17-12	1100	NA	9565	2898	223	79	40		763,80		875	~0 ADJ
	12-28-12		NA	10758	2898	225	79	40	2270	278.5		845	
i	2-28-12	1143	NA	10846	2898	335	92	0	2250	252.5		0	stoping for BF
*						.A							
O PY	2-28-12		NA	10846	2898	```				352,85	Ø	Ý	Begin BF 177.25/10=17.25 BF-12000gpm
00 (2921					530.10		Ø	7 2 4 1 4
				10846	2941	340	94	40	2250		**	Ø	79 To 75 T10 T15 (72) 200 56 70 15 5 3
		1029	. ~ ~	10851	2941	220	82	41	2270			990	200 56 70 15 5 3
1	2-29-12	1033		12235	2941	125	79	41_	2280	266.0	86.85		ASR2+3=2540, restording was 2310
		11305	*	12270		225	79	41				950	Tried = It sutly adjusting FCV, but when isoluted, tank initially read only 212 psi.
													isoluted, tank initially read only 212 psi.
													Reseated, varied from 212-245, but will

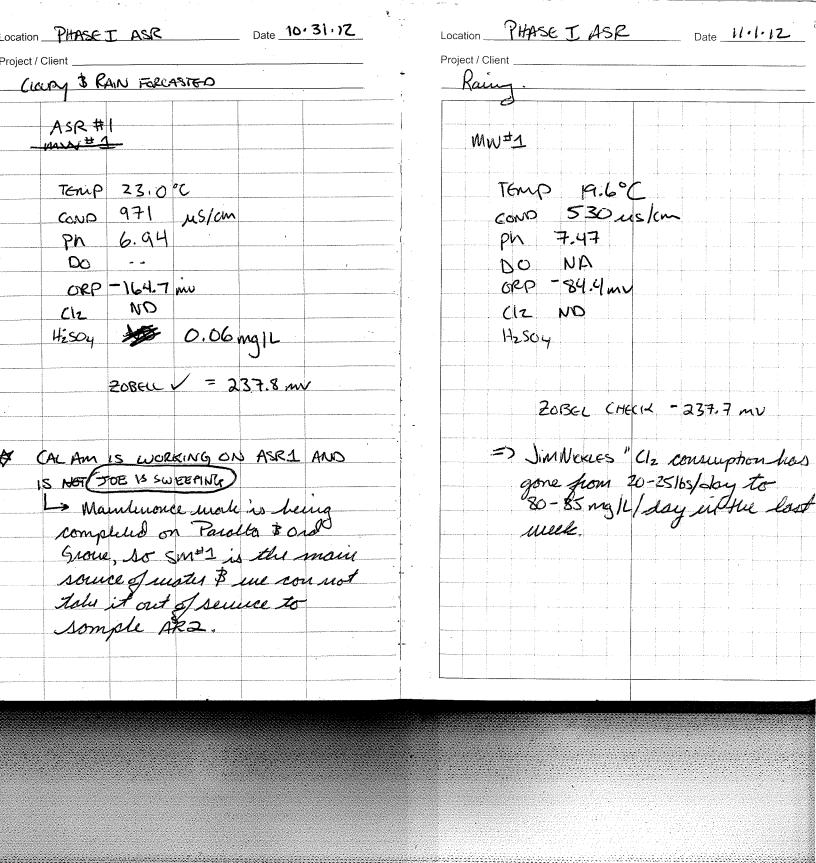
Une open, still ~ 22 | psi. Adj to ~ 275pxi

PSV ENERGIZED => OPEN
PRV ENERGIZED => OPEN

Test:

MPWMD ASR DATA SHEET

-					1
Well:	ASR3		•	Sheet	-4
44611.	7 -1				


of

MONTEREY PENINSULA
TER
MANAGEMENT DISTRICT

Date	Time	Tiger [F] (gal)	Tiger [R] (gal) *గంంల	BF (gal) ≪/≎≎	FCV (psi)	Line (psi)	Well Head (psi)	N ₂ (psi)		Draw Up (feet)	Inj Rate (GPM)	Comments
1.10.13	1500	NA	26732	3023	221	92	41	2200	350A4		940 Z	NEW TEST STARTED
-11-13	08Z,S	NA	27738	3023	222	81	42	2150	260.10		980	T, T2 T5 T10 T15 T20
1-12-13	1130	NA	29383	3023	223	78	42	2200	242.82	107.22	11040	820 38 Ma 26 47 a.7
13=12	1135	NA	30929	3073	222	77	42	2200	234.40	(15.54	1,095	
					224						11050	signitudy (TL)
-14-12	0825	NA	32095	3023	225	77	42	2125	256,0	94.04	860	Adj. FCV to manure Inj rute (TL)
											915	
1.16.13	1231	NA	33536	3023		87	42	2100	364.29		Ø	BACKFLUSH
		NA				87	90	2100	528.54	\$ 174.25	2000 ~ 2000	FORGOT TURBIDITY METER
												12000/174.25 = 11.5 GPM/FT.
			-									1181010 (AL SEMS(D)
			-	44.5°								
,												
								-				
		-										
												<i>.</i>
1. 1.												
						—	+	-				
	1.10.13 -11-13 1-12-13 -13-12 -14-13 1.16.13	1.10.13 1.500 -11-13 0.82,5 (-12-13 1120 -13=12 1135 -13-12 (140 -14-13 0.82.5 1.16.13 1231 1.16.13 1241	1.10.13 1.500 NA -11-13 0825 NA 1-12-13 1130 NA -13-12 1135 NA -13-12 1140 -14-13 0825 NA 1.16.13 1231 NA 1.16.13 1241 NA	1.10.13 1.500 NA 26732- 11-13 0825 NA 27738 1-12-13 1130 NA 291383 1-13-12 1135 NA 30929 1-14-13 0825 NA 32095 1-16.13 1231 NA 33536 1.16.13 1241 NA 33536	1.10.13 1.500 NA 26732 3023 -11-13 0825 NA 27738 3023 -12-13 1130 NA 29383 3023 -13-12 1135 NA 30929 3073 -13-12 1170 -14-13 0825 NA 32095 3023 1.16.13 1231 NA 33536 3023 1.16.13 1241 NA 33536 3043	Date Time Tiger [F] (gal) Tiger [R] (gal) x/000 x/000	Date Time Tiger [F] (gal) Tiger [R] (gal)	Date Time Tiger [F] (gal) Tiger [R] (gal)	Date Time Tiger [F] (gal) Tiger [R] (gal)	Date Time Tiger [F] (gal) Tiger [R] (gal) RF (gal) R/2000 (psi) (p	Date Time Tiger [F] (gal) Tiger [R] (gal) x/000	Date Time Tiger [F] (gal)

JOHN IN

. .. 🐣 .

cation .	PERALI	A		Date 11/2	26/12		Locat	ion <u>CRO</u>	GROVE		Date III	26/12
oject /	Client					. *	Proje	ct / Client				
····	100.00		-	7	L,TL	<u> </u> -		•				JL,TL
					,	•.						
			uslan			- ţ				uslen	•	
		24.6				-			24.5 °			
	PH	6.97)			- 1			6.53			
	ĎΩ :		<u> </u>	J		-		PO				
	ORP	- 249.8	my			-			-68,6	· mv		
	HzS			~		-		HzS				
	Ch	+MD		-				Cle	no			
						-						
		<u> </u>				- .						
	208EU	/ =5	237.6	mV		- }.		Z0 8	{vL∨ =>	237.6	mu	
						-						
							-					
					•	-	-					
		2				- 1						
				3		-						
										e		
				-				*				
						-						
						_						
					,	1						
						1000						
					-E							

277852 Tool WS

LINE FLUSH

7.24.13 TRANSCRIBED FROM TU NOTES

51,G1, DBP

2.79 mg/L 7.28

COND 715 us/cm. TEMP 19.2°C ORP -154.6 mV

SCH

an

COLLECTED \$1,47,08P

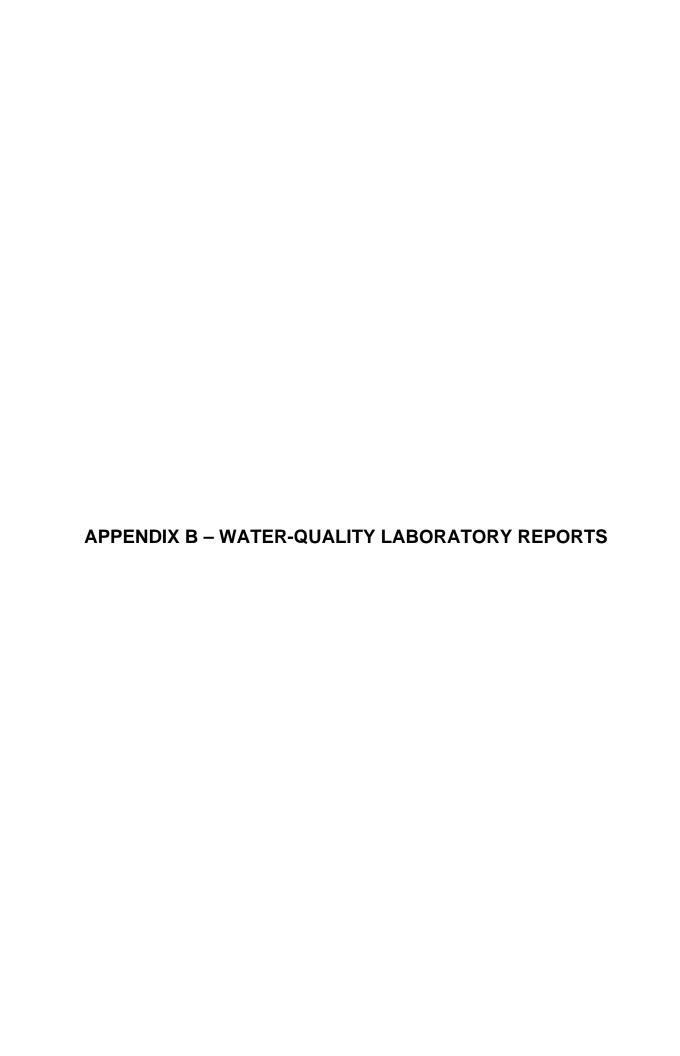
208ecc / =>

DO PH

[c12] HzS

ASR Z

COND TEMP ORP [CL2] H2S


70Bell =>

COLLECTOR

			Date 12/6/12									
r roject <i>i</i>	Olleric											
	1		BACK FLUS	r) 0 20	100 GPM							
	Τ,	38.5		Λ.								
			20 m	in)								
,,,,,	75	38,7										
	Tio	2.7										
	Tis	3.75										
	Teo 3	. 99										
			*									
	ZNO B	-	DID NOT	xcuR								
	Ti.		n 27, 31									
	Te				·							
	Te				-							
					<u> </u>							
	Tis			*								
	Tzo				•							
				A CONTRACTOR OF THE CONTRACTOR	-							
					A CONTRACTOR OF THE CONTRACTOR							

Location ANNUAL	FAR FIELD	SAMPUNG	Date	7-28-13	<u> </u>
		,		4.0	
Project / Client					

									ż					
•	PERA	100												
		PH			17									
		• [
		CONC	<u>۲</u>	43	0 /	usl	cn							
		orp												
		TEM	P	2	3.5	100	ļ							
		Hz:												
		[4												
		-1 -	Beu	1	1									
				ĺ		1								
			-	0,	67	my)					-		
			-				-						<u> </u>	
		-		70	V-1	-	-						<u> </u>	
	Œ	20 G	ROV	E			-			<u> </u>				
		DH		6.	18			ļ		<u>.</u>				
•		کما	O	4	118	s ii	slc	m						
		ු ය	a P	_	1/2	2.3	mv	•						
٠.		-1	SM					1						
			125					-	ļ	-	-	-		<u> </u>
		1	cle	_لـ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ļ					-	-	-
		- 2	SOBO	u.	'= >	·	-			-				
			D0	4	9.	61	ma !	<u>L</u>				ļ	-	<u> </u>
						ļ.,_								ļ
	1 - 1						-			ــــــــــــــــــــــــــــــــــــــ				

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

montereybayanalytical@usa.net ELAP Certification Number: 2385

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 **Lab Number:** AA93860

Collection Date/Time: 10/30/2012 12:00 Sample Collector: LEAR J

Submittal Date/Time: 10/30/2012 14:16 Sample ID Coliform Designation:

Sample Description: ASR-3										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	223	2		11/2/2012				
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/1/2012				
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		11/6/2012				
Arsenic, Total	EPA200.8	ug/L	5	1	10	11/1/2012				
Barium, Total	EPA200.8	ug/L	77	10	1000	11/1/2012				
Bicarbonate (as HCO3-)	2320B	mg/L	272	10		11/20/2012				
Boron	EPA200.7	mg/L	0.09	0.05		11/6/2012				
Bromide	EPA300.0	mg/L	Not Detected	0.10		10/31/2012				
Calcium	EPA200.7	mg/L	68	0.5		11/6/2012				
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/2/2012				
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		10/30/2012				
Chloride	EPA300.0	mg/L	90	1	250	10/31/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	0.66 E	0.2		11/7/2012				
Fluoride	EPA300.0	mg/L	0.23	0.10	2.0	10/31/2012				
Gross Alpha	EPA900.0	pCi/L	4.12 ± 1.97 E		15	11/16/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/7/2012				
Iron	EPA200.7	ug/L	156	10	300	11/6/2012				
Iron, Dissolved	EPA200.7	ug/L	93	10	300	11/6/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012				
Lithium	EPA200.8	ug/L	32	1		11/1/2012				
Magnesium	EPA200.7	mg/L	18	0.5		11/6/2012				
Manganese, Dissolved	EPA200.7	ug/L	25	10	50	11/6/2012				
Manganese, Total	EPA200.7	ug/L	26	10	50	11/6/2012				
Methane	EPA174/175	ug/L	0.61 E	0.1		11/9/2012				
Molybdenum, Total	EPA200.8	ug/L	8	1	1000	11/1/2012				
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/1/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	11/2/2012				

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

montereybayanalytical@usa.net ELAP Certification Number: 2385

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 **Lab Number: AA93860**

Collection Date/Time: 10/30/2012 12:00 Sample Collector: LEAR J

Submittal Date/Time: 10/30/2012 14:16 Sample ID Coliform Designation:

Sample Description: ASR-3									
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed			
Nitrate as NO3-N	EPA300.0	mg/L	0.10	0.10	10	10/31/2012			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	10/31/2012			
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		10/31/2012			
pH (Laboratory)	4500-H+B	pH (H)	7.3			10/30/2012			
Phosphorus, Total	HACH 8190	mg/L	0.22	0.03		11/8/2012			
Potassium	EPA200.7	mg/L	4.8	0.1		11/6/2012			
QC Anion Sum x 100	Calculation	%	97%			11/7/2012			
QC Anion-Cation Balance	Calculation	%	3			11/15/2012			
QC Cation Sum x 100	Calculation	%	103%			11/15/2012			
QC Ratio TDS/SEC	Calculation		0.59			11/5/2012			
Selenium, Total	EPA200.8	ug/L	2	2	50	11/1/2012			
Silica as SiO2, Total	EPA200.7	mg/L	41	0.5		11/6/2012			
Sodium	EPA200.7	mg/L	87	0.5		11/6/2012			
Specific Conductance (E.C)	2510B	umhos/cm	850	1	900	10/30/2012			
Strontium, Total	EPA200.8	ug/L	335	5		11/1/2012			
Sulfate	EPA300.0	mg/L	58	1	250	10/31/2012			
Total Diss. Solids	2540C	mg/L	503	10	500	10/31/2012			
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/15/2012			
Total Organic Carbon	SM5310C	mg/L	0.73 E	0.20		11/7/2012			
Total Radium 226	EPA903.0	pCi/L	0.426 ± 0.256 E		3	11/26/2012			
Trihalomethanes	EPA524.2	ug/L	6.3 E		80	11/5/2012			
Uranium by ICP/MS	EPA200.8	ug/L	2	1	30	11/1/2012			
Vanadium, Total	EPA200.8	ug/L	4	1	1000	11/1/2012			
Zinc, Total	EPA200.8	ug/L	72	10	5000	11/1/2012			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

montereybayanalytical@usa.net ELAP Certification Number: 2385

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AA93861

Collection Date/Time: 10/30/2012 11:00 Sample Collector: LEAR J

Submittal Date/Time: 10/30/2012 14:16 Sample ID Coliform Designation:

Sample Description: SSMS (D)										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	203	2		11/2/2012				
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/1/2012				
Ammonia-N	4500NH3 D	mg/L	0.06	0.05		11/6/2012				
Arsenic, Total	EPA200.8	ug/L	7	1	10	11/1/2012				
Barium, Total	EPA200.8	ug/L	43	10	1000	11/1/2012				
Bicarbonate (as HCO3-)	2320B	mg/L	248	10		11/20/2012				
Boron	EPA200.7	mg/L	0.08	0.05		11/6/2012				
Bromide	EPA300.0	mg/L	Not Detected	0.10		10/31/2012				
Calcium	EPA200.7	mg/L	66	0.5		11/6/2012				
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/2/2012				
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		10/30/2012				
Chloride	EPA300.0	mg/L	90	1	250	10/31/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	0.55 ⋿	0.2		11/7/2012				
Fluoride	EPA300.0	mg/L	0.15	0.10	2.0	10/31/2012				
Gross Alpha	EPA900.0	pCi/L	3.34 ± 2.58 E		15	11/16/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/7/2012				
ron	EPA200.7	ug/L	Not Detected	10	300	11/6/2012				
ron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	11/6/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012				
_ithium	EPA200.8	ug/L	29	1		11/1/2012				
Magnesium	EPA200.7	mg/L	11	0.5		11/6/2012				
Manganese, Dissolved	EPA200.7	ug/L	11	10	50	11/6/2012				
Manganese, Total	EPA200.7	ug/L	12	10	50	11/6/2012				
Methane	EPA174/175	ug/L	0.62 E	0.1		11/9/2012				
Molybdenum, Total	EPA200.8	ug/L	7	1	1000	11/1/2012				
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/1/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	10/31/2012				
Nitrate as NO3-N	EPA300.0	mg/L	0.10	0.10	10	10/31/2012				
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	10/31/2012				
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		10/31/2012				
oH (Laboratory)	4500-H+B	pH (H)	7.4			10/30/2012				

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS

montereybayanalytical@usa.net ELAP Certification Number: 2385

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AA93861

Collection Date/Time: 10/30/2012 11:00 Sample Collector: LEAR J

Submittal Date/Time: 10/30/2012 14:16 Sample ID Coliform Designation:

Sample Description: SSMS (D)									
Analyte	Method	Unit	Result (Qual	PQL	MCL	Date Analyzed		
Phosphorus, Total	HACH 8190	mg/L	0.12		0.03		11/8/2012		
Potassium	EPA200.7	mg/L	4.1		0.1		11/6/2012		
QC Anion Sum x 100	Calculation	%	97%				11/7/2012		
QC Anion-Cation Balance	Calculation	%	3				11/7/2012		
QC Cation Sum x 100	Calculation	%	103%				11/7/2012		
QC Ratio TDS/SEC	Calculation		0.59				11/5/2012		
Selenium, Total	EPA200.8	ug/L	2		2	50	11/1/2012		
Silica as SiO2, Total	EPA200.7	mg/L	38		0.5		11/6/2012		
Sodium	EPA200.7	mg/L	90		0.5		11/6/2012		
Specific Conductance (E.C)	2510B	umhos/cm	796		1	900	10/30/2012		
Strontium, Total	EPA200.8	ug/L	413		5		11/1/2012		
Sulfate	EPA300.0	mg/L	54		1	250	10/31/2012		
Total Diss. Solids	2540C	mg/L	468		10	500	10/31/2012		
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		11/7/2012		
Total Organic Carbon	SM5310C	mg/L	0.59 E	E	0.20		11/7/2012		
Total Radium 226	EPA903.0	pCi/L	0.663 ± 0.292	E		3	11/26/2012		
Trihalomethanes	EPA524.2	ug/L	10 E	E		80	11/5/2012		
Uranium by ICP/MS	EPA200.8	ug/L	3		1	30	11/1/2012		
Vanadium, Total	EPA200.8	ug/L	6		1	1000	11/1/2012		
Zinc, Total	EPA200.8	ug/L	17		10	5000	11/1/2012		

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 11/13/2012 16:22 Received Date: 11/02/2012 Received Time: 09:20

Lab Sample ID: A2K0138-01 **Sample Date:** 10/30/2012 12:00

Sample Type: Grab

Sampled by: Lear, J. Matrix: Water

Sample Description: ASR-3 // 93860

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.66	0.20	mg/L	1	A212622	11/07/12	11/07/12	
Total Organic Carbon	SM 5310 C	0.73	0.20	mg/L	1	A212623	11/07/12	11/07/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	1.8	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Bromoform	EPA 524.2	0.52	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Chloroform	EPA 524.2	2.7	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Dibromochloromethane	EPA 524.2	1.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable ra	nge: 70-130 %	%			
*Total Trihalomethanes, EPA 524.2		6.3	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212495	11/05/12	11/07/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	94 %		Acceptable ra	nge: 70-130 %	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0138 FINAL 11132012 1622

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 11/13/2012 16:22
 Received Date: 11/02/2012
 Received Time: 09:20

Lab Sample ID: A2K0138-02 **Sample Date:** 10/30/2012 11:00

Sample Type: Grab

Sampled by: Lear, J. Matrix: Water

Sample Description: SSMS (D) // 93861

General Chemistry

Ocheral Ohemistry									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.55	0.20	mg/L	1	A212622	11/07/12	11/07/12	
Total Organic Carbon	SM 5310 C	0.59	0.20	mg/L	1	A212623	11/07/12	11/07/12	
Organics									
Analyte	Method	Result	RL	Units	RL	Batch	Prepared	Analyzed	Qual
Allalyte	Metriod	ixesuit	IXL	Offics	Mult	Datcii	Fiepareu	Allalyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	3.0	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Bromoform	EPA 524.2	0.72	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Chloroform	EPA 524.2	4.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Dibromochloromethane	EPA 524.2	2.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Surrogate: Bromofluorobenzene	EPA 524.2	99 %		Acceptable ra	ange: 70-130 9	%			
*Total Trihalomethanes, EPA 524.2		10	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212495	11/05/12	11/07/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	101 %		Acceptable ra	ange: 70-130 9	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0138 FINAL 11132012 1622

Analytical Chemists

November 28, 2012 Lab ID : SP 1211512-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : October 30, 2012-12:00

Monterey, CA 93940 Sampled By : Lear, J

Received On: November 9, 2012-10:00

Matrix : Water

Description : ASR-3 Project : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Sample Preparation		e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	4.12 ± 1.97	1.76	pCi/L	15/5	900.0	11/12/12-18:00 2P1212565	900.0	11/16/12-09:00 2A1217232
Total Alpha Radium (226)	0.426 ± 0.256	0.439	pCi/L	3	903.0	11/21/12-10:00 2P1212703	903.0	11/26/12-16:00 2A1217395

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

November 28, 2012 Lab ID : SP 1211512-002

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : October 30, 2012-11:00

Monterey, CA 93940 Sampled By : Lear, J

Received On: November 9, 2012-10:00

Matrix : Water

Description : SSMS (D) Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample Preparation		Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1'5}								
Gross Alpha	3.34 ± 2.58	2.35	pCi/L	15/5	900.0	11/12/12-18:00 2P1212565	900.0	11/16/12-09:00 2A1217230
Total Alpha Radium (226)	0.663 ± 0.292	0.439	pCi/L	3	903.0	11/21/12-10:00 2P1212703	903.0	11/27/12-07:00 2A1217395

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Cou	ints"	http://www.mccam	pbell.com / E-mail:	main@mc	campbell.co	om		
Monterey Bay	Analytical	Client Project ID:	MPWMD	Date Sample	ed: 10	0/30/12			
4 Justin Court,	Suite D			Date Receiv	red: 11	/02/12			
4 Justin Court,	Suite D	Client Contact: D	avid Holland	Date Extracted 11/09/12					
Monterey, CA	93940	Client P.O.:		Date Analyzed 11/09/12					
			Gases*						
Extraction method: R			ethods: RSK175			ork Order:			
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments		
001A	ASR-3	W	0.61		1	N/A			
002A	SSMS (D)	W	0.62		1	N/A			
	porting Limit for DF =1; means not detected at or	W	0.1			μg/L			
	ove the reporting limit	S	NA			NA			
* water samples are	e reported in µg/L.								
%SS = Percent Rec	covery of Surrogate Standard								
N/A = Not applicab	ble to this analysis								
DF = Dilution Factor	or								

____Angela Rydelius, Lab Manager

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 **Lab Number:** AA93960

Collection Date/Time: 10/31/2012 16:00 Sample Collector: LINDBERG T

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: ASR-1 Method Unit PQI Analyte Result Qual MCL Date Analyzed Alkalinity, Total (as CaCO3) 2320B 11/7/2012 mg/L 223 2 Not Detected Aluminum, Total EPA200.8 10 1000 11/9/2012 ug/L Ammonia-N 4500NH3 D mg/L 0.12 0.05 11/6/2012 Arsenic, Total EPA200.8 11/9/2012 ug/L 1 1 10 Barium, Total EPA200.8 ug/L 81 10 1000 11/9/2012 Bicarbonate (as HCO3-) 2320B 272 10 11/8/2012 mg/L 0.05 Boron EPA200.7 0.13 11/6/2012 mg/L Bromide EPA300.0 mg/L 0.22 0.10 11/2/2012 Calcium EPA200.7 mg/L 86 0.5 11/6/2012 Carbonate as CaCO3 2320B **Not Detected** 10 11/1/2012 mg/L Chloramines SM4500-CI G mg/L **Not Detected** 0.05 11/1/2012 Chloride EPA300.0 mg/L 110 1 250 11/2/2012 Dissolved Organic Carbon SM5310-C mg/L 0.76 Е 0.2 11/14/2012 0.10 Fluoride EPA300.0 0.18 2.0 11/2/2012 mg/L Gross Alpha EPA900.0 pCi/L 5.57 ± 2.32 Ε 15 11/16/2012 Haloacetic Acids EPA552 ug/L Not Detected E 60 11/14/2012 EPA200.7 ug/L 42 10 300 11/6/2012 Iron, Dissolved EPA200.7 27 10 300 11/6/2012 ug/L Kjehldahl Nitrogen 4500-NH3 B,C.E mg/L **Not Detected** 0.2 11/14/2012 Lithium EPA200.8 1 11/9/2012 ug/L 32 0.5 Magnesium EPA200.7 mg/L 22 11/6/2012 Manganese, Dissolved EPA200.7 23 10 11/6/2012 ug/L 50 Manganese, Total EPA200.7 ug/L 24 10 50 11/6/2012 Methane EPA174/175 3.2 0.1 ug/L Ε 11/14/2012 7 11/9/2012 Molybdenum, Total EPA200.8 ug/L 1000

mg/L: Milligrams per liter (=ppm) H = Analyzed ouside of hold time ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AA93960

Collection Date/Time: 10/31/2012 16:00

Sample Collector: LINDBERG T

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: ASR-1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/9/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	11/2/2012				
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	11/2/2012				
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	11/2/2012				
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		11/2/2012				
pH (Laboratory)	4500-H+B	pH (H)	7.5			11/1/2012				
Phosphorus, Total	HACH 8190	mg/L	0.30	0.03		11/8/2012				
Potassium	EPA200.7	mg/L	5.2	0.1		11/6/2012				
QC Anion Sum x 100	Calculation	%	98%			11/8/2012				
QC Anion-Cation Balance	Calculation	%	3			11/8/2012				
QC Cation Sum x 100	Calculation	%	104%			11/8/2012				
QC Ratio TDS/SEC	Calculation		0.62			11/9/2012				
Selenium, Total	EPA200.8	ug/L	Not Detected	2	50	11/9/2012				
Silica as SiO2, Total	EPA200.7	mg/L	42	0.5		11/6/2012				
Sodium	EPA200.7	mg/L	93	0.5		11/6/2012				
Specific Conductance (E.C)	2510B	umhos/cm	987	1	900	11/2/2012				
Strontium, Total	EPA200.8	ug/L	402	5		11/9/2012				
Sulfate	EPA300.0	mg/L	102	1	250	11/2/2012				
Total Diss. Solids	2540C	mg/L	614	10	500	11/6/2012				
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/15/2012				
Total Organic Carbon	SM5310C	mg/L	0.99 E	0.20		11/14/2012				
Total Radium 226	EPA903.0	pCi/L	0.881 ± 0.335 E		3	11/26/2012				
Trihalomethanes	EPA524.2	ug/L	9.8 E		80	11/13/2012				
Uranium by ICP/MS	EPA200.8	ug/L	1	1	30	11/9/2012				
Vanadium, Total	EPA200.8	ug/L	2	1	1000	11/9/2012				
Zinc, Total	EPA200.8	ug/L	181	10	5000	11/9/2012				

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb) PQL: Practical Quantitation Limit H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AA93960

Collection Date/Time: 10/31/2012 16:00

Sample Collector: LINDBERG T

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: ASR-1

PQL Analyte Method Unit Result Qual MCL Date Analyzed

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AA93961

Collection Date/Time: 11/1/2012 15:00 Sample Collector: LINDBERG T

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: MW-1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	144	2		11/7/2012				
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/9/2012				
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		11/6/2012				
Arsenic, Total	EPA200.8	ug/L	2	1	10	11/9/2012				
Barium, Total	EPA200.8	ug/L	21	10	1000	11/9/2012				
Bicarbonate (as HCO3-)	2320B	mg/L	176	10		11/8/2012				
Boron	EPA200.7	mg/L	Not Detected	0.05		11/6/2012				
Bromide	EPA300.0	mg/L	Not Detected	0.10		11/2/2012				
Calcium	EPA200.7	mg/L	47	0.5		11/6/2012				
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/1/2012				
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		11/1/2012				
Chloride	EPA300.0	mg/L	34	1	250	11/2/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	0.61 E	0.2		11/14/2012				
Fluoride	EPA300.0	mg/L	0.16	0.10	2.0	11/2/2012				
Gross Alpha	EPA900.0	pCi/L	2.95 ± 1.44 E		15	11/16/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/14/2012				
Iron	EPA200.7	ug/L	Not Detected	10	300	11/6/2012				
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	11/6/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012				
Lithium	EPA200.8	ug/L	8	1		11/9/2012				
Magnesium	EPA200.7	mg/L	12	0.5		11/6/2012				
Manganese, Dissolved	EPA200.7	ug/L	Not Detected	10	50	11/6/2012				
Manganese, Total	EPA200.7	ug/L	Not Detected	10	50	11/6/2012				
Methane	EPA174/175	ug/L	0.12 E	0.1		11/14/2012				
Molybdenum, Total	EPA200.8	ug/L	4	1	1000	11/9/2012				
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/9/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	11/2/2012				
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	11/2/2012				
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	11/2/2012				
			-							

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AA93961

Collection Date/Time: 11/1/2012 15:00 Sample Collector: LINDBERG T

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: MW-1									
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed			
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		11/2/2012			
pH (Laboratory)	4500-H+B	pH (H)	7.5			11/1/2012			
Phosphorus, Total	HACH 8190	mg/L	0.06	0.03		11/8/2012			
Potassium	EPA200.7	mg/L	2.9	0.1		11/6/2012			
QC Anion Sum x 100	Calculation	%	98%			11/8/2012			
QC Anion-Cation Balance	Calculation	%	2			11/8/2012			
QC Cation Sum x 100	Calculation	%	101%			11/8/2012			
QC Ratio TDS/SEC	Calculation		0.63			11/9/2012			
Selenium, Total	EPA200.8	ug/L	2	2	50	11/9/2012			
Silica as SiO2, Total	EPA200.7	mg/L	26	0.5		11/6/2012			
Sodium	EPA200.7	mg/L	47	0.5		11/6/2012			
Specific Conductance (E.C)	2510B	umhos/cm	540	1	900	11/2/2012			
Strontium, Total	EPA200.8	ug/L	247	5		11/9/2012			
Sulfate	EPA300.0	mg/L	69	1	250	11/2/2012			
Total Diss. Solids	2540C	mg/L	340	10	500	11/6/2012			
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/15/2012			
Total Organic Carbon	SM5310C	mg/L	0.71 E	0.20		11/14/2012			
Total Radium 226	EPA903.0	pCi/L	0.027 ± 0.157 E		3	11/26/2012			
Trihalomethanes	EPA524.2	ug/L	59 E		80	11/13/2012			
Uranium by ICP/MS	EPA200.8	ug/L	1	1	30	11/9/2012			
Vanadium, Total	EPA200.8	ug/L	2	1	1000	11/9/2012			
Zinc, Total	EPA200.8	ug/L	13	10	5000	11/9/2012			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L: Micrograms per liter (=ppb) PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 11/20/2012 11:24
Received Date: 11/08/2012

Received Time: 09:36

Lab Sample ID: A2K0639-01

Sample Date: 10/31/2012 16:00

Sample Type: Grab

Sampled by: T. Lindberg
Matrix: Water

Sample Description: ASR-1 // 93960

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.76	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.99	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	2.4	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	7.4	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	112 %		Acceptable ra	nge: 70-130 9	%			
*Total Trihalomethanes, EPA 524.2		9.8	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	103 %		Acceptable ra	nge: 70-130 9	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0639 FINAL 11202012 1124

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 11/20/2012 11:24 Received Date: 11/08/2012 Received Time: 09:36

Lab Sample ID: A2K0639-02 **Sample Date:** 11/01/2012 15:00

Sample Type: Grab

Sampled by: T. Lindberg
Matrix: Water

Sample Description: MW-1 // 93961

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.61	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.71	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
Analyte	Method	Result	RL	Units	RL	Batch	Prepared	Analyzed	Qual
Allalyte	Metriod	Nesuit	INL	Offics	Mult	Datcii	Fiepaieu	Allalyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	12	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	0.51	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	42	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	4.2	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	107 %		Acceptable ra	ange: 70-130 %	%			
Total Trihalomethanes, EPA 524.2		59	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %		Acceptable ra	ange: 70-130 %	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0639 FINAL 11202012 1124

Analytical Chemists

November 28, 2012 Lab ID : SP 1211510-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : October 31, 2012-16:00

Monterey, CA 93940 Sampled By : T.Lindberg

Received On: November 9, 2012-10:00

Matrix : Water

Description : ASR-1 Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis	
Constituent	Result ± Ellor	MDA			Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1'5}								
Gross Alpha	5.57 ± 2.32	1.79	pCi/L	15/5	900.0	11/12/12-18:00 2P1212565	900.0	11/16/12-08:00 2A1217230
Total Alpha Radium (226)	0.881 ± 0.335	0.439	pCi/L	3	903.0	11/21/12-10:00 2P1212703	903.0	11/26/12-15:00 2A1217395

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

November 28, 2012 Lab ID : SP 1211510-002

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : October 31, 2012-15:00

Monterey, CA 93940 Sampled By : T.Lindberg

Received On: November 9, 2012-10:00

Matrix : Water

Description : MW-1 Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA			Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	2.95 ± 1.44	1.36	pCi/L	15/5	900.0	11/12/12-18:00 2P1212565	900.0	11/16/12-08:00 2A1217231
Total Alpha Radium (226)	0.027 ± 0.157	0.439	pCi/L	3	903.0	11/21/12-10:00 2P1212703	903.0	11/26/12-15:20 2A1217395

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	"When Quality Co		http://www.mccan	npbell.com / E-mail:				
Monterey Bay Analytical 4 Justin Court, Suite D Monterey, CA 93940		Client Project 1	D: MPWMD	Date Sampled: 10/31/12-11/01/12				
				Date Received: 11/08/12				
		Client Contact:	David Holland	Date Extrac	Date Extracted 11/14/12 Date Analyzed 11/14/12			
		Client P.O.:		Date Analyz				
		_	tht Gases*					
Extraction method: Lab ID	RSK175 Client ID	Analytic Matrix	cal methods: RSK175 Methane	Work Order: 1211233 DF				
001A	ASR-1	W	3.2		1	N/A	Comments	
002A	MW-1	W	0.12		1	N/A		
						·	П	
Reporting Limit for DF =1; ND means not detected at or		W	μg/L					
	above the reporting limit	S	NA			NA		
	are reported in μg/L.							
	ecovery of Surrogate Standard							
N/A = Not applic	able to this analysis							
DF = Dilution Fa	ctor							

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Wednesday, December 05, 2012

Page 1 of 2

Collection Date/Time:

AA93959 Lab Number:

> 10/31/2012 14:30

Sample Collector: I FAR .I

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: PCA East (D) Analyte Method Unit Result Qual **PQL** MCL Date Analyzed Alkalinity, Total (as CaCO3) 2320B 11/7/2012 mg/L 185 2 Aluminum, Total EPA200.8 ug/L **Not Detected** 10 1000 11/9/2012 Ammonia-N 4500NH3 D mg/L **Not Detected** 0.05 11/6/2012 Arsenic, Total EPA200.8 ug/L 1 10 11/9/2012 1000 Barium, Total EPA200.8 10 11/9/2012 ug/L 68 Bicarbonate (as HCO3-) 2320B mg/L 226 10 11/8/2012 EPA200.7 0.05 11/6/2012 Boron mg/L 0.10 **Bromide** EPA300.0 0.21 0.10 11/2/2012 mg/L Calcium EPA200.7 mg/L 51 0.5 11/6/2012 Carbonate as CaCO3 10 2320B mg/L **Not Detected** 11/1/2012 Chloramines SM4500-CI G **Not Detected** 0.05 11/1/2012 mg/L Chloride EPA300.0 mg/L 250 11/2/2012 92 1 Dissolved Organic Carbon SM5310-C Not Detected E 0.2 11/14/2012 mg/L Fluoride EPA300.0 mg/L 0.21 0.10 2.0 11/2/2012 0.236 ± 1.52 E EPA900.0 Gross Alpha pCi/L 15 11/16/2012 Haloacetic Acids EPA552 ug/L Not Detected E 60 11/14/2012 Iron EPA200.7 ug/L 10 300 11/6/2012 44 Iron, Dissolved EPA200.7 35 10 300 11/6/2012 ug/L Kjehldahl Nitrogen 4500-NH3 B,C.E mg/L **Not Detected** 0.2 11/14/2012 Lithium 11/9/2012 EPA200.8 ug/L 23 1 EPA200.7 11/6/2012 Magnesium 0.5 mg/L 10 Manganese, Dissolved EPA200.7 ug/L 10 50 11/6/2012 99 Manganese, Total EPA200.7 ug/L 101 10 50 11/6/2012 Methane EPA174/175 ug/L 0.64 Е 0.1 11/14/2012 Molybdenum, Total EPA200.8 ug/L 11 1 1000 11/9/2012 Nickel, Total EPA200.8 11/9/2012 10 100 ug/L **Not Detected** Nitrate as NO3 EPA300.0 45 11/2/2012 mg/L **Not Detected** 1 Nitrate as NO3-N EPA300.0 **Not Detected** 0.10 10 11/2/2012 mg/L Nitrite as NO2-N EPA300.0 mg/L **Not Detected** 0.10 1.00 11/2/2012

PQL: Practical Quantitation Limit mg/L: Milligrams per liter ug/L: Micrograms per liter MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

3

80

30

1000

5000

1

1

10

11/26/2012

11/13/2012

11/9/2012

11/9/2012

11/9/2012

Lab Number: AA93959

Collection Date/Time: 10/31/2012 14:30 Sample Collector: LEAR J

Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation:

Sample Description: PCA East (D) Method Unit Result Qual **PQL** MCL Date Analyzed Analyte o-Phosphate-P EPA300.0 mg/L **Not Detected** 0.10 11/2/2012 pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total **HACH 8190** 0.28 0.03 11/8/2012 mg/L Potassium EPA200.7 0.1 11/6/2012 mg/L 3.9 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 % 11/8/2012 Calculation 101% QC Ratio TDS/SEC Calculation 0.60 11/9/2012 Selenium, Total EPA200.8 11/9/2012 **Not Detected** 2 50 ug/L Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 EPA200.7 11/6/2012 Sodium mg/L 91 0.5 Specific Conductance (E.C) 2510B umhos/cm 737 1 900 11/2/2012 Strontium, Total EPA200.8 ug/L 271 5 11/9/2012 EPA300.0 Sulfate 1 250 11/2/2012 mg/L 32 Total Diss. Solids 2540C 440 10 500 11/6/2012 mg/L 11/15/2012 Total Nitrogen Calculation mg/L **Not Detected** 0.5 **Total Organic Carbon** SM5310C 0.20 11/14/2012 mg/L 0.29

Sample Comments:

Uranium by ICP/MS

Total Radium 226

Trihalomethanes

Vanadium, Total

Zinc, Total

Report Approved by:

pCi/L

ug/L

ug/L

ug/L

ug/L

EPA903.0

EPA524.2

EPA200.8

EPA200.8

EPA200.8

David Holland, Laboratory Director

0.080 ± 0.173 E

Not Detected E

Not Detected

Not Detected

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 11/20/2012 11:32 **Received Date:** 11/08/2012 **Received Time:** 09:36

Lab Sample ID: A2K0640-01

Sample Date: 10/31/2012 14:30

Sample Type: Grab

Sampled by: Jonathan Lear

Matrix: Water

Sample Description: PCA East (D) // 93959

General Chemistry

Gonoral Gnonnous									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	ND	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.29	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	108 %		Acceptable ra	nge: 70-130 %	%			
*Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %		Acceptable ra	nge: 70-130 %	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0640 FINAL 11202012 1132

November 28, 2012 Lab ID : SP 1211511-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : October 31, 2012-14:30

Monterey, CA 93940 Sampled By : Jonathan Lear

Received On: November 9, 2012-10:00

Matrix : Water

Description : PCA East (D)
Project : MPWMD

Sample Result - Radio

Constituent	Result + Error	MDA	MDA Units M		Sample	Preparation	Sample Analysis		
Constituent	Result ± Effor	or MDA Units MCL/A		WICL/AL	Method	Date/ID	Method	Date/ID	
Radio Chemistry P:1'5									
Gross Alpha	0.236 ± 1.52	2.38	pCi/L	15/5	900.0	11/12/12-18:00 2P1212565	900.0	11/16/12-08:05 2A1217232	
Total Alpha Radium (226)	0.080 ± 0.173	0.439	pCi/L	3	903.0	11/21/12-10:00 2P1212703	903.0	11/26/12-15:40 2A1217395	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Cou	ints"	http://www.mccamp	pbell.com / E-mail:			
Monterey Ba	y Analytical	Client Project ID:	MPWMD	Date Sample	ed: 10	/31/12	
4 Justin Cour	t Suite D			Date Receiv	ed: 11	/08/12	
Tousin Cour	t, Suite B	Client Contact: D	Pavid Holland	Date Extract	ed 11.	/14/12	
Monterey, CA	A 93940	Client P.O.:		Date Analyz	ed 11	/14/12	
Extraction method:	DSK175	_	Gases* nethods: RSK175		W	ork Order:	1211222
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments
001A	PCA East (D)	W	0.64		1	N/A	
NI	eporting Limit for DF =1; D means not detected at or	W S	0.1 NA			μg/L NA	
	above the reporting limit	5	IVA			NA	
	are reported in µg/L.						
%SS = Percent R	ecovery of Surrogate Standard						
N/A = Not applic	able to this analysis						
DF = Dilution Fa	ctor						

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2

Wednesday, December 26, 2012

Lab Number: AA95296

Collection Date/Time: 12/4/2012 11:30 Sample Collector: LEAR, J

Submittal Date/Time: 12/4/2012 16:44 Sample ID

Sample Description: ASR - 2										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed			
Alkalinity, Total (as CaCO3)	2320B	mg/L	227		2		12/11/2012			
Aluminum, Total	EPA200.8	ug/L	Not Detected	ı	10	1000	12/5/2012			
Ammonia-N	4500NH3 D	mg/L	0.10		0.05		12/12/2012			
Arsenic, Total	EPA200.8	ug/L	2		1	10	12/5/2012			
Barium, Total	EPA200.8	ug/L	136		10	1000	12/5/2012			
Bicarbonate (as HCO3-)	2320B	mg/L	277		10		12/12/2012			
Boron	EPA200.7	mg/L	0.12		0.05		12/19/2012			
Bromide	EPA300.0	mg/L	0.2		0.10		12/4/2012			
Calcium	EPA200.7	mg/L	89		0.5		12/19/2012			
Carbonate as CaCO3	2320B	mg/L	Not Detected	ı	10		12/4/2012			
Chloramines	SM4500-CI G	mg/L	Not Detected	ı	0.05		12/4/2012			
Chloride	EPA300.0	mg/L	118		1	250	12/4/2012			
Dissolved Organic Carbon	SM5310-C	mg/L	0.88	Е	0.2		12/13/2012			
Fluoride	EPA300.0	mg/L	0.3		0.10	2.0	12/4/2012			
Gross Alpha	EPA900.0	pCi/L	3.48 ± 2.82	Е		15	12/12/2012			
Haloacetic Acids	EPA552	ug/L	Not Detected	I E		60	12/12/2012			
Iron	EPA200.7	ug/L	1097		10	300	12/19/2012			
Iron, Dissolved	EPA200.7	ug/L	62		10	300	12/19/2012			
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	0.3		0.2		12/13/2012			
Lithium	EPA200.8	ug/L	38		1		12/13/2012			
Magnesium	EPA200.7	mg/L	24		0.5		12/19/2012			
Manganese, Dissolved	EPA200.7	ug/L	31		10	50	12/19/2012			
Manganese, Total	EPA200.7	ug/L	43		10	50	12/19/2012			
Methane	EPA174/175	ug/L	2.5	Е	0.1		12/6/2012			
Molybdenum, Total	EPA200.8	ug/L	11		1	1000	12/5/2012			
Nickel, Total	EPA200.8	ug/L	4		10	100	12/5/2012			
Nitrate as NO3	EPA300.0	mg/L	Not Detected	ı	1	45	12/4/2012			
Nitrate as NO3-N	EPA300.0	mg/L	0.1		0.10	10	12/4/2012			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	ı	0.10	1.00	12/4/2012			
o-Phosphate-P	EPA300.0	mg/L	0.10		0.10		12/4/2012			
pH (Laboratory)	4500-H+B	pH (H)	7.1				12/4/2012			
Phosphorus, Total	HACH 8190	mg/L	0.27		0.03		12/17/2012			
Potassium	EPA200.7	mg/L	5.4		0.1		12/19/2012			
QC Anion Sum x 100	Calculation	%	98%				12/20/2012			

mg/L: Milligrams per liter

ug/L : Micrograms per liter

PQL : Practical Quantitation Limit

MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Lab Number: AA95296

Collection Date/Time: 12/4/2012 11:30 Sample Collector: LEAR, J

Submittal Date/Time: 12/4/2012 16:44 Sample ID

Sample Description: ASR - 2										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed			
QC Anion-Cation Balance	Calculation	%	2				12/20/2012			
QC Cation Sum x 100	Calculation	%	102%				12/20/2012			
QC Ratio TDS/SEC	Calculation		0.61				12/10/2012			
Selenium, Total	EPA200.8	ug/L	2		2	50	12/5/2012			
Silica as SiO2, Total	EPA200.7	mg/L	42		0.5		12/19/2012			
Sodium	EPA200.7	mg/L	88		0.5		12/19/2012			
Specific Conductance (E.C)	2510B	umhos/cm	1018		1	900	12/7/2012			
Strontium, Total	EPA200.8	ug/L	448		5		12/5/2012			
Sulfate	EPA300.0	mg/L	100		1	250	12/4/2012			
Total Diss. Solids	2540C	mg/L	623		10	500	12/7/2012			
Total Nitrogen	Calculation	mg/L	Not Detecte	d	0.5		12/13/2012			
Total Organic Carbon	SM5310C	mg/L	0.83	Е	0.20		12/13/2012			
Total Radium 226	EPA903.0	pCi/L	0.313 ± 0.24	3 E		3	12/14/2012			
Trihalomethanes	EPA524.2	ug/L	7.2	E	_	80	12/13/2012			
Uranium by ICP/MS	EPA200.8	ug/L	2		1	30	12/5/2012			
Vanadium, Total	EPA200.8	ug/L	5		1	1000	12/5/2012			
Zinc, Total	EPA200.8	ug/L	348		10	5000	12/5/2012			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 12/17/2012 16:48
Received Date: 12/06/2012

Received Time: 10:25

Lab Sample ID: A2L0413-01

Sample Date: 12/04/2012 11:30

Sample Type: Grab

Sampled by: Lear, J. Matrix: Water

Sample Description: ASR-2 // 95296

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.88	0.20	mg/L	1	A214025	12/13/12	12/13/12	
Total Organic Carbon	SM 5310 C	0.83	0.20	mg/L	1	A214028	12/13/12	12/13/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	1.7	0.50	ug/L	1	A214034	12/13/12	12/13/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A214034	12/13/12	12/13/12	
Chloroform	EPA 524.2	4.6	0.50	ug/L	1	A214034	12/13/12	12/13/12	
Dibromochloromethane	EPA 524.2	0.95	0.50	ug/L	1	A214034	12/13/12	12/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	98 %		Acceptable ra	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		7.2	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A213896	12/11/12	12/12/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A213896	12/11/12	12/12/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A213896	12/11/12	12/12/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A213896	12/11/12	12/12/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A213896	12/11/12	12/12/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	100 %		Acceptable ra	ange: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2L0413 FINAL 12172012 1648

December 17, 2012 Lab ID : SP 1212506-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : December 4, 2012-11:30

Monterey, CA 93940 Sampled By: John Lear

Received On: December 7, 2012-10:30

Matrix : Drinking Water

Description : ASR-2 Project : MPWMD

Sample Result - Radio

Constituent	Result + Error	± Error MDA Units MCL/A		MCI /AI	Sample	Preparation	Sampl	Sample Analysis		
Constituent	Result ± Effor			WICL/AL	Method	Date/ID	Method	Date/ID		
Radio Chemistry P:1'5										
Gross Alpha	3.48 ± 2.82	2.87	pCi/L	15/5	900.0	12/10/12-11:00 2P1213672	900.0	12/12/12-11:00 2A1218327		
Total Alpha Radium (226)	0.313 ± 0.243	0.439	pCi/L	3	903.0	12/12/12-10:00 2P1213757	903.0	12/14/12-11:20 2A1218467		

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Coi	ınts''	http://www.mccampbell.com / E-mail: main@mccampbell.com						
Monterey Bay	y Analytical	Client Project ID:	MPWMD	Date Sample	ed: 12	/04/12			
4 Justin Cour	t Suite D			Date Receiv	ed: 12	/06/12			
4 Justin Cour	i, Suite D	Client Contact: Da	avid Holland	Date Extract	ed 12	/06/12			
Monterey, CA	A 93940	Client P.O.:		Date Analyz	ed 12	/06/12			
Extraction method:	RSK175	Light (Wo	Work Order: 1212142					
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments		
001A	ASR-2	W	2.5		1	N/A			
	eporting Limit for DF =1;	W	0.1			μg/L			
	O means not detected at or above the reporting limit	S	NA			NA			
* water samples a	re reported in μg/L.								
%SS = Percent Re	ecovery of Surrogate Standard								
N/A = Not application	able to this analysis								
DF = Dilution Fac	ctor								

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2 Sunday, February 03, 2013

Lab Number: AA95382

Collection Date/Time: 12/5/2012 14:30 Sample Collector: LINDBERG T

Submittal Date/Time: 12/6/2012 9:20 Sample ID Coliform Designation:

Sample Description: ASR-3 Injectate											
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:			
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	143		2		12/11/2012	DH			
Aluminum, Total	EPA200.8	ug/L	Not Detected		10	1000	12/13/2012	SM			
Ammonia-N	SM4500NH3 D	mg/L	Not Detected		0.05		12/12/2012	DH			
Arsenic, Total	EPA200.8	ug/L	Not Detected		1	10	12/13/2012	SM			
Barium, Total	EPA200.8	ug/L	68		10	1000	12/13/2012	SM			
Boron	EPA200.7	mg/L	Not Detected		0.05		12/7/2012	HC			
Bromide	EPA300.0	mg/L	Not Detected		0.10		12/7/2012	DH			
Calcium	EPA200.7	mg/L	47		0.5		12/7/2012	HC			
Chloramines	SM4500-CI G	mg/L	0.12		0.05		12/6/2012	DH			
Chloride	EPA300.0	mg/L	34		1	250	12/7/2012	DH			
Dissolved Organic Carbon	SM5310-C	mg/L	1.0	E	0.2		12/26/2012	BSK			
Fluoride	EPA300.0	mg/L	0.33		0.10	2.0	12/7/2012	DH			
Gross Alpha	EPA900.0	pCi/L	1.31 ± 1.50	Е		15	12/19/2012	FGL			
Haloacetic Acids	EPA552	ug/L	13	Е		60	12/18/2012	BSK			
Iron	EPA200.7	ug/L	133		10	300	12/7/2012	HC			
Iron, Dissolved	EPA200.7	ug/L	20		10	300	12/7/2012	HC			
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected		0.2		12/10/2012	DC			
Lithium	EPA200.8	ug/L	7		1		12/13/2012	SM			
Magnesium	EPA200.7	mg/L	15		0.5		12/7/2012	HC			
Manganese, Dissolved	EPA200.7	ug/L	Not Detected		10	50	12/7/2012	HC			
Manganese, Total	EPA200.7	ug/L	Not Detected		10	50	12/7/2012	HC			
Methane	EPA174/175	ug/L	1.1	E	0.1		12/19/2012	DH			
Molybdenum, Total	EPA200.8	ug/L	2		1	1000	12/13/2012	SM			
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	12/13/2012	SM			
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	12/7/2012	DH			
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.10	10	12/7/2012	DH			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.10	1.0	12/7/2012	DH			
o-Phosphate-P	EPA300.0	mg/L	0.35		0.10		12/7/2012	DH			
pH (Laboratory)	SM4500-H+B	pH (H)	7.5				12/6/2012	DH			
Phosphorus, Total	HACH 8190	mg/L	0.52		0.03		12/17/2012	SM			
Potassium	EPA200.7	mg/L	3.4		0.1		12/7/2012	HC			
QC Anion Sum x 100	Calculation	%	99%				12/12/2012	DH			
QC Anion-Cation Balance	Calculation	%	3				12/12/2012	DH			
QC Cation Sum x 100	Calculation	%	104%				12/12/2012	DH			
QC Ratio TDS/SEC	Calculation		0.61				12/10/2012	DH			
Selenium, Total	EPA200.8	ug/L	Not Detected		2	50	12/13/2012	SM			
Silica as SiO2, Total	EPA200.7	mg/L	24		0.5		12/7/2012	HC			
Sodium	EPA200.7	mg/L	49		0.5		12/7/2012	HC			

Lab Number: AA95382

Collection Date/Time: 12/5/2012 14:30 Sample Collector: LINDBERG T

Submittal Date/Time: 12/6/2012 9:20 Sample ID Coliform Designation:

	Sample Description: ASR-3 Injectate										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:			
Specific Conductance (E.C)	SM2510B	umhos/cm	558		1	900	12/7/2012	DC			
Strontium, Total	EPA200.8	ug/L	241		5		12/13/2012	SM			
Sulfate	EPA300.0	mg/L	81		1	250	12/7/2012	DH			
Total Diss. Solids	SM2540C	mg/L	340		10	500	12/7/2012	DH			
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		12/13/2012	DH			
Total Organic Carbon	SM5310C	mg/L	1.2	E	0.20		12/20/2012	BSK			
Total Radium 226	EPA903.0	pCi/L	0.050 ± 0.257	E		3	12/20/2012	FGL			
Trihalomethanes	EPA524.2	ug/L	26	E		80	12/19/2012	BSK			
Uranium by ICP/MS	EPA200.8	ug/L	Not Detected		1	30	12/13/2012	SM			
Vanadium, Total	EPA200.8	ug/L	1		1	1000	12/13/2012	SM			
Zinc, Total	EPA200.8	ug/L	208		10	5000	12/13/2012	SM			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 12/28/2012 17:54 Received Date: 12/14/2012 Received Time: 09:30

Lab Sample ID: A2L1225-01 **Sample Date:** 12/05/2012 14:30

Sample Type: Grab

Sampled by: T Lindberg
Matrix: Water

Sample Description: ASR-3 Injectate // 95382

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.0	0.20	mg/L	1	A214421	12/26/12	12/26/12	
Total Organic Carbon	SM 5310 C	1.2	0.20	mg/L	1	A214266	12/20/12	12/20/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	8.9	0.50	ug/L	1	A214170	12/18/12	12/19/12	
Bromoform	EPA 524.2	2.0	0.50	ug/L	1	A214170	12/18/12	12/19/12	
Chloroform	EPA 524.2	7.9	0.50	ug/L	1	A214170	12/18/12	12/19/12	
Dibromochloromethane	EPA 524.2	7.7	0.50	ug/L	1	A214170	12/18/12	12/19/12	
Surrogate: Bromofluorobenzene	EPA 524.2	95 %		Acceptable r	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		26	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	3.7	1.0	ug/L	1	A214125	12/17/12	12/18/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	5.5	1.0	ug/L	1	A214125	12/17/12	12/18/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A214125	12/17/12	12/18/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A214125	12/17/12	12/18/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	4.0	1.0	ug/L	1	A214125	12/17/12	12/18/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	105 %		Acceptable r	ange: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		13	2.0	ug/L					

A2L1225 FINAL 12282012 1754

December 20, 2012 Lab ID : SP 1212846-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : December 5, 2012-14:30

Monterey, CA 93940 Sampled By : T. Lindberg

Received On : December 17, 2012-09:45

Matrix : Water

Description : ASR-3 Injectate

Project : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	DA Units MCL/AL		Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Effor	MDA	Omis	NICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	1.31 ± 1.50	1.65	pCi/L	15/5	900.0	12/17/12-08:16 2P1213969	900.0	12/19/12-13:00 2A1218681
Total Alpha Radium (226)	0.050 ± 0.257	0.439	pCi/L	3	903.0	12/19/12-10:00 2P1214049	903.0	12/20/12-11:40 2A1218727

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Co	unts''	http://www.mccamp	pbell.com / E-mail:	main@mcc	campbell.co	m	
Monterey Ba	ny Analytical	Client Project ID:	MPWMD	Date Sample	ed: 12	2/05/12		
4 Justin Cou	rt Suite D			Date Receiv	ed: 12	2/14/12		
4 Justin Cou	n, suite D	Client Contact: D	avid Holland	Date Extracted 12/19/12				
Monterey, C.	A 93940	Client P.O.:		Date Analyzed 12/19/12				
Extraction method:	RSK175		Gases* ethods: RSK175	Work Order: 1212387				
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments	
001A	ASR-3	W	1.1		1	N/A		
			_					
R	Reporting Limit for DF =1; D means not detected at or	W	0.1			μg/L		
	above the reporting limit	S	NA			NA		
* water samples	are reported in µg/L.							
%SS = Percent R	Recovery of Surrogate Standard							
N/A = Not applic	cable to this analysis							
DF = Dilution Fa	actor							

Angela Rydelius, Lab Manager

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net ELAP Certification Number: 2385

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AB00040

Collection Date/Time: 4/17/2013 13:00

Sample Collector: LINDBERG T

Sample ID Submittal Date/Time: 4/17/2013 14:15 Coliform Designation:

Alkalinity, Total (as CaCO3)	Method SM2320B EPA200.8 SM4500NH3 D	Unit mg/L ug/L	Result 136	Qual	PQL	MCL	Date Analyzed	Analyst:						
Aluminum, Total	EPA200.8 SM4500NH3 D	ug/L			Analyte Method Unit Result Qual PQL MCL Date Analyzed A									
· · · · · · · · · · · · · · · · · · ·	SM4500NH3 D				2		4/19/2013	MW						
Ammonia-N			33		10 1000		4/25/2013	HC						
	ED 1 2 2 2 2	mg/L	Not Detected		0.05		4/23/2013	DC						
Arsenic, Total	EPA200.8	ug/L	2		1	10	4/25/2013	HC						
Barium, Total	EPA200.8	ug/L	70		10	1000	4/25/2013	HC						
Boron	EPA200.7	mg/L	Not Detected		0.05		4/26/2013	SM						
Bromide	EPA300.0	mg/L	Not Detected		0.1		4/18/2013	RL						
Calcium	EPA200.7	mg/L	42		0.5		4/26/2013	SM						
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		4/17/2013	SM						
Chloride	EPA300.0	mg/L	35		1	250	4/18/2013	RL						
Dissolved Organic Carbon	SM5310-C	mg/L	1.0	E	0.2		4/25/2013	BSK						
Fluoride	EPA300.0	mg/L	0.3		0.1	2.0	4/18/2013	RL						
Gross Alpha	EPA900.0	pCi/L	0.627 ± 1.23	E		15	4/29/2013	FGL						
Haloacetic Acids	EPA552	ug/L	5.9	E		60	4/27/2013	BSK						
Iron	EPA200.7	ug/L	3101		10	300	4/26/2013	SM						
Iron, Dissolved	EPA200.7	ug/L	50		10	300	4/26/2013	SM						
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	0.30		0.2		4/23/2013	DC						
Lithium	EPA200.8	ug/L	5		1		4/25/2013	HC						
Magnesium	EPA200.7	mg/L	13		0.5		4/26/2013	SM						
Manganese, Dissolved	EPA200.7	ug/L	23		10	50	4/26/2013	SM						
Manganese, Total	EPA200.7	ug/L	40		10	50	4/26/2013	SM						
Methane	EPA174/175	ug/L	0.50	E	0.1		4/24/2013	MCCAM						
Molybdenum, Total	EPA200.8	ug/L	6		1	1000	4/25/2013	HC						
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	4/25/2013	HC						
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	4/18/2013	RL						
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.1	10	4/18/2013	RL						
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected		0.1		4/18/2013	DH						

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net ELAP Certification Number: 2385

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AB00040

Collection Date/Time: 4/17/2013 13:00 Sample Collector: LINDBERG T

Submittal Date/Time: 4/17/2013 14:15 Sample ID Coliform Designation:

Sample Description: ASR-2											
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.1	1.0	4/18/2013	RL			
o-Phosphate-P	EPA300.0	mg/L	0.2		0.1		4/18/2013	RL			
pH (Laboratory)	SM4500-H+B	pH (H)	7.6				4/17/2013	HC			
Phosphorus, Total	HACH 8190	mg/L	0.54		0.03		4/29/2013	SM			
Potassium	EPA200.7	mg/L	3.0		0.1		4/26/2013	SM			
QC Anion Sum x 100	Calculation	%	98%				4/26/2013	DH			
QC Anion-Cation Balance	Calculation	%	2				4/26/2013	DH			
QC Cation Sum x 100	Calculation	%	103%				4/26/2013	DH			
QC Ratio TDS/SEC	Calculation		0.60				4/25/2013	DH			
Selenium, Total	EPA200.8	ug/L	8		2	50	4/25/2013	HC			
Silica as SiO2, Total	EPA200.7	mg/L	26		0.5		4/26/2013	SM			
Sodium	EPA200.7	mg/L	46		0.5		4/26/2013	SM			
Specific Conductance (E.C)	SM2510B	umhos/cm	508		1	900	4/17/2013	HC			
Strontium, Total	EPA200.8	ug/L	220		5		4/25/2013	HC			
Sulfate	EPA300.0	mg/L	62		1	250	4/18/2013	RL			
Total Diss. Solids	SM2540C	mg/L	306		10	500	4/22/2013	HC			
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		4/24/2013	DH			
Total Organic Carbon	SM5310C	mg/L	1.5	Е	0.20		4/26/2013	BSK			
Total Radium 226	EPA903.0	pCi/L	0.348 ± 0.323	Е		3	4/30/2013	FGL			
Trihalomethanes	EPA524.2	ug/L	67	E		80	4/23/2013	BSK			
Uranium by ICP/MS	EPA200.8	ug/L	1		1	30	4/25/2013	HC			
Vanadium, Total	EPA200.8	ug/L	5		1	1000	4/25/2013	HC			
Zinc, Total	EPA200.8	ug/L	248		10	5000	4/25/2013	HC			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L: Micrograms per liter (=ppb) PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D} = \mathsf{Method}$ deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net ELAP Certification Number: 2385

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AB00041

Collection Date/Time: 4/17/2013 14:00 Sample Collector: LINDBERG T

Submittal Date/Time: 4/17/2013 14:15 Sample ID Coliform Designation:

Sample Description: ASR-3										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:			
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	140	2		4/19/2013	MW			
Aluminum, Total	EPA200.8	ug/L	63	10	1000	5/3/2013	SM			
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		4/23/2013	DC			
Arsenic, Total	EPA200.8	ug/L	13	1	10	4/25/2013	HC			
Barium, Total	EPA200.8	ug/L	56	10	1000	4/25/2013	HC			
Boron	EPA200.7	mg/L	Not Detected	0.05		4/26/2013	SM			
Bromide	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	RL			
Calcium	EPA200.7	mg/L	42	0.5		4/26/2013	SM			
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		4/17/2013	SM			
Chloride	EPA300.0	mg/L	31	1	250	4/18/2013	RL			
Dissolved Organic Carbon	SM5310-C	mg/L	1.0 E	0.2		4/25/2013	BSK			
Fluoride	EPA300.0	mg/L	0.2	0.1	2.0	4/18/2013	RL			
Gross Alpha	EPA900.0	pCi/L	2.74 ± 1.32 E		15	4/29/2013	FGL			
Haloacetic Acids	EPA552	ug/L	6.8 E		60	4/27/2013	BSK			
Iron	EPA200.7	ug/L	150	10	300	4/26/2013	SM			
Iron, Dissolved	EPA200.7	ug/L	35	10	300	4/26/2013	SM			
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected	0.2		4/23/2013	DC			
Lithium	EPA200.8	ug/L	6	1		4/25/2013	HC			
Magnesium	EPA200.7	mg/L	13	0.5		4/26/2013	SM			
Manganese, Dissolved	EPA200.7	ug/L	20	10	50	4/26/2013	SM			
Manganese, Total	EPA200.7	ug/L	28	10	50	4/26/2013	SM			
Methane	EPA174/175	ug/L	0.35 E	0.1		4/24/2013	MCCAM			
Molybdenum, Total	EPA200.8	ug/L	46	1	1000	4/25/2013	HC			
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	4/25/2013	HC			
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	4/18/2013	RL			
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.1	10	4/18/2013	RL			
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	DH			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	4/18/2013	RL			

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net **ELAP Certification Number: 2385**

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085

Lab Number: AB00041

Collection Date/Time: 4/17/2013 14:00

Submittal Date/Time: 4/17/2013 14:15

Sample Collector: LINDBERG T

Sample ID Coliform Designation:

o-Phosphate-P EPA300.0 mg/L 0.1 0.1 4/18/2013 RL pH (Laboratory) SM4500-H+B pH (H) 7.7 4/17/2013 HC Phosphorus, Total HACH 8190 mg/L 0.38 0.03 4/29/2013 SM Potassium EPA200.7 mg/L 3.1 0.1 4/26/2013 SM QC Anion Sum x 100 Calculation % 100% 5/1/2013 DH QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation % 104% 4/25/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH QE Ratio TDS/SEC Calculation 0.59 4/26/2013 SM SOdium EPA200.7 mg/L 47 0.5 4/26/2013 SM SOdium EPA200.7 mg/L 47 0.5 4/26/2013 SM SEC CALCULATION DEPA200.8 ug/L 214 5 4/26/2013 DH QE RATION DEPA200.8 ug/L 214 5 4/25/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Total Diss. Solids SM2540C mg/L 300 10 500 4/25/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L Not Detected 1 1 1000 4/25/2013 HC	Sample Description: ASR-3											
pH (Laboratory) SM4500-H+B pH (H) 7.7 4/17/2013 HC Phosphorus, Total HACH 8190 mg/L 0.38 0.03 4/29/2013 SM Potassium EPA200.7 mg/L 3.1 0.1 4/26/2013 SM QC Anion Sum x 100 Calculation % 100% 5/1/2013 DH QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Anion-Cation Balance Calculation % 104% 4/26/2013 DH QC Anion-Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation % 104% 4/25/2013 DH Gelenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 DH Selicia as SiO2, Total EPA200.7 mg/L 47 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C)	Analyte	Method	Unit	Result C	Qual	PQL	MCL	Date Analyzed	Analyst:			
Phosphorus, Total HACH 8190 mg/L 0.38 0.03 4/29/2013 SM Potassium EPA200.7 mg/L 3.1 0.1 4/26/2013 SM QC Anion Sum x 100 Calculation % 100% 5/1/2013 DH QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 DH Selica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC	o-Phosphate-P	EPA300.0	mg/L	0.1		0.1		4/18/2013	RL			
Potassium EPA200.7 mg/L 3.1 0.1 4/26/2013 SM QC Anion Sum x 100 Calculation % 100% 5/1/2013 DH QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 DH Selenium, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL	pH (Laboratory)	SM4500-H+B	pH (H)	7.7				4/17/2013	HC			
QC Anion Sum x 100 Calculation % 100% 5/1/2013 DH QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 HC Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013	Phosphorus, Total	HACH 8190	mg/L	0.38		0.03		4/29/2013	SM			
QC Anion-Cation Balance Calculation % 2 5/1/2013 DH QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 HC Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5	Potassium	EPA200.7	mg/L	3.1		0.1		4/26/2013	SM			
QC Cation Sum x 100 Calculation % 104% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 HC Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2	QC Anion Sum x 100	Calculation	%	100%				5/1/2013	DH			
QC Ratio TDS/SEC Calculation 0.59 4/25/2013 DH Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 HC Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0	QC Anion-Cation Balance	Calculation	%	2				5/1/2013	DH			
Selenium, Total EPA200.8 ug/L 8 2 50 4/25/2013 HC Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 BSK	QC Cation Sum x 100	Calculation	%	104%				4/26/2013	DH			
Silica as SiO2, Total EPA200.7 mg/L 25 0.5 4/26/2013 SM Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK	QC Ratio TDS/SEC	Calculation		0.59				4/25/2013	DH			
Sodium EPA200.7 mg/L 47 0.5 4/26/2013 SM Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Selenium, Total	EPA200.8	ug/L	8		2	50	4/25/2013	HC			
Specific Conductance (E.C) SM2510B umhos/cm 510 1 900 4/17/2013 HC Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Silica as SiO2, Total	EPA200.7	mg/L	25		0.5		4/26/2013	SM			
Strontium, Total EPA200.8 ug/L 214 5 4/25/2013 HC Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Sodium	EPA200.7	mg/L	47		0.5		4/26/2013	SM			
Sulfate EPA300.0 mg/L 68 1 250 4/18/2013 RL Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Specific Conductance (E.C)	SM2510B	umhos/cm	510		1	900	4/17/2013	HC			
Total Diss. Solids SM2540C mg/L 300 10 500 4/22/2013 HC Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Strontium, Total	EPA200.8	ug/L	214		5		4/25/2013	HC			
Total Nitrogen Calculation mg/L Not Detected 0.5 4/24/2013 DH Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Sulfate	EPA300.0	mg/L	68		1	250	4/18/2013	RL			
Total Organic Carbon SM5310C mg/L 1.2 E 0.20 4/26/2013 BSK Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Total Diss. Solids	SM2540C	mg/L	300		10	500	4/22/2013	HC			
Total Radium 226 EPA903.0 pCi/L 0.000 ± 0.194 E 3 4/30/2013 FGL Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Total Nitrogen	Calculation	mg/L	Not Detected		0.5		4/24/2013	DH			
Trihalomethanes EPA524.2 ug/L 100 E 80 4/23/2013 BSK Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Total Organic Carbon	SM5310C	mg/L	1.2 E		0.20		4/26/2013	BSK			
Uranium by ICP/MS EPA200.8 ug/L 2 1 30 4/25/2013 HC Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Total Radium 226	EPA903.0	pCi/L	0.000 ± 0.194 E			3	4/30/2013	FGL			
Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 4/25/2013 HC	Trihalomethanes	EPA524.2	ug/L	100 E			80	4/23/2013	BSK			
	Uranium by ICP/MS	EPA200.8	ug/L	2		1	30	4/25/2013	HC			
Zinc, Total EPA200.8 ug/L 118 10 5000 4/25/2013 HC	Vanadium, Total	EPA200.8	ug/L	Not Detected		1	1000	4/25/2013	HC			
	Zinc, Total	EPA200.8	ug/L	118		10	5000	4/25/2013	HC			

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb) PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net ELAP Certification Number: 2385

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AB00042

Collection Date/Time: 4/17/2013 14:30 Sample Collector: LINDBERG T

Submittal Date/Time: 4/17/2013 14:15 Sample ID Coliform Designation:

Sample Description: SSMS (D)										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:			
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	141	2		4/19/2013	MW			
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	4/25/2013	HC			
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		4/23/2013	DC			
Arsenic, Total	EPA200.8	ug/L	20	1	10	4/25/2013	HC			
Barium, Total	EPA200.8	ug/L	27	10	1000	4/25/2013	HC			
Boron	EPA200.7	mg/L	Not Detected	0.05		4/26/2013	SM			
Bromide	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	RL			
Calcium	EPA200.7	mg/L	48	0.5		4/26/2013	SM			
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		4/17/2013	SM			
Chloride	EPA300.0	mg/L	30	1	250	4/18/2013	RL			
Dissolved Organic Carbon	SM5310-C	mg/L	0.93 E	0.2		4/25/2013	BSK			
Fluoride	EPA300.0	mg/L	0.1	0.1	2.0	4/18/2013	RL			
Gross Alpha	EPA900.0	pCi/L	5.58 ± 1.80 E		15	4/29/2013	FGL			
Haloacetic Acids	EPA552	ug/L	14 E		60	4/27/2013	BSK			
Iron	EPA200.7	ug/L	14	10	300	4/26/2013	SM			
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	4/26/2013	SM			
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected	0.2		4/23/2013	DC			
Lithium	EPA200.8	ug/L	6	1		4/25/2013	HC			
Magnesium	EPA200.7	mg/L	10	0.5		4/26/2013	SM			
Manganese, Dissolved	EPA200.7	ug/L	Not Detected	10	50	4/26/2013	SM			
Manganese, Total	EPA200.7	ug/L	Not Detected	10	50	4/26/2013	SM			
Methane	EPA174/175	ug/L	0.30 E	0.1		4/24/2013	MCCAM			
Molybdenum, Total	EPA200.8	ug/L	39	1	1000	4/25/2013	HC			
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	4/25/2013	HC			
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	4/18/2013	RL			
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.1	10	4/18/2013	RL			
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	DH			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	4/18/2013	RL			

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D} = \mathsf{Method}$ deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net **ELAP Certification Number: 2385**

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AB00042

Collection Date/Time: 4/17/2013 14:30

Submittal Date/Time: 4/17/2013 14:15 Sample Collector: LINDBERG T

Sample ID Coliform Designation:

Sample Description: SSMS (D) MCL Analyte Method Unit Qual **PQL** Date Analyzed Analyst: Result o-Phosphate-P EPA300.0 **Not Detected** 0.1 4/18/2013 RL mg/L SM4500-H+B 4/17/2013 НС pH (Laboratory) pH (H) 7.6 Phosphorus, Total **HACH 8190** 0.20 0.03 4/29/2013 SM mg/L Potassium EPA200.7 mg/L 2.8 0.1 4/26/2013 SM QC Anion Sum x 100 Calculation % 99% 5/1/2013 DΗ QC Anion-Cation Balance 3 Calculation % 5/1/2013 DH QC Cation Sum x 100 Calculation % 105% 4/26/2013 DH QC Ratio TDS/SEC Calculation 0.60 4/25/2013 DH Selenium, Total EPA200.8 7 2 50 4/25/2013 HC ug/L Silica as SiO2, Total EPA200.7 mg/L 24 0.5 4/26/2013 SM Sodium EPA200.7 47 0.5 4/26/2013 SM mg/L Specific Conductance (E.C) 4/17/2013 SM2510B umhos/cm 1 900 HC 510 Strontium, Total EPA200.8 347 5 4/25/2013 НС ug/L Sulfate EPA300.0 1 250 4/18/2013 RL mg/L 66 Total Diss. Solids SM2540C 10 4/22/2013 HC mg/L 306 500 Total Nitrogen Calculation **Not Detected** 0.5 4/24/2013 DH mg/L SM5310C 0.20 4/26/2013 **Total Organic Carbon** mg/L 1.3 Ε **BSK** Total Radium 226 EPA903.0 pCi/L 0.099 ± 0.237 E 4/30/2013 FGL 3 EPA524.2 Ε 4/23/2013 BSK Trihalomethanes ug/L 80 80 Uranium by ICP/MS EPA200.8 30 4/25/2013 HC ug/L 3 1 Vanadium, Total EPA200.8 1 1000 4/25/2013 HC ug/L 3 Zinc, Total EPA200.8 ug/L **Not Detected** 10 5000 4/25/2013 HC

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net ELAP Certification Number: 2385

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AB00043

Eub Humbon 120010

Collection Date/Time: 4/17/2013 13:00 Sample Collector: LINDBERG T

Submittal Date/Time: 4/17/2013 14:15 Sample ID Coliform Designation:

Sample Description: MW-1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:			
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	135	2		4/19/2013	MW			
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	4/25/2013	HC			
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		4/23/2013	DC			
Arsenic, Total	EPA200.8	ug/L	2	1	10	4/25/2013	HC			
Barium, Total	EPA200.8	ug/L	27	10	1000	4/25/2013	HC			
Boron	EPA200.7	mg/L	Not Detected	0.05		4/26/2013	SM			
Bromide	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	RL			
Calcium	EPA200.7	mg/L	43	0.5		4/26/2013	SM			
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		4/17/2013	SM			
Chloride	EPA300.0	mg/L	31	1	250	4/18/2013	RL			
Dissolved Organic Carbon	SM5310-C	mg/L	0.89 E	0.2		4/25/2013	BSK			
Fluoride	EPA300.0	mg/L	0.2	0.1	2.0	4/18/2013	RL			
Gross Alpha	EPA900.0	pCi/L	3.21 ± 1.39 E		15	4/29/2013	FGL			
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	4/27/2013	BSK			
Iron	EPA200.7	ug/L	16	10	300	4/26/2013	SM			
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	4/26/2013	SM			
Kjehldahl Nitrogen	SM4500-NH3 B,C.	mg/L	Not Detected	0.2		4/23/2013	DC			
Lithium	EPA200.8	ug/L	7	1		4/25/2013	HC			
Magnesium	EPA200.7	mg/L	11	0.5		4/26/2013	SM			
Manganese, Dissolved	EPA200.7	ug/L	68	10	50	4/26/2013	SM			
Manganese, Total	EPA200.7	ug/L	68	10	50	4/26/2013	SM			
Methane	EPA174/175	ug/L	0.24 E	0.1		4/24/2013	MCCAM			
Molybdenum, Total	EPA200.8	ug/L	6	1	1000	4/25/2013	HC			
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	4/25/2013	HC			
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	4/18/2013	RL			
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.1	10	4/18/2013	RL			
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.1		4/18/2013	DH			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	4/18/2013	RL			

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL: Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D} = \mathsf{Method}$ deviates from standard method due to insufficient sample for MS/MSD

montereybayanalytical@usa.net **ELAP Certification Number: 2385**

Monday, May 06, 2013

MPWMD Joe Oliver P.O. Box 85

Monterey, CA 93442-0085 Lab Number: AB00043

Collection Date/Time: 4/17/2013 13:00 Sample Collector: LINDBERG T

Submittal Date/Time: 4/17/2013 14:15 Sample ID Coliform Designation:

Sample Description: MW-1										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:		
o-Phosphate-P	EPA300.0	mg/L	0.1		0.1		4/18/2013	RL		
pH (Laboratory)	SM4500-H+B	pH (H)	7.3				4/17/2013	HC		
Phosphorus, Total	HACH 8190	mg/L	0.23		0.03		4/29/2013	SM		
Potassium	EPA200.7	mg/L	3.3		0.1		4/26/2013	SM		
QC Anion Sum x 100	Calculation	%	100%				5/1/2013	DH		
QC Anion-Cation Balance	Calculation	%	1				5/1/2013	DH		
QC Cation Sum x 100	Calculation	%	101%				4/26/2013	DH		
QC Ratio TDS/SEC	Calculation		0.60				4/25/2013	DH		
Selenium, Total	EPA200.8	ug/L	15		2	50	4/25/2013	HC		
Silica as SiO2, Total	EPA200.7	mg/L	26		0.5		4/26/2013	SM		
Sodium	EPA200.7	mg/L	46		0.5		4/26/2013	SM		
Specific Conductance (E.C)	SM2510B	umhos/cm	507		1	900	4/17/2013	HC		
Strontium, Total	EPA200.8	ug/L	220		5		4/25/2013	HC		
Sulfate	EPA300.0	mg/L	72		1	250	4/18/2013	RL		
Total Diss. Solids	SM2540C	mg/L	306		10	500	4/22/2013	HC		
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		4/24/2013	DH		
Total Organic Carbon	SM5310C	mg/L	1.0	E	0.20		4/26/2013	BSK		
Total Radium 226	EPA903.0	pCi/L	0.589 ± 0.385	Е		3	4/30/2013	FGL		
Trihalomethanes	EPA524.2	ug/L	29	Е		80	4/23/2013	BSK		
Uranium by ICP/MS	EPA200.8	ug/L	1		1	30	4/25/2013	HC		
Vanadium, Total	EPA200.8	ug/L	1		1		1	1000	4/25/2013	HC
Zinc, Total	EPA200.8	ug/L	Not Detected		10	5000	4/25/2013	HC		

Sample Comments:

H = Analyzed ouside of hold time

Report Approved by:

David Holland, Laboratory Director

PQL: Practical Quantitation Limit

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb)

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

D = Method deviates from standard method due to insufficient sample for MS/MSD

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 05/01/2013 16:08 **Received Date:** 04/19/2013 **Received Time:** 09:25

Lab Sample ID: A3D1766-01 **Sample Date:** 04/17/2013 13:00

Sample Type: Grab

Sampled by: Tom Lindberg

Matrix: Water

Sample Description: ASR-2 // 00040

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.0	0.20	mg/L	1	A304460	04/25/13	04/25/13	
Total Organic Carbon	SM 5310 C	1.5	0.20	mg/L	1	A304462	04/26/13	04/26/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	19	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Bromoform	EPA 524.2	1.6	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Chloroform	EPA 524.2	37	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Dibromochloromethane	EPA 524.2	9.8	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Surrogate: Bromofluorobenzene	EPA 524.2	94 %		Acceptable ra	nge: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		67	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	1.9	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A304443	04/25/13	04/27/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	4.0	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	106 %		Acceptable ra	nge: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		5.9	2.0	ug/L					

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 05/01/2013 16:08 **Received Date:** 04/19/2013 **Received Time:** 09:25

Lab Sample ID: A3D1766-02 **Sample Date:** 04/17/2013 14:00

Sample Type: Grab

Sampled by: Tom Lindberg

Matrix: Water

Sample Description: ASR-3 // 00041

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.0	0.20	mg/L	1	A304460	04/25/13	04/25/13	
Total Organic Carbon	SM 5310 C	1.2	0.20	mg/L	1	A304462	04/26/13	04/26/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	28	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Bromoform	EPA 524.2	1.7	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Chloroform	EPA 524.2	61	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Dibromochloromethane	EPA 524.2	14	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Surrogate: Bromofluorobenzene	EPA 524.2	95 %		Acceptable ra	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		100	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	·MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	3.5	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A304443	04/25/13	04/27/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	3.3	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	107 %		Acceptable ra	ange: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		6.8	2.0	ug/L					

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 05/01/2013 16:08 **Received Date:** 04/19/2013 **Received Time:** 09:25

Lab Sample ID: A3D1766-03 **Sample Date:** 04/17/2013 14:30

Sample Type: Grab

Sampled by: Tom Lindberg

Matrix: Water

Sample Description: SSMS (D) // 00042

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.93	0.20	mg/L	1	A304460	04/25/13	04/25/13	
Total Organic Carbon	SM 5310 C	1.3	0.20	mg/L	1	A304462	04/26/13	04/26/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
					iviuit				
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	22	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Bromoform	EPA 524.2	1.5	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Chloroform	EPA 524.2	44	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Dibromochloromethane	EPA 524.2	12	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Surrogate: Bromofluorobenzene	EPA 524.2	95 %		Acceptable ra	nge: 70-130 %	%			
*Total Trihalomethanes, EPA 524.2		80	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	3.7	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A304443	04/25/13	04/27/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	10	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	105 %		Acceptable ra	nge: 70-130 %	%			
Total Haloacetic Acids, EPA 552.3		14	2.0	ug/L					

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 05/01/2013 16:08 **Received Date:** 04/19/2013 **Received Time:** 09:25

Lab Sample ID: A3D1766-04 **Sample Date:** 04/17/2013 13:00

Sample Type: Grab

Sampled by: Tom Lindberg

Matrix: Water

Sample Description: MW-1 // 00043

General Chemistry

Ocheral Ohennishy									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.89	0.20	mg/L	1	A304460	04/25/13	04/25/13	
Total Organic Carbon	SM 5310 C	1.0	0.20	mg/L	1	A304462	04/26/13	04/26/13	
Organics									
Analyta	Method	Result	RL	Units	RL	Batch	Dranarad	Analyzad	Ougl
Analyte	Metriod	Result	RL .	Units	Mult	Баки	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	9.0	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Chloroform	EPA 524.2	17	0.50	ug/L	1	A304249	04/19/13	04/23/13	
Dibromochloromethane	EPA 524.2	2.7	0.50	ug/L		A304249	04/19/13	04/23/13	
Surrogate: Bromofluorobenzene	EPA 524.2	94 %		Acceptable ra	ange: 70-130 %	%			
*Total Trihalomethanes, EPA 524.2		29	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	<u>-MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A304443	04/25/13	04/27/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A304443	04/25/13	04/27/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	105 %		Acceptable ra	ange: 70-130 %	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

May 2, 2013 Lab ID : SP 1303985-001

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : April 17, 2013-13:00

Monterey, CA 93940 Sampled By : Tom Lindberg

Received On : April 22, 2013-10:00

Matrix : Water

Description : ASR-2

Project : Radiological Monitoring

Sample Result - Radio

Constituent	Result ± Error	MDA	Units MCL/AL		Sample Preparation		Sampl	e Analysis
	Result ± Effor	MDA	Cints	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	0.627 ± 1.23	1.64	pCi/L	15/5	900.0	04/25/13-09:24 2P1304523	900.0	04/29/13-09:00 2A1306157
Total Alpha Radium (226)	0.348 ± 0.323	0.439	pCi/L	3	903.0	04/29/13-09:00 2P1304606	903.0	04/30/13-10:20 2A1306260

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

May 2, 2013 Lab ID : SP 1303985-002

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : April 17, 2013-14:00

Monterey, CA 93940 Sampled By : Tom Lindberg

Received On : April 22, 2013-10:00

Matrix : Water

Description : ASR-3

Project : Radiological Monitoring

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis	
	Result ± Effor	MDA		WICE/TIE	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	2.74 ± 1.32	1.12	pCi/L	15/5	900.0	04/25/13-09:24 2P1304523	900.0	04/29/13-11:00 2A1306155
Total Alpha Radium (226)	0.000 ± 0.194	0.439	pCi/L	3	903.0	04/29/13-09:00 2P1304606	903.0	04/30/13-10:40 2A1306260

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

May 2, 2013 Lab ID : SP 1303985-003

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : April 17, 2013-14:30

Monterey, CA 93940 Sampled By : Tom Lindberg

Received On : April 22, 2013-10:00

Matrix : Water

Description : SSMS (D)

Project : Radiological Monitoring

Sample Result - Radio

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis	
	Result ± Effor	MDA		WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	5.58 ± 1.80	1.33	pCi/L	15/5	900.0	04/25/13-09:24 2P1304523	900.0	04/29/13-11:00 2A1306156
Total Alpha Radium (226)	0.099 ± 0.237	0.439	pCi/L	3	903.0	04/29/13-09:00 2P1304606	903.0	04/30/13-11:00 2A1306260

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

May 2, 2013 Lab ID : SP 1303985-004

Customer ID : 2-19144

Monterey Bay Analytical Services

4 Justin Court Sampled On : April 17, 2013-13:00

Monterey, CA 93940 Sampled By : Tom Lindberg

Received On : April 22, 2013-10:00

Matrix : Water

Description : MW-1

Project : Radiological Monitoring

Sample Result - Radio

Constituent	Result ± Error MDA Units MCL/AL		MCI /AI	Sample	Preparation	Sample Analysis		
	Result ± Effor	MDA	Cints	WICE/IXE	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	3.21 ± 1.39	1.17	pCi/L	15/5	900.0	04/25/13-09:24 2P1304523	900.0	04/29/13-10:00 2A1306157
Total Alpha Radium (226)	0.589 ± 0.385	0.439	pCi/L	3	903.0	04/29/13-09:00 2P1304606	903.0	04/30/13-11:20 2A1306260

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

"When Quality Cou	ents''	http://www.mccampbell.com / E-mail: main@mccampbell.com					
Monterey Bay Analytical	Client Project ID:	MPWMI	D	Date Sampled: 04/17/13			
4 Justin Court, Suite D				Date Received: 0	ate Received: 04/19/13		
rousin court, suite 2	Client Contact: Da	avid Holla	and	Date Extracted: 0	4/24/13		
Monterey, CA 93940	Client P.O.:			Date Analyzed: 0	4/24/13		
	Light	Gases*					
Analytical Method: RSK175 Lab ID Client ID		Matrix	M	ethane	ork Order: DF	1304600 Comments	
	IV					Comments	
1304600-001A ASR-2		W		0.50	1		
1304600-002A ASR-3		W		0.35	1	1	
1304600-003A SSMS (D)		W	(0.30	1		
1304600-004A MW-1		W	(0.24	1		
Reporting Limit for DF = 1; ND means not detecte reporting limit	d at or above the	W S		μg/L			
* water samples are reported in µg/L.		S		NA			
%SS = Percent Recovery of Surrogate Standard							
N/A = Not applicable to this analysis							
DF = Dilution Factor							

DHS ELAP Certification 1644 BB Analyst's Initial

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Wednesday, August 21, 2013

7/30/2013

DH

Page 1 of 2 Lab Number:

QC Ratio TDS/SEC

AB03653

Collection Date/Time: 7/24/2013 10:00 Sample Collector: LINDBERG T

Submittal Date/Time: 7/24/2013 13:00 Sample ID Coliform Designation:

Sample Description: ASR-2 Analyte Method Unit Result Qual **PQL** MCL Date Analyzed Analyst: Alkalinity, Total (as CaCO3) SM2320B 183 2 7/24/2013 DC mg/L Aluminum, Total EPA200.8 ug/L **Not Detected** 10 1000 8/2/2013 SM Ammonia-N SM4500NH3 D **Not Detected** 0.05 7/30/2013 TC mg/L Arsenic, Total EPA200.8 ug/L 10 8/2/2013 SM Barium, Total EPA200.8 98 10 1000 8/2/2013 SM ug/L Bicarbonate (as HCO3-) SM2320B 10 7/25/2013 DH 223 mg/L Boron EPA200.7 mg/L 0.06 0.05 7/31/2013 HC Bromide EPA300.0 0.1 7/25/2013 DC mg/L 0.2 7/31/2013 НС Calcium EPA200.7 62 0.5 mg/L Carbonate as CaCO3 SM2320B mg/L **Not Detected** 10 7/25/2013 DH Chloramines SM4500-CI G 0.05 7/24/2013 DΗ **Not Detected** mg/L DC Chloride EPA300.0 mg/L 1 250 7/25/2013 72 mg/L Dissolved Organic Carbon SM5310-C 0.90 Ε 8/1/2013 **BSK** EPA300.0 Fluoride mg/L 0.3 0.1 2.0 7/25/2013 DC Gross Alpha EPA900.0 pCi/L 2.52 ± 1.50 Ε 15 8/5/2013 **FGL** Not Detected E Haloacetic Acids EPA552 60 8/2/2013 **BSK** ug/L Iron EPA200.7 ug/L 221 10 300 7/31/2013 HC EPA200.7 ug/L 10 7/31/2013 HC Iron, Dissolved **Not Detected** 300 Kjehldahl Nitrogen SM4500-NH3 B, **Not Detected** 0.2 7/29/2013 TC mg/L Lithium EPA200.8 ug/L 15 1 8/2/2013 SM Magnesium EPA200.7 mg/L 21 0.5 7/31/2013 HC Manganese, Dissolved EPA200.7 ug/L **Not Detected** 10 50 7/31/2013 HC Manganese, Total EPA200.7 15 10 50 7/31/2013 HC ug/L Methane EPA174/175 0.87 0.1 7/31/2013 MCCAM Ε ug/L Molybdenum, Total EPA200.8 ug/L 6 1 1000 8/2/2013 SM Nickel, Total 8/2/2013 EPA200.8 ug/L **Not Detected** 10 100 SM Nitrate as NO3 EPA300.0 45 7/25/2013 DC mg/L 1 1 Nitrate as NO3-N EPA300.0 0.3 0.1 10 7/25/2013 DC mg/L Nitrate+Nitrite as N EPA300.0 0.1 7/25/2013 DC mg/L 0.3 Nitrite as NO2-N EPA300.0 mg/L **Not Detected** 0.1 1.0 7/25/2013 DC o-Phosphate-P EPA300.0 0.1 7/25/2013 DC mg/L 0.3 pH (Laboratory) SM4500-H+B pH (H) 7.4 7/24/2013 TC Phosphorus, Total **HACH 8190** 0.03 8/20/2013 SM mg/L 0.26 EPA200.7 0.1 7/31/2013 HC Potassium mg/L 3.7 QC Anion Sum x 100 Calculation % 99% 7/30/2013 DH QC Anion-Cation Balance DH Calculation % 0 8/1/2013 QC Cation Sum x 100 Calculation % 100% 8/1/2013 DH

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

0.60

Calculation

Lab Number: AB03653

Collection Date/Time: Sample Collector: LINDBERG T 7/24/2013 10:00

Sample ID Submittal Date/Time: 7/24/2013 13:00 Coliform Designation:

		Sample Description: ASR-2							
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:	
Selenium, Total	EPA200.8	ug/L	2		2	50	8/2/2013	SM	
Silica as SiO2, Total	EPA200.7	mg/L	29		0.5		7/31/2013	HC	
Sodium	EPA200.7	mg/L	63		0.5		7/31/2013	HC	
Specific Conductance (E.C)	SM2510B	umhos/cm	767		1	900	7/25/2013	DC	
Strontium, Total	EPA200.8	ug/L	352		5		8/2/2013	SM	
Sulfate	EPA300.0	mg/L	92		1	250	7/25/2013	DC	
Total Diss. Solids	SM2540C	mg/L	460		10	500	7/27/2013	MW	
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		7/30/2013	DH	
Total Organic Carbon	SM5310C	mg/L	0.71	E	0.20		7/31/2013	BSK	
Total Radium 226	EPA903.0	pCi/L	0.087 ± 0.170	E		3	8/7/2013	FGL	
Trihalomethanes	EPA524.2	ug/L	48	E		80	7/31/2013	BSK	
Uranium by ICP/MS	EPA200.8	ug/L	2		1	30	8/2/2013	SM	
Vanadium, Total	EPA200.8	ug/L	1		1	1000	8/2/2013	SM	
Zinc, Total	EPA200.8	ug/L	350		10	5000	8/2/2013	SM	

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 08/08/2013 14:28 Received Date: 07/26/2013 Received Time: 10:15

Lab Sample ID: A3G2372-01 **Sample Date:** 07/24/2013 10:00

Sample Type: Grab

Sampled by: Lindberg, T Matrix: Water

Sample Description: ASR-2 // 03653

General Chemistry

- Contorui Chomiloti y									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.90	0.20	mg/L	1	A308556	08/01/13	08/01/13	
Total Organic Carbon	SM 5310 C	0.71	0.20	mg/L	1	A308555	07/31/13	07/31/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
, many to				• • • • • • • • • • • • • • • • • • • •	iviuit	24(0).		7 11.01,7 200	
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	13	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Bromoform	EPA 524.2	0.87	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Chloroform	EPA 524.2	27	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Dibromochloromethane	EPA 524.2	6.8	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable ra	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		48	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A308624	08/01/13	08/02/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %		Acceptable ra	ange: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A3G2372 FINAL 08082013 1428

August 12, 2013 Lab ID : SP 1307717-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 24, 2013-10:00 4 Justin Court

Monterey, CA 93940 Sampled By : T. Lindberg

Received On : July 31, 2013-09:45

Matrix : Water

Description : ASR-2 **Project** : MPWMD

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	Result ± Effor	MDA			Method	Date/ID	Method	Date/ID	
Radio Chemistry ^P									
Gross Alpha	2.52 ± 1.50	1.55	pCi/L	15/5	900.0	08/01/13-08:00 2P1308691	900.0	08/05/13-09:00 2A1311392	
Total Alpha Radium (226)	0.087 ± 0.170	0.324	pCi/L	3	903.0	08/06/13-16:00 2P1308912	903.0	08/07/13-14:20 2A1311595	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Co	unts''	http://www.mccam	pbell.com / E-mail:	main@mc	campbell.co	m
Monterey Ba	y Analytical	Client Project ID:	MPWMD	Date Sample	ed: 07	//24/13	
4 Justin Cour	rt Suita D			Date Receiv	ed: 07	7/26/13	
4 Justili Coul	t, Suite D	Client Contact: D	avid Holland	Date Extract	ed 07	7/31/13	
Monterey, Ca	A 93940	Client P.O.:		Date Analyz	ed 07	7/31/13	
Extraction method:	RSK175		Gases* ethods: RSK175		W	ork Order:	1307847
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments
001A	ASR-2	W	0.87		1	N/A	
	eporting Limit for DF =1; D means not detected at or	W	0.1			μg/L	
	above the reporting limit	S	NA			NA	
	are reported in µg/L.						
	ecovery of Surrogate Standard						
	able to this analysis						
DF = Dilution Fa	ctor						

CDPH ELAP 1644 ♦ NELAP 12283CA

GM Analyst's Initial

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

LLAF Gertilication Number, 250

Wednesday, August 21, 2013

Page 1 of 2

Lab Number: AB03715

Collection Date/Time: 7/24/2013 Submittal Date/Time: 7/24/2013

3 16:00 3 16:25 Sample Collector:

LINDBERG T

Sample ID Coliform Designation:

		Sample	Description: MW-1				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	140	2		7/24/2013	DC
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	8/2/2013	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/30/2013	TC
Arsenic, Total	EPA200.8	ug/L	2	1	10	8/2/2013	SM
Barium, Total	EPA200.8	ug/L	23	10	1000	8/2/2013	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	171	10		7/25/2013	DH
Boron	EPA200.7	mg/L	Not Detected	0.05		7/31/2013	HC
Bromide	EPA300.0	mg/L	Not Detected	0.1		7/26/2013	DC
Calcium	EPA200.7	mg/L	45	0.5		7/31/2013	HC
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		7/25/2013	DH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		7/24/2013	DH
Chloride	EPA300.0	mg/L	30	1	250	7/26/2013	DC
Dissolved Organic Carbon	SM5310-C	mg/L	0.78 E			7/31/2013	BSK
Fluoride	EPA300.0	mg/L	0.3	0.1	2.0	7/26/2013	DC
Gross Alpha	EPA900.0	pCi/L	2.81 ± 1.34		15	8/5/2013	FGL
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	8/2/2013	BSK
Iron	EPA200.7	ug/L	Not Detected	10	300	7/31/2013	НС
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	7/31/2013	НС
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.2		7/29/2013	TC
Lithium	EPA200.8	ug/L	8	1		8/2/2013	SM
Magnesium	EPA200.7	mg/L	10	0.5		7/31/2013	НС
Manganese, Dissolved	EPA200.7	ug/L	Not Detected	10	50	7/31/2013	НС
Manganese, Total	EPA200.7	ug/L	Not Detected	10	50	7/31/2013	НС
Methane	EPA174/175	ug/L	0.14 E	0.1		7/31/2013	MCCAM
Molybdenum, Total	EPA200.8	ug/L	6	1	1000	8/2/2013	SM
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	8/2/2013	SM
Nitrate as NO3	EPA300.0	mg/L	1	1	45	7/26/2013	DC
Nitrate as NO3-N	EPA300.0	mg/L	0.2	0.1	10	7/26/2013	DC
Nitrate+Nitrite as N	EPA300.0	mg/L	0.2	0.1		7/26/2013	DC
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	7/26/2013	DC
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.1		7/26/2013	DC
pH (Laboratory)	SM4500-H+B	pH (H)	7.4			7/24/2013	TC
Phosphorus, Total	HACH 8190	mg/L	0.04	0.03		8/20/2013	SM
Potassium	EPA200.7	mg/L	2.8	0.1		7/31/2013	HC
QC Anion Sum x 100	Calculation	%	99%			7/30/2013	DH
QC Anion-Cation Balance	Calculation	%	-1			8/1/2013	DH
QC Cation Sum x 100	Calculation	%	96%			8/1/2013	DH
QC Ratio TDS/SEC	Calculation	-	0.63			7/30/2013	DH

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Lab Number: AB03715

Collection Date/Time: 7/24/2013 Sample Collector: LINDBERG T 16:00

Sample ID Coliform Designation: Submittal Date/Time: 7/24/2013 16:25

		Sample D	escription:	MW-1				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:
Selenium, Total	EPA200.8	ug/L	2		2	50	8/2/2013	SM
Silica as SiO2, Total	EPA200.7	mg/L	25		0.5		7/31/2013	HC
Sodium	EPA200.7	mg/L	42		0.5		7/31/2013	HC
Specific Conductance (E.C)	SM2510B	umhos/cm	516		1	900	7/25/2013	DC
Strontium, Total	EPA200.8	ug/L	247		5		8/2/2013	SM
Sulfate	EPA300.0	mg/L	69		1	250	7/26/2013	DC
Total Diss. Solids	SM2540C	mg/L	323		10	500	7/27/2013	MW
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		7/30/2013	DH
Total Organic Carbon	SM5310C	mg/L	0.59	E	0.20		7/31/2013	BSK
Total Radium 226	EPA903.0	pCi/L	0.218 ± 0.226	E		3	8/7/2013	FGL
Trihalomethanes	EPA524.2	ug/L	27	Е		80	7/31/2013	BSK
Uranium by ICP/MS	EPA200.8	ug/L	1		1	30	8/2/2013	SM
Vanadium, Total	EPA200.8	ug/L	2		1	1000	8/2/2013	SM
Zinc, Total	EPA200.8	ug/L	Not Detected		10	5000	8/2/2013	SM

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 08/08/2013 14:31
Received Date: 07/26/2013

Received Time: 10:15

Lab Sample ID: A3G2378-01 **Sample Date:** 07/24/2013 16:00

Sample Type: Grab

Sampled by: Lindberg, T Matrix: Water

Sample Description: MW-1 // 03715

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.78	0.20	mg/L	1	A308556	07/31/13	07/31/13	
Total Organic Carbon	SM 5310 C	0.59	0.20	mg/L	1	A308555	07/31/13	07/31/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	4.4	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Chloroform	EPA 524.2	21	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Dibromochloromethane	EPA 524.2	1.3	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Surrogate: Bromofluorobenzene	EPA 524.2	97 %		Acceptable ra	nge: 70-130	%			
Total Trihalomethanes, EPA 524.2		27	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A308624	08/01/13	08/02/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	92 %		Acceptable ra	nge: 70-130	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ua/L					

A3G2378 FINAL 08082013 1431

Analytical Chemists

August 14, 2013 Lab ID : SP 1307716-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 24, 2013-16:00 4 Justin Court

Monterey, CA 93940 Sampled By : T. Lindberg

Received On : July 31, 2013-09:45

Matrix : Water

Description : MW-1 **Project** : MPWMD

Sample Result - Radio

Constituent	Result ± Error MDA U		Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^P								
Gross Alpha	2.81 ± 1.34	1.20	pCi/L	15/5	900.0	08/01/13-08:00 2P1308691	900.0	08/05/13-08:00 2A1311387
Total Alpha Radium (226)	0.218 ± 0.226	0.324	pCi/L	3	903.0	08/06/13-16:00 2P1308912	903.0	08/07/13-14:00 2A1311595

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Co	unts"	http://www.mccam	pbell.com / E-mail:			
Monterey Ba	y Analytical	Client Project ID:	MPWMD	Date Sample	ed: 07	7/24/13	
4 Justin Cour	t Suite D			Date Receiv	ed: 07	7/26/13	
i sustifi Cour	i, saite B	Client Contact: Da	avid Holland	Date Extract	ted 07	//31/13	
Monterey, Ca	A 93940	Client P.O.:		Date Analyz	ed 07	7/31/13	
Extraction method:	RSK175	_	Gases* ethods: RSK175		W	ork Order:	1307849
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments
001A	MW-1	W	0.14		1	N/A	
R	eporting Limit for DF =1;	W	0.1			μg/L	
	D means not detected at or above the reporting limit	S	NA			NA	
* water samples a	are reported in μg/L.						
%SS = Percent R	ecovery of Surrogate Standard						
N/A = Not applic	able to this analysis						
DF = Dilution Fa	ctor						
				1.0			

CDPH ELAP 1644 ♦ NELAP 12283CA

GM Analyst's Initial

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2 Wednesday

Wednesday, August 21, 2013

.,

Lab Number: AB03724

Collection Date/Time: 7/25/2013 Submittal Date/Time: 7/25/2013

10:20 11:45 Sample Collector:

LEAR J

Sample ID Coliform Designation:

		Sample	Description: ASR 3				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	190	2		7/29/2013	DC
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	8/2/2013	SM
Ammonia-N	SM4500NH3 D	mg/L	Not Detected	0.05		7/30/2013	TC
Arsenic, Total	EPA200.8	ug/L	7	1	10	8/2/2013	SM
Barium, Total	EPA200.8	ug/L	85	10	1000	8/2/2013	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	232	10		7/29/2013	DH
Boron	EPA200.7	mg/L	0.06	0.05		7/31/2013	HC
Bromide	EPA300.0	mg/L	0.2	0.1		7/26/2013	DC
Calcium	EPA200.7	mg/L	53	0.5		7/31/2013	HC
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		7/29/2013	DH
Chloramines	SM4500-Cl G	mg/L	Not Detected	0.05		7/25/2013	DH
Chloride	EPA300.0	mg/L	67	1	250	7/26/2013	DC
Dissolved Organic Carbon	SM5310-C	mg/L	0.86 E			7/31/2013	BSK
Fluoride	EPA300.0	mg/L	0.4	0.1	2.0	7/26/2013	DC
Gross Alpha	EPA900.0	pCi/L	3.83 ± 1.71 E		15	8/5/2013	FGL
Haloacetic Acids	EPA552	ug/L	13 E		60	8/2/2013	BSK
Iron	EPA200.7	ug/L	219	10	300	7/31/2013	HC
Iron, Dissolved	EPA200.7	ug/L	15	10	300	7/31/2013	HC
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.2		7/29/2013	TC
Lithium	EPA200.8	ug/L	21	1		8/2/2013	SM
Magnesium	EPA200.7	mg/L	17	0.5		7/31/2013	HC
Manganese, Dissolved	EPA200.7	ug/L	19	10	50	7/31/2013	HC
Manganese, Total	EPA200.7	ug/L	20	10	50	7/31/2013	HC
Methane	EPA174/175	ug/L	0.54 E	0.1		7/31/2013	MCCAM
Molybdenum, Total	EPA200.8	ug/L	20	1	1000	8/2/2013	SM
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	8/2/2013	SM
Nitrate as NO3	EPA300.0	mg/L	2	1	45	7/26/2013	DC
Nitrate as NO3-N	EPA300.0	mg/L	0.3	0.1	10	7/26/2013	DC
Nitrate+Nitrite as N	EPA300.0	mg/L	0.3	0.1		7/26/2013	DC
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	7/26/2013	DC
o-Phosphate-P	EPA300.0	mg/L	0.2	0.1		7/26/2013	DC
pH (Laboratory)	SM4500-H+B	pH (H)	7.3			7/25/2013	DC
Phosphorus, Total	HACH 8190	mg/L	0.18	0.03		8/20/2013	SM
Potassium	EPA200.7	mg/L	3.8	0.1		7/31/2013	HC
QC Anion Sum x 100	Calculation	%	99%			7/30/2013	DH
QC Anion-Cation Balance	Calculation	%	-3			8/1/2013	DH
QC Cation Sum x 100	Calculation	%	93%			8/1/2013	DH
QC Ratio TDS/SEC	Calculation		0.59			7/30/2013	DH

mg/L: Milligrams per liter ug/L: Micrograms per liter PQL: Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Lab Number: AB03724

Collection Date/Time: 7/25/2013 Sample Collector: LEAR J 10:20

Sample ID Coliform Designation: Submittal Date/Time: 7/25/2013 11:45

		Sample D	escription:	ption: ASR 3					
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	Analyst:	
Selenium, Total	EPA200.8	ug/L	3		2	50	8/2/2013	SM	
Silica as SiO2, Total	EPA200.7	mg/L	31		0.5		7/31/2013	HC	
Sodium	EPA200.7	mg/L	60		0.5		7/31/2013	HC	
Specific Conductance (E.C)	SM2510B	umhos/cm	723		1	900	7/25/2013	DC	
Strontium, Total	EPA200.8	ug/L	307		5		8/2/2013	SM	
Sulfate	EPA300.0	mg/L	70		1	250	7/26/2013	DC	
Total Diss. Solids	SM2540C	mg/L	428		10	500	7/27/2013	MW	
Total Nitrogen	Calculation	mg/L	Not Detected	d	0.5		7/30/2013	DH	
Total Organic Carbon	SM5310C	mg/L	0.65	Е	0.20		7/31/2013	BSK	
Total Radium 226	EPA903.0	pCi/L	0.306 ± 0.257	7 E		3	8/7/2013	FGL	
Trihalomethanes	EPA524.2	ug/L	50	Е		80	7/31/2013	BSK	
Uranium by ICP/MS	EPA200.8	ug/L	5		1	30	8/2/2013	SM	
Vanadium, Total	EPA200.8	ug/L	2		1	1000	8/2/2013	SM	
Zinc, Total	EPA200.8	ug/L	152		10	5000	8/2/2013	SM	
0 10 1									

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Report Issue Date:** 08/08/2013 14:25 **Received Date:** 07/26/2013

Received Time: 10:15

Lab Sample ID: A3G2371-01 **Sample Date:** 07/25/2013 10:20

Sample Type: Grab

Sampled by: Lear, J. Matrix: Water

Sample Description: ASR 3 // 03724

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.86	0.20	mg/L	1	A308556	07/31/13	07/31/13	
Total Organic Carbon	SM 5310 C	0.65	0.20	mg/L	1	A308555	07/31/13	07/31/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Tuibalamathanaa hy CC 850								•	
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	13	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Bromoform	EPA 524.2	1.2	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Chloroform	EPA 524.2	27	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Dibromochloromethane	EPA 524.2	8.8	0.50	ug/L	1	A308531	07/31/13	07/31/13	
Surrogate: Bromofluorobenzene	EPA 524.2	107 %		Acceptable range:	70-130	%			
*Total Trihalomethanes, EPA 524.2		50	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	4.3	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A308624	08/01/13	08/02/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	8.4	1.0	ug/L	1	A308624	08/01/13	08/02/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	101 %		Acceptable range:	70-130	%			
Total Haloacetic Acids, EPA 552.3		13	2.0	ug/L					

A3G2371 FINAL 08082013 1425

Analytical Chemists

August 14, 2013 Lab ID : SP 1307715-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 25, 2013-10:20 4 Justin Court

Sampled By : Jonathan Lear Monterey, CA 93940

Received On : July 31, 2013-09:45

Matrix : Water

Description : ASR3 **Project** : MPWMD

Sample Result - Radio

Constituent	onstituent Result ± Error		Units	Units MCL/AL Sample Preparation		Preparation	Sample Analysis		
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID	
Radio Chemistry ^P									
Gross Alpha	3.83 ± 1.71	1.38	pCi/L	15/5	900.0	08/01/13-08:00 2P1308691	900.0	08/05/13-12:00 2A1311389	
Total Alpha Radium (226)	0.306 ± 0.257	0.324	pCi/L	3	903.0	08/06/13-16:00 2P1308912	903.0	08/07/13-13:40 2A1311595	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Co	unts"		pbell.com / E-mail:			
Monterey Ba	y Analytical	Client Project ID:	MPWMD	Date Sample	ed: 07	7/24/13	
4 Justin Cour	t Suite D			Date Receiv	ed: 07	7/26/13	
4 Justin Cour	t, Suite D	Client Contact: D	avid Holland	Date Extrac	ted 07	7/31/13	
Monterey, C.	A 93940	Client P.O.:		Date Analyz	zed 07	7/31/13	
Extraction method:	RSK175	_	Gases* ethods: RSK175		Work Order: 1307848		
Lab ID	Client ID	Matrix	Methane		DF	% SS	Comments
001A	ASR-3	W	0.54		1	N/A	
					<u> </u>		
R	eporting Limit for DF =1; D means not detected at or	W	0.1			μg/L	
	above the reporting limit	S	NA			NA	
* water samples a	are reported in μg/L.						
%SS = Percent R	ecovery of Surrogate Standard						
N/A = Not applic	able to this analysis						
DF = Dilution Fa	ctor						

CDPH ELAP 1644 ♦ NELAP 12283CA

GM Analyst's Initial

Angela Rydelius, Lab Manager

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2 Friday, September 13, 2013

Lab Number: AB03869

Collection Date/Time: 7/30/2013 13:00 Sample Collector: LEAR, J

Submittal Date/Time: 7/30/2013 13:37 Sample ID Coliform Designation:

		Sample D	escription: PCAE(D)				
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed	Analyst:
Alkalinity, Total (as CaCO3)	SM2320B	mg/L	187	2		8/2/2013	DC
Aluminum, Total	EPA200.8	ug/L	Not Detected	50	1000	8/2/2013	SM
Ammonia-N	SM4500NH3 D	mg/L	0.06	0.05		8/22/2013	DC
Arsenic, Total	EPA200.8	ug/L	6	1	10	8/2/2013	SM
Barium, Total	EPA200.8	ug/L	67	10	1000	8/2/2013	SM
Bicarbonate (as HCO3-)	SM2320B	mg/L	228	10		8/2/2013	DH
Boron	EPA200.7	mg/L	0.11	0.05		7/31/2013	HC
Bromide	EPA300.0	mg/L	0.2	0.1		8/6/2013	DC
Calcium	EPA200.7	mg/L	49	0.5		7/31/2013	HC
Carbonate as CaCO3	SM2320B	mg/L	Not Detected	10		8/2/2013	DH
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		7/30/2013	TC
Chloride	EPA300.0	mg/L	99	1	250	8/6/2013	DC
Dissolved Organic Carbon	SM5310-C	mg/L	0.24 E			8/6/2013	BSK
Fluoride	EPA300.0	mg/L	0.4	0.1	2.0	8/6/2013	DC
Gross Alpha	EPA900.0	pCi/L	0.783 ± 1.38 E		15	8/16/2013	FGL
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	8/3/2013	BSK
Iron	EPA200.7	ug/L	27	10	300	7/31/2013	HC
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	7/31/2013	HC
Kjehldahl Nitrogen	SM4500-NH3 B,	mg/L	Not Detected	0.2		8/5/2013	TC
Lithium	EPA200.8	ug/L	25	1		8/2/2013	SM
Magnesium	EPA200.7	mg/L	10	0.5		7/31/2013	HC
Manganese, Dissolved	EPA200.7	ug/L	119	10	50	7/31/2013	HC
Manganese, Total	EPA200.7	ug/L	122	10	50	7/31/2013	HC
Methane	EPA174/175	ug/L	0.79 E	0.1		8/14/2013	BSK
Molybdenum, Total	EPA200.8	ug/L	11	1	1000	8/2/2013	SM
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	8/2/2013	SM
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	7/31/2013	DC
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.1	10	7/31/2013	DC
Nitrate+Nitrite as N	EPA300.0	mg/L	Not Detected	0.1		7/31/2013	DC
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.1	1.0	7/31/2013	DC
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.1		7/31/2013	DC
pH (Laboratory)	SM4500-H+B	pH (H)	7.6			7/30/2013	TC
Phosphorus, Total	HACH 8190	mg/L	Not Detected	0.03		8/20/2013	SM
Potassium	EPA200.7	mg/L	3.8	0.1		7/31/2013	НС
QC Anion Sum x 100	Calculation	%	97%			8/6/2013	DH
QC Anion-Cation Balance	Calculation	%	0			8/6/2013	DH
QC Cation Sum x 100	Calculation	%	97%			8/1/2013	DH
QC Ratio TDS/SEC	Calculation		0.59			8/4/2013	DH

Lab Number: AB03869

Collection Date/Time: 7/30/2013 13:00 Sample Collector: LEAR, J

Sample ID Coliform Designation: Submittal Date/Time: 7/30/2013 13:37

		Sample De	scription: PCA	E(D)				
Analyte	Method	Unit	Result C	Qual	PQL	MCL	Date Analyzed	Analyst:
Selenium, Total	EPA200.8	ug/L	Not Detected		2	50	8/2/2013	SM
Silica as SiO2, Total	EPA200.7	mg/L	45		0.5		7/31/2013	HC
Sodium	EPA200.7	mg/L	87		0.5		7/31/2013	HC
Specific Conductance (E.C)	SM2510B	umhos/cm	740		1	900	7/31/2013	TC
Strontium, Total	EPA200.8	ug/L	270		5		8/2/2013	SM
Sulfate	EPA300.0	mg/L	31		1	250	8/6/2013	DC
Total Diss. Solids	SM2540C	mg/L	434		10	500	7/31/2013	MW
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		8/5/2013	DH
Total Organic Carbon	SM5310C	mg/L	Not Detected E		0.20		8/6/2013	BSK
Total Radium 226	EPA903.0	pCi/L	0.180 ± 0.306 E	Ē		3	8/15/2013	FGL
Trihalomethanes	EPA524.2	ug/L	Not Detected E			80	8/5/2013	BSK
Uranium by ICP/MS	EPA200.8	ug/L	Not Detected		1	30	8/2/2013	SM
Vanadium, Total	EPA200.8	ug/L	1		1	1000	8/2/2013	SM
Zinc, Total	EPA200.8	ug/L	Not Detected	·	50	5000	8/2/2013	SM

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 Report Issue Date: 08/15/2013 12:39
Received Date: 08/02/2013

Received Time: 09:35

Lab Sample ID: A3H0111-01

Sample Date: 07/30/2013 13:00

Sample Type: Grab

Sampled by: Lear, J. Matrix: Water

Sample Description: PCAE (D) // 03869

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.24	0.20	mg/L	1	A308835	08/06/13	08/06/13	
Total Organic Carbon	SM 5310 C	ND	0.20	mg/L	1	A308837	08/06/13	08/06/13	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Tribalamethanea by CC MC					Widit		<u> </u>	•	
Trihalomethanes by GC-MS				_					
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A308734	08/05/13	08/05/13	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A308734	08/05/13	08/05/13	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A308734	08/05/13	08/05/13	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A308734	08/05/13	08/05/13	
Surrogate: Bromofluorobenzene	EPA 524.2	103 %		Acceptable ra	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC	:-MS								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A308685	08/02/13	08/03/13	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A308685	08/02/13	08/03/13	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A308685	08/02/13	08/03/13	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A308685	08/02/13	08/03/13	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A308685	08/02/13	08/03/13	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %		Acceptable ra	ange: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A3H0111 FINAL 08152013 1239

McCampbell "When Qua	Analytical, Inc	Toll Free	Willow Pass Read, Pittsburg, CA Telephone: (877) 252-9262 / Fax .mccampbell.com / E-mail: main.	: (925) 252-9269
BSK Analytical Laboratories	Client Project I	D: A3H0111	Date Sampled:	07/30/13
1414 Stanislaus Street			Date Received:	08/07/13
	Client Contact:	John Montierth	Date Extracted:	08/14/13
Fresno, CA 93706	Client P.O.:		Date Analyzed:	08/14/13
Extraction Method: RSK175		ht Gases* ethod: RSK175	· /	Work Order: 1
Lab ID	1308205-001A			
Client ID	A3H0111-01	! 		Reporting L DF =
Matrix	w			

Reporting Limit for DF =1 DF 1 S W Compound Concentration ug/kg $\mu g/L$ Ethane ND NA0.2 Ethene ND NA 0.2 Methane 0.79 NA 0.1 Surrogate Recoveries (%) %SS: N/A Comments

_			
*	water samples are reported	in	ug/L

 $N/\Lambda = Not applicable to this analysis$

DF = Dilution Factor

Work Order: 1308205

[%]SS = Percent Recovery of Surrogate Standard

Analytical Chemists

August 29, 2013 Lab ID : SP 1308228-001

Customer ID : 2-19144

Monterey Bay Analytical Services

Sampled On : July 30, 2013-13:00 4 Justin Court

: Jonathan Lear Monterey, CA 93940 Sampled By

Received On : August 9, 2013-11:00

Matrix : Potable Water

Description : PCAE (D)

Project : PCAE (D) MBAS#03869

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent					Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Gross Alpha	0.783 ± 1.38	1.83	pCi/L	15/5	900.0	08/15/13-09:00 2P1309291	900.0	08/16/13-16:30 2A1312578
Total Alpha Radium (226)	0.180 ± 0.306	0.405	pCi/L	3	903.0	08/13/13-17:00 2P1309220	903.0	08/15/13-08:00 2A1311893

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.