

SUMMARY OF OPERATIONS

MONTEREY PENINSULA ASR PROJECT

WATER YEAR 2012

SEPTEMBER 2013

September 13, 2013 Project No. 06-0028

Monterey Peninsula Water Management District Post Office Box 85 Monterey, California 93942-0085

Attention: Mr. Joe Oliver, Water Resources Manager

Subject: Monterey Peninsula ASR Project; Water Year 2012 Summary of Operations Report

Dear Joe:

We are transmitting five copies and one digital image (PDF) of the subject report documenting operations of the Monterey Peninsula ASR Project during Water Year 2012 (WY 2012). As you are aware, WY 2012 was a Dry Water Year on the on the Monterey Peninsula. WY 2012 was also the first year that the Seaside Middle School ASR-3 (SMS ASR-3) was operational and injection occurred under SWRCB Permit 20808C (Phase 2 ASR Project). Due to the dry hydrologic conditions during WY 2012, a relatively limited volume of 131 acre-feet (af) of water was able to be diverted from the Carmel River system for recharge in the Seaside Groundwater Basin (SGB) via the SM ASR-2 and SMS ASR-3 wells. This contrasts with the over 1,100 af injected in each of the previous two water years. To date, a total of approximately 3,880 af have been injected into the SBG since the ASR project was initiated in 2001.

We appreciate the opportunity to provide ongoing assistance to the District on this important community water-supply project. Please contact us with any questions.

Sincerely,

PUEBLO WATER RESOURCES, INC.

Robert C. Marks, P.G., C.Hg. Principal Hydrogeologist

Stephen P. Tanner, P.E. Principal Engineer

Copies submitted:

5 hard 1 digital (PDF)

TABLE OF CONTENTS

Page

INTRODUCTION	1
GENERAL STATEMENT BACKGROUND PURPOSE AND SCOPE	1 1 2
FINDINGS	3
WY 2012 ASR OPERATIONS	3 3 4 6 7 8 8 10 14 16 18 18 18 27 27 28 28
CONCLUSIONS	29
RECOMMENDATIONS	30
CLOSURE	32
REFERENCES	33

TABLES

1	WY 2012 Injection Operations Summary - SM ASR-2	4
2	WY 2012 Injection Operations Summary - SMS ASR-3	4
3	Variable Rate Injection Test Results - SMS ASR-3	6
4	Injection Performance Summary - SM ASR-1	8
5	Injection Performance Summary - SM ASR-2	10
6	Pumping Performance Summary - SM ASR-1	11
7	Pumping Performance Summary - SM ASR-2	12
8	Pumping Performance Summary - SMS ASR-3	13

TABLE OF CONTENTS (Continued)

9	Residual Plugging Summary - SM ASR-2	15
10	Residual Plugging Summary - SMS ASR-3	15
11	WY 2012 Aquifer Response Summary	17
12	Percent Injectate at Monitor Wells During WY 2012	19
13	Summary of WY 2012 Water-Quality Data - Injectate	20
14	Summary of WY 2012 Water-Quality Data - SM ASR-1	21
15	Summary of WY 2012 Water-Quality Data - SM ASR-2	22
16	Summary of WY 2012 Water-Quality Data - SMS ASR-3	23
17	Summary of WY 2012 Water-Quality Data - SM MW-1	24
18	Summary of WY 2012 Water-Quality Data – SMS Deep	25
19	Summary of WY 2012 Water-Quality Data - Off-Site MWs	26

FIGURES

Site Location Map	1
SM ASR-1 As-Built Schematic	2
SM ASR-2 As-Built Schematic	3
SMS ASR-3 As-Built Schematic	4
Summary of ASR Operations (WY 2001 – WY 2012)	5
SM ASR-1 Water-Level Data	6
SM ASR-2 Water-Level Data	7
SMS ASR-3 Water-Level Data	8
SM ASR-2 Water-Level Data – Injection Season	9
SMS ASR-3 Water-Level Data – Injection Season	10
SMS ASR-3 Water-Level Data – Variable Rate Injection Test	11
SMS Water-Level Data	12
SM MW-1 Water-Level Data	13
Paralta Test Water-Level Data	14
Ord Terrace Water-Level Data	15
FO-7 Water Level-Data	16
PCA-East Water-Level Data	17
FO-8 Water Level-Data	18
SM ASR-1 Disinfection By-Products Parameters	19
SM ASR-2 Disinfection By-Products Parameters	20
SMS ASR-3 Disinfection By-Products Parameters	21
SM MW-1 Disinfection By-Products Parameters	22
SMS Deep Disinfection By-Products Parameters	23

APPENDICES

Field Data Sheets	Α
Water Quality Laboratory Reports	В

INTRODUCTION

GENERAL STATEMENT

Presented in this report is a summary of operations of the Monterey Peninsula Aquifer Storage and Recovery (ASR) Project during Water Year 2012 (WY 2012)¹. During WY 2012, approximately 131 acre-feet (af) of excess flows were diverted from the Carmel River system for recharge, storage, and subsequent recovery in the Seaside Groundwater Basin (SGB). This report presents a summary of the project operations during WY 2012, an assessment of ASR well performance, aquifer response and water-quality data, and provides recommendations for future operation of the project.

BACKGROUND

The Monterey Peninsula ASR Project is cooperatively implemented by the Monterey Peninsula Water Management District (MPWMD or District) and California American Water (CAW) and involves the diversion of excess winter and spring time flows from the Carmel River system for recharge and storage in the Seaside Groundwater Basin (SGB). The excess water is captured by CAW wells in the Carmel Valley during periods when flows in the Carmel River exceed fisheries bypass flow requirements, treated to potable drinking water standards, and then conveyed through CAW's distribution system to ASR facilities in the SGB. Recharge is accomplished via injection of these excess flows into specially designed ASR wells drilled in the SGB. The locations of the ASR wells and associated monitoring wells in the SGB are shown on **Figure 1**. The recharged water is temporarily stored underground utilizing the available storage space within the aquifer system. During periods of high demand, the same ASR wells and/or other existing CAW production wells in the SGB are used to recover the previously recharged water, which in turn allows for reduced extractions from the Carmel River system during seasonal dry periods.

The District and CAW have been cooperatively developing an ASR project on the Monterey Peninsula since 1996. These efforts have evolved over time from the performance of various technical feasibility investigations, leading to the construction and testing of pilot- and then full-scale ASR test wells to demonstrate the viability and operational parameters for ASR wells in the SGB. Based on the success of the ASR demonstration testing program, MPWMD and CAW are in the process of implementing a full-scale permanent ASR Project.

Water Project 1 (a.k.a. Phase 1 ASR Project) includes two ASR wells (SM ASR-1 and SM ASR-2) located at the Santa Margarita ASR Facility at 1910 General Jim Moore Blvd. in Seaside. Water Project 1 is capable of recharging up to the State Water Resources Control Board (SWRCB) water right² maximum annual diversion limit of 2,426 acre-feet per year (afy) at a combined injection rate of approximately 3,000 gallons per minute ([gpm] maximum diversion

¹ Water Year 2012 is the period of October 1, 2011 through September 30, 2012.

² SWRCB water right 20808A for the Phase 1 ASR Project is held jointly by MPWMD and CAW.

rate of 6.7 cubic feet per second [cfs]), with an average annual yield of approximately 920 afy. SM ASR-1 is designed for an injection capacity of 1,000 to 1,250 gpm and SM ASR-2 is designed for an injection capacity of 1,500 to 1,750 gpm. As-built schematics of SM ASR-1 and SM ASR-2 are presented on **Figures 2 and 3**, respectively.

Water Project 2 (Phase 2 ASR Project) includes two ASR wells (SMS ASR-3 and SMS ASR-4) located at the Seaside Middle School ASR Facility. Water Project 2 is designed to be capable of recharging up to SWRCB water right³ maximum annual diversion limit of 2,900 afy at a combined injection rate of approximately 3,600 gpm (maximum diversion rate of 8.0 cfs), with an average annual yield of approximately 1,000 afy. SMS ASR-3 and SMS ASR-4 are designed for injection capacities of 1,500 to 1,750 gpm each. SMS ASR-3 was constructed in 2010, and WY 2012 was the first time injection occurred at this well. An as-built schematic of SMS ASR-3 is presented on **Figure 4**. SMS ASR-4 was recently constructed during the summer/fall of 2012 and is planned to be operational during WY 2013.

A graphical summary of historical ASR operations in the SGB is shown on **Figure 5**. Shown are the annual injection and recovery volumes since the inception of injection operations at the Santa Margarita ASR Facility in WY 2001 through the current period of WY 2012. Also presented is a delineation of the various phases of project implementation, starting with the Santa Margarita Test Injection Well (SMTIW) in 2001, which became SM ASR-1 as the project transitioned from a testing program to a permanent project in 2006 (Phase 1 ASR Project), through construction and operation of the second well (SM ASR-2) at the facility in 2010. As shown, having the Santa Margarita Facility in full operation with two ASR wells injecting simultaneously in since 2010 (combined with above normal rainfall and Carmel River flows during WY 2010 and WY 2011) resulted in significant increases in the volume injected annually. As the two additional Water Project 2 ASR wells come on line in full, commensurate increases in annual injection volumes are expected to occur (depending on hydrologic conditions in any given year).

PURPOSE AND SCOPE

The overall purpose of the ongoing ASR program is to recharge the SGB with excess treated Carmel River system water when it is available during wet periods for storage and later extraction (recovery) during dry periods. ASR benefits the resources of both systems by raising water levels in the SGB during the recharge and storage periods and reducing extractions from the Carmel River System during dry periods.

The scope of the ongoing data collection, analysis, and reporting program for the ASR program can be categorized into issues generally associated with:

- 1) ASR well hydraulics and performance;
- 2) Aquifer response to injection;

³ The SWRCB water right 20808C for the Phase 2 ASR Project is held jointly by MPWMD and CAW.

- 3) Movement and dispersion of injected waters within the aquifer, and;
- 4) Water-quality issues associated with geochemical interaction and mixing of injected and native groundwaters.

The ongoing data collection and reporting program is intended to monitor and track ASR well performance and aquifer response to injection (both hydraulic and water quality) and to comply with the requirements of the Central Coast Regional Water Quality Control Board (RWQCB) for submitting annual technical reports for the project pursuant to Section 13267 of the California Water Code⁴ and the existing General Waiver for Specific Types of Discharges (Resolution R3-2008-0010). A summary of the findings developed from the operation of the Monterey Peninsula ASR Project during WY 2012 is presented below.

FINDINGS

WY 2012 ASR OPERATIONS

Recharge operations were performed during WY 2012 during the period of March 28 through April 23, 2012. WY 2012 was classified as a Dry Water Year⁵ on the Carmel River and a relatively limited total volume of approximately 131 acre-feet (af) of excess Carmel River system water was diverted by CAW for recharge in the SGB. The recharge water was injected at both SM ASR-2 and SMS ASR-3 (no injection occurred at SM ASR-1) into the Santa Margarita Sandstone aquifer of the SGB at combined average injection rates ranging from approximately 1,650 to 3,050 gpm (approximately 7.3 to 13.5 acre-feet per day [afd]).

General Recharge Procedures

The ASR recharge source water is potable (treated) water provided from the CAW distribution system. The water is currently diverted by various production well sources in Carmel Valley and (after treatment and disinfection to Potable Standards) then conveyed through the Segunda-Crest pipeline network to the ASR Pipeline in General Jim Moore Blvd and then to the Santa Margarita and Seaside Middle School ASR facilities. Recharge of the SGB occurs via injection of diverted flows into ASR wells during periods of available excess Carmel River system flows from the CAW distribution.

Injection water is introduced into the ASR wells via the pump columns. Injection rates are controlled primarily by downhole flow control valves (FCV) installed on the pump columns, and secondarily by valves on the ASR wellhead piping. Injection flow rates and total injected volumes are measured with rate and totalizing meters at each of the wellheads. Positive gauge pressures are maintained at the wellheads during injection to prevent cascading of water into the wells (which can lead to air-binding). Water levels in each of the ASR wells are measured and collected with pressure transducers coupled to data loggers.

⁴ Letter from Roger W. Briggs, Executive Officer of the Central Coast RWQCB, to Joseph Oliver, Water Resources Manager for MPWMD, dated April 29, 2009.

⁵ Based on 20,025 af of unimpaired Carmel River flow at the San Clemente Dam site in WY 2012.

Injection Operations Summary

Injection generally occurs at each of the ASR wells on a continuous basis when flows are available, interrupted only for periodic backflushing (discussed in a following section), which typically occurs on an approximate weekly basis. These periods of continuous injection followed by backflushing are termed in this report as numbered "injection periods" at each well. During WY 2012, a total of 5 and 6 injection periods occurred at SM ASR-2 and SMS ASR-3, respectively. Summaries of pertinent injection period operations at SM ASR-2 and SMS ASR-3 are presented in **Tables 1 and 2** below, respectively. Field data sheets collected during injection operations are presented in **Appendix A**. It is noted that SMS ASR-3 underwent the initial steps of its baseline injection testing program during WY 2012 (discussed in further detail below); therefore, the "injection period" definition above does not strictly apply to this well this year.

Injection				Average Injection	Total
Period	Da	tes	Duration	Rate	Volume
No.	Start	End	(days)	(gpm)	(af)
1	3/28/12	3/29/12	1.0	1,765	7.6
2	3/29/12	3/30/12	0.9	1,875	7.7
3	4/1/12	4/2/12	1.0	1,344	6.1
4	4/13/12	4/17/12	4.0	1,765	30.9
5	4/17/12	4/23/12	6.0	1,962	52.4
SM ASR-2 Totals			12.9	1,742	104.7

Table 1. WY 2012 Injection Operations Summary - SM ASR-2

As shown in **Table 1**, the total duration of the 5 injection periods at SM ASR-2 during WY 2012 was approximately 13 days, with a total volume of 104.7 af injected at an average injection rate of approximately 1,740 gpm.

Table 2.	WY 2012 I	njection	Operations	Summary	- SMS	ASR-3
----------	-----------	----------	------------	---------	-------	-------

Injection				Average Injection	Total
Period	Dat	tes	Duration	Rate	Volume
No.	Start	End	(days)	(gpm)	(af)
1	3/29/12	3/29/12	0.1	1,188	0.3
2	4/14/12	4/14/12	0.3	1,303	1.6
3	4/16/12	4/17/12	0.5	1,089	2.2
4	4/17/12	4/18/12	0.9	906	3.6
5	4/18/12	4/19/12	0.7	1,040	3.2
6	4/19/12	4/23/12	4.0	548	9.7
	SMS A	SR-3 Total	6.4	1,013	20.6

As shown in **Table 2**, the total duration of the 6 injection periods at SMS ASR-3 was approximately 6 days, with a total volume of 20.6 af injected at an average rate of approximately 1,010 gpm. As noted above, the injection operations at SMS ASR-3 were focused on initial performing the initial baseline testing operations and were conducted at various rates during the period. The combined total volume of injection during WY 2012 was 125.3 af⁶.

Water-level data collected at SM ASR-1, SM ASR-2 and SMS ASR-3 during WY 2012 are presented in **Figures 6 through 8**, respectively. Water-level collected at SM ASR-2 and SMS ASR-3 during the injection season are presented in **Figures 9 and 10**, respectively. The water-level data show the response of both SM ASR-2 and SMS ASR-3 to injection, with a maximum water-level increase of approximately 85 feet at SM ASR-2 and approximately 211 feet at SMS ASR-3. Water-level increases due to injection at SM ASR-2 were well below the maximum recommended drawup level of approximately 140 feet. Water-level increases due to injection at SMS ASR-3 were generally maintained well below the recommended maximum drawup level at this well of approximately 175 feet (discussion of the basis for the recommended maximum drawup levels is presented in the Backflushing section below). The water-level data also show fluctuations in response to varying injection rates resulting from pressure fluctuations in the CAW distribution system (at times the pressure was observed to fluctuate between 30 and 100 psi within several minutes), as well as the drawdown response to routine backflush pumping during the injection season (discussed below).

SMS ASR-3 Baseline Injection Testing. As mentioned previously, injection operations at SMS ASR-3 during WY 2012 were focused on implementing the baseline injection testing program at this well. The baseline injection testing program consists of the following steps:

- 1. Startup testing of injection piping hydraulics, instrumentation, metering, valving, etc.;
- 2. 400-minute variable rate injection testing combined with downhole velocity surveys;
- 3. 24-hr constant rate injection test;
- 4. 7-day constant rate injection test;
- 5. Backflushing between each injection test, and;
- 6. Post-injection production performance testing

Steps 1 and 2 (and 5) above were able to be performed within the relatively short WY 2012 injection season. The remaining steps could not be performed in WY 2013 due to the lack of rainfall and low river flows, are therefore planned to be performed during WY 2013. Following completion of the baseline injection testing program for SMS ASR-3, a detailed analysis of SMS ASR-3 injection performance and parameters will be provided in the WY 2013 SOR.

⁶ The slight difference between this value and the 131 af value presented on page 3 is due to the relatively small volume of pipeline flushing (approximately 6 af, or 4.5% of the total diversion volume) required to clear particulates from the piping system prior to injection, which was routed to the Santa Margarita ASR Facility backflush pit and allowed to percolate into the groundwater basin.

A variable rate injection test was performed on April 12, 2012. The primary purpose of the test was to assess variations in well specific injectivity (the converse of specific capacity) at differing injection rates and to determine a suitable rate for long-term injection testing. The test consisted of four steps, each at a successively higher rate. The duration of each step was approximately 100-minutes. The four test rates were approximately 763, 1133, 1489, and 1839 gpm. The static water level in the well prior to the test was 349.6 feet below top of casing (btoc). The resulting water-level drawup and specific injectivities associated with each of these steps are shown on **Figure 11** and are summarized below in **Table 3**.

Test	Duration	Rate (gpm)	Drawup (feet)	Q/s (gpm/ft)
Step 1	100 min	763	44.9	17.0
Step 2	100 min	1133	79.2	14.3
Step 3	100 min	1489	129.2	11.5
Step 4	100 min	1839	210.5	8.7

Table 3. Variable Rate Injection Test Results - SMS ASR-3

As presented in **Table 3** and shown on **Figure 11**, the specific injectivity of SMS ASR-3 ranged between approximately 8.7 and 17.0 gpm/ft, depending on the injection rate. It is important to note that according to well hydraulic theory, specific injectivity is expected to generally decrease with increasing injection rate; therefore, it is important to consider the injection rate when comparing specific injectivity values. It is also noted that at 1,839 gpm, the water-level drawup exceeded the recommended maximum of 175 feet; therefore, for planning purposes, injection rates at this well should be maintained at approximately 1,500 gpm or less until further testing can be performed.

Backflushing

Most sources of injection water contain trace amounts of solids that slowly accumulate in the pore spaces in the well's gravel pack and adjacent aquifer materials, and the CAW source water is no exception. Periodic backflushing of ASR / injection wells is therefore necessary to maintain well performance by removing materials deposited/accumulated around the well bore during injection. The procedure is similar to backwashing a media filter to remove accumulated material deposited during filtration.

The general rule-of-thumb for ASR wells is to backflush at pumping rates that are at least two times the rate of injection in order to create pore-throat velocities sufficient to remove particles that cling to the surfaces of gravel pack and aquifer grains. A typical and prudent trigger for backflushing is when the amount of water-level drawup during injection equals the available drawdown (as measured from the static water level to the top of the pump bowls) in the well for backflushing. This helps to avoid over-pressurization and compression of plugging materials, thereby maximizing the efficiency of backflushing and limiting the amount of residual plugging.

It is important to note that water-level drawup during injection is a function of several factors, including specific injectivity, injection rate, plugging rates, and duration of continuous injection. Therefore, establishing a maximum drawup level is a useful guide for triggering backflushing of the ASR wells under variable conditions. For example, injecting at lower injection rates and / or with an injection source water with lower plugging potential (as measured by SDI), the amount of water level drawup per unit time will be lower and the duration of continuous injection between backflushing may be extended before the drawup limitation is reached. Conversely, injecting at a higher rate and / or with injection source water having a higher plugging potential, the rate of drawup will increase and the duration between backflushing would need to be shortened.

Based on the several years of testing conducted as part of the Santa Margarita Test Injection Well (SMTIW) project, a weekly backflushing frequency has been determined to be the best operational practice for the ASR wells when operated at the design rates of injection. The general procedure consists of temporarily stopping injection and then pumping the wells at a rates of approximately 2,000 to 3,000 gpm (i.e., at least twice the rate of injection) for a period of approximately 10 to 20 minutes, and repeated as necessary to effectively remove particulates from the well screen / gravel pack / aquifer matrix. Backflush water is discharged to the Santa Margarita ASR Facility backflush pit, where it percolates back into the groundwater basin.

During backflushing, the initial backflush discharge is usually very turbid and of a deep orange-brown color, becoming cloudy after approximately 5 minutes and then generally clears within 15 to 20 minutes. These observations have been generally consistent throughout the years of operating ASR wells at the Santa Margarita ASR Facility and were similarly observed at SMS ASR-3 during WY2012. Additional "incidental" backflushing was also conducted during the WY 2012 storage period, typically as part of water-quality sampling of the stored water. Following routine backflushing operations and brief periods of water-level recovery, controlled 10-minute specific-capacity tests are typically performed to track well production performance and residual plugging between injection periods (discussed in the following section).

Recovery Operations Summary

Recovery of the volume of water recharged during WY 2012 was performed via SM ASR-1 (SM ASR-2 and SMS ASR-3 have not yet been permitted for recovery into the CAW distribution system). As shown on **Figure 5**, a total of 131 af were recovered by SM ASR-1 during the month of October 2012. The recovered water was offset by reduced pumping by CAW from the Carmel River system during this period. It is noted that in this context, ASR recovery is essentially an accounting / allocation of CAW's various water rights and pumping from the SGB, and does not necessarily represent a "molecule-for-molecule" recovery of the injected water. Rather, the volume recharged essentially increases the operational yield of the SGB by the same amount and can be "recovered" by any of CAW's wells in the SGB and / or the ASR wells themselves. It is anticipated, however, that recovery operations via SM ASR-1

and / or SM ASR-2 will occur more extensively in the future, once both wells are fully permitted for production into the CAW distribution system⁷.

WELL PERFORMANCE

Well performance is generally measured by specific capacity (pumping) and / or specific injectivity (injection), which is the ratio of flow rate (pumping or injection) to water-level change in the well (drawdown or drawup) over a specific elapsed time. The value is expressed as gpm per foot of water level change (gpm/ft). The value normalizes well performance by taking into account differing static water levels and flow rates. As such, specific capacity / injectivity data is useful for comparing well performance over time and at differing flow rates. Decreases in specific capacity / injectivity are indicative of decreases in the hydraulic efficiency of a well due to the effects of plugging and/or particle rearrangement. Both injection and production well performance was tracked at SM ASR-2 and SMS ASR-3 during WY 2012, as discussed below.

Injection Performance

Injection performance has been tracked at SM ASR-1 since the inception of the ASR program in WY 2002 by measurement and comparison of 24-hour injection specific injectivities (a.k.a. injection specific capacity). Specific injectivity is the ratio of injection rate to water-level rise (drawup) in the well casing.

SM ASR-1. A summary of 24-hour specific injectivity for SM ASR-1 for WY 2002 through 2011 is presented in **Table 4** below.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments	
WY2002		_				
Beginning Period	1,570	81.7	19.2		FCV not installed yet in WY2002.	
Ending Period	1,164	199.8	6.4	-67%	No recovery pumping performed.	
WY2003						
Beginning Period	1,070	70.0	15.5		Recovery pumping performed following	
Ending Period	1,007	49.7	20.3	+31%	WY2003 Injection	
WY2004						
Beginning Period	1,383	183.4	7.5		Recovery pumping performed following	
Ending Period	1,072	67.4	15.9	+112%	WY2004 Injection	

Table 4.	Injection	Performance	Summary	y - SM ASR-1

⁷ SM ASR-1 was permitted by California Department of Public Health in August 2011 to produce water into the CAW distribution system.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments	
WY2005						
Beginning Period	1,045	46.6	22.4		Injectate dechlorinated in WY2005. No	
Ending Period	976	94.1	10.4	-54%	recovery pumping performed.	
WY2006					·	
Beginning Period	1,039	71.5	15.0		Injection procedures consistent and	
Ending Period	1,008	62.2	17.5	+17%	recovery pumping performed.	
WY2007						
Beginning Period	1,098	92.4	11.9		Only one injection period in WY2007.	
Ending Period					No recovery pumping performed.	
WY2008						
Beginning Period	979	25.5	38.4		Formal rehabilitation performed prior to	
Ending Period	1,063	33.4	31.8	-17%	WY2008 injection	
WY 2009					-	
Beginning Period	1,119	56.1	19.9		Beginning period low specific injectivity due to high plugging rate during initial	
Ending Period	1,069	34.3	31.1	+56%	injection period. No recovery pumping performed.	
WY 2010						
Beginning Period	1,080	35.6	30.3		Observed decline in performance due	
Ending Period	1,326	54.0	24.6	-19%	to residual plugging.	
WY 2011			_	_		
Beginning Period	1,367	53.0	25.8		Minor residual plugging occurred	
Ending Period	1,454	63.7	22.8	-10%	Minor residual plugging occurred.	
WY 2012						
Beginning Period	NA	NA	NA		No injection at this well this year	
Ending Period	NA	NA	NA	NA	No injection at this well this year.	

As shown in **Table 4** and as noted previously, no injection occurred at SM ASR-1 during WY 2012. In reviewing the data in **Table 4** and comparing it to the other ASR wells, it should also be noted that there have been differences in the injection methodologies that affected SM ASR-1 well performance. The differences in methodologies are due to various tests that have been conducted over the years to determine the best operational parameters for the ASR well. As examples: in WY 2002 the FCV had not yet been installed to control gas binding; recovery pumping was conducted only in WY 2003 and WY 2004; during WY 2005 the injectate was dechlorinated; and, ASR-1 underwent formal rehabilitation as part of the WY 2007 program (refer to the Summary of Operations Reports for those Water Years for additional details).

Based on the above discussion, the well performance values and trends at SM ASR-1 need to be viewed carefully within this context.

SM ASR-2. A summary of the beginning and ending injection performance at SM ASR-2 for WY 2010 and WY 2012 is presented in **Table 5** below.

Water Year	Injection Rate (gpm)	24-hour DUP (feet)	Specific Injectivity (gpm/ft)	Water Year Change	Comments	
WY 2010						
Beginning Period	1,017	156.5	6.5		Significant residual plugging	
Ending Period	237	85.0	2.8	-57%	Significant residual plugging.	
WY 2011		_		_		
Beginning Period	1,497	39.5	37.9		Significant improvement as a result	
Ending Period	1,292	34.3	37.7	-0.5%	of well rehabilitation. No residual plugging during year.	
WY 2012						
Beginning Period	1,830	56.1	32.6			
Ending Period	1,817	63.4	28.7	-12%		

 Table 5. Injection Performance Summary - SM ASR-2

As shown in **Table 5**, the 24-hour specific injectivity at the beginning of WY 2012 was 32.6 gpm/ft and at the end of WY 2012, the 24-hr specific injectivity was 28.7 gpm/ft, representing a decline of approximately 12 percent, indicating that minor residual plugging occurred at SM ASR-2 (discussed in a following section) over the course of the WY 2012 injection season.

As previously noted, no continuous 24-hour periods of constant rate injection occurred at SMS ASR-3 during WY 2012 to compare changes in 24-hour specific injectivity; however, SMS ASR-3 pumping performance was tracked during WY 2012 and is discussed in the next section.

Pumping Performance

Pumping performance has also been tracked at ASR-1 since the inception of the SMTIW testing program by measurement and comparison of specific capacity. Specific capacity is the ratio of pumping rate to water-level drawdown in the well casing. Following routine backflushing operations and periods of water-level recovery, controlled 10-minute specific-capacity tests are typically performed to track well pumping performance, similar to the tracking of injection performance from 24-hour specific injectivity.

SM ASR-1. A summary of injection season beginning and ending 10-minute specific capacity at ASR-1 for WY 2002 through 2012 is presented below in **Table 6**.

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY2002					
Pre-Injection	2,825	45.1	62.6		FCV pat installed yet in MV/2002
Post- Injection	2,800	95.3	29.4	-53%	FCV not installed yet in WF2002
WY2003				•	
Pre-Injection	2,775	81.9	33.9		Recovery pumping performed
Post- Injection	2,600	91.7	28.4	-16%	following WY2003 Injection
WY2004				•	
Pre-Injection	2,000	51.8	38.6		Recovery pumping performed
Post- Injection	1,700	81.2	20.9	-46%	following WY2004 Injection
WY2005				•	
Pre-Injection	1,900	49.8	38.1		Injectate dechlorinated in WY2005.
Post- Injection	1,500	87.1	17.2	-55%	No recovery pumping performed.
WY2006				•	
Pre-Injection	1,500	82.4	18.2		Injection procedures consistent and performance stable in WY2006. No recovery pumping performed.
Post- Injection	1,600	74.1	21.6	+19%	
WY2007					
Pre-Injection	1,500	81.7	18.4		Only one injection period in WY2007.
Post- Injection	1,500	79.4	18.9	+3%	No recovery pumping performed.
WY2008	•			•	
Pre-Injection	1,980	31.0	63.8		Formal rehabilitation performed prior
Post- Injection	2,000	55.6	36.0	-44%	pumping performed.
WY 2009					
Pre-Injection	2,000	52.0	38.5		No recovery pumping performed
Post- Injection	1,900	62.7	30.3	-21%	No recovery pumping performed.
WY 2010					
Pre-Injection	1,900	62.5	30.4		Porformanco occontially stable
Post- Injection	2,000	64.2	31.1	+2%	
WY 2011					
Pre-Injection	2,000	64.2	31.1		Porformance accorticily stable
Post- Injection	2,000	64.6	30.1	-3%	

Table 6. Pumping Performance Summary - SM ASR-1

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2012					
February 2012	2,400	74.7	32.1		No injection during WY 2012.
NA	NA	NA	NA	NA	Datalogger damaged in June 2012.

As shown in **Table 6**, the production specific capacity at ASR-1 declined from approximately 63 to 18 gpm/ft over the course of the six-year period of WY 2002 through WY 2007, an overall decline of approximately 70 percent. In particular, a decline of over 50 percent occurred after the initial injection season at this well (this observation has relevance to the performance of SMS ASR-3, discussed below). Further review of **Table 6** shows that following rehabilitation in 2007, the production specific capacity increased to 63.8 gpm/ft, slightly greater than the WY 2002 pre-injection specific capacity. These results are comparable to the injection performance, which similarly indicated the efficacy of rehabilitation in restoring the well's hydraulic performance. These findings regarding the effectiveness of rehabilitation of SM ASR-1 in 2007 are comparable to the results recently observed at SM ASR-2.

SM ASR-2. A summary of injection season beginning and ending 10-minute specific capacity for SM ASR-2 is presented below in **Table 7**.

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2009		_			
Pre-Injection	3,200	72.3	44.3		Injection testing performed with
Post- Injection	2,200	117.7	18.7	-58%	source water from MCWD.
WY 2010					
Pre-Injection	2,200	117.7	18.7		Pre-injection is after MCWD testing
Post- Injection	2,300	136.9	16.8	-10%	(refer to WY 2009 Summary of Operation report)
WY 2011					
Pre-Injection	3,100	83.9	36.9		Formal rehabilitation performed prior
Post- Injection	3,100	93.5	33.2	-10%	to WY 2011 injection season. Relatively stable during season.
WY 2012					
Pre-Injection	2,800	84.5	33.1		See discussion below
Post- Injection	2,700	92.3	29.3	-11%	

Table 7.	Pumping	Performance	Summary	y - SM ASR-2
----------	---------	-------------	---------	--------------

As shown in **Table 7**, the pumping performance of SM ASR-2 declined significantly following initial injection in WY 2009, similar to the initial decline experienced at SM ASR-1. SM ASR-2 performance improved significantly in WY 2011 compared to WY 2010, with the

production specific capacity nearly doubling. The improved performance is a result of rehabilitation of the well prior to the WY 2011 injection season. During WY 2012, pumping performance declined approximately 11 percent. This compares with the injection performance results, which showed an approximate 12 percent decline in performance over the course of WY 2012.

SMS ASR-3. A summary of injection season beginning and ending 10-minute specific capacity for SMS ASR-3 is presented below in **Table 8**.

Water Year	Pumping Rate (gpm)	10-min DDN (feet)	Specific Capacity (gpm/ft)	Water Year Change	Comments
WY 2012					
Pre-Injection	3,200	107.1	29.9		
Post- Injection	2,400	186.4	12.9	-57	See discussion below.

Table 8. Pumping Performance Summary - SMS ASR-3

As shown in **Table 8**, the pumping performance of SMS ASR-3 declined significantly following initial injection in WY 2012, similar to the declines experienced at both SM ASR-1 and SM ASR-2 following initial injection. A pattern has emerged, with all three ASR wells having experienced comparable declines in performance following initial injection. It is believed the observed loss in performance is due to particle rearrangement (mechanical jamming) and/or chemical precipitation, as opposed to the normal and relatively slow plugging caused by particulates. This phenomenon will be evaluated further following the completion of the baseline injection testing program at SMS ASR-3. It is noted, however, that while SMS ASR-3 experienced a significant decline in performance in WY 2012, it is expected that rehabilitation would result in significantly improved performance, as has been observed at both SM ASR-1 and SM ASR-2.

It is also noted that SM ASR-1 (and now SM ASR-2 and SMS ASR-3) has been operated largely as an injection-only well since its construction in 2001, with significant recovery pumping taking place thus far in only 2003 and 2004 (refer to Figure 2 and the WY 2003 and WY 2004 Summary of Operations Reports for details), with a relatively minor amount of recovery occurring during WY 2012. As shown in **Tables 4 and 6**, following recovery pumping events the performance of SM ASR-1 improved prior to the onset of the following year's injection season. The improved well performance is attributable to the additional removal of fine particulates from the well and near-bore aquifer matrix as a result of the extended pumping. As such, it is anticipated that once SM ASR-1, SM ASR-2 and SMS ASR-3 are operated as true ASR wells as planned (with seasonal recovery pumping following each injection season), the amount of residual plugging between injection seasons and the attendant frequency of rehabilitation will be reduced.

Plugging

Experience at injection well sites around the world shows that all injection wells are subject to some amount of plugging, because no water source is completely free of particulates, bionutrients, or oxidants, all of which can contribute to well plugging; the CAW source water is no exception. During injection, trace amounts of suspended solids are continually being deposited in the gravel pack and aquifer pore spaces, much as a media filter captures particulates in the filter bed. The effect of plugging is to impede the flow of water from the injection well into the aquifer, causing increased injection heads in the well to maintain a given injection rate, or reduced injection rates at a given head level. Well plugging reduces injection and extraction capacity, and consequently, well life.

Relative measurements of the particulate matter in the injectate have historically been made at the Santa Margarita site through silt density index (SDI) testing during injection. The SDI was originally developed to quantitatively assess particulate concentrations in reverse-osmosis feed waters. The SDI test involves pressure filtration of source water through a 0.45 micron membrane, and observation of the decrease in flow over time; the resulting value of SDI is dimensionless, and used as a comparative value for tracking relative well plugging rates during an injection season (i.e., plugging rates tend to vary with SDI). During WY 2012 injection operations, SDI measurements ranged between approximately 0.5 to 3.4 and averaged 1.9.

Rates of plugging (measured in feet of head increase per day) during injection have historically been estimated at the Santa Margarita Facility ASR wells; however, most analytic methods for determining the rate of plugging are predicated on the injection rates at the subject well(s) being held constant. As discussed in detail in the WY 2010 Summary of Operations Report, injection rates at both SM ASR-1 and SM ASR-2 have varied significantly since the installation of the ASR Pipeline in Gen. Jim Moore Blvd. as a result of pressure fluctuations in the CAW system. As shown on **Figure 9**, these pressure fluctuations persisted (although to a lesser extent) throughout most of WY 2012 as well, and as a result, plugging rates during the WY 2012 injection season cannot be reliably calculated.

Residual plugging, however, can be measured from the WY 2012 data. Residual plugging is the plugging that remains following backflush pumping. Residual plugging increases drawdown during pumping and drawup during injection, and is manifested as declining specific capacity / injectivity. The presence of residual plugging is indicative of incomplete removal of plugging particulates during backflushing and has the cumulative effect of reducing well performance and capacity through time.

As discussed previously, routine 10-minute specific capacity tests were performed at SM ASR-2 and SMS ASR-3 following backflushing events during WY 2012. Presented in **Tables 9**

and 10 below are summaries of the residual plugging calculations for SM ASR-2 and SMS ASR-3⁸, respectively, during WY 2012.

		Pumping	10-min	10-min	Normalized	Residual	Cumulative	
Test		Rate	Drawdown	Q/s ¹	Drawdown ²	Plugging	Plugging	
No.	Date	(gpm)	(ft)	(gpm/ft)	(ft)	(ft)	(ft)	Comments
Pre-Injection	5/24/11	3,100	93.5	33.2	90.5			End of WY 2011
1	3/29/12	2,900	97.1	29.9	100.4	10.0	10.0	After initial WY 2012 24-hr injection
2	3/30/12	2,800	92.2	30.4	98.8	-1.7	8.3	
3	4/3/12	2,800	90.4	31.0	96.8	-2.0	6.4	
4	4/17/12	2,700	94.2	28.7	104.7	7.8	14.2	
5	4/23/12	2,700	92.3	29.3	102.5	-2.1	12.1	End of WY 2012
	Averages	2,833	93.3	30.4	99.0	2.4		
					C	Cumulative	12.1	

Table 9. Residual Plugging Summary - SM ASR-2

Notes:

1 - Specific Capacity. Ratio of pumping rate to draw dow n.

2 - Normalized based on ratio of 3,000 gpm to actual test pumping rate

		Pumping	10-min	10-min	Normalized	Residual	Cumulative	
Test		Rate	Drawdown	Q/s ¹	Drawdown ²	Plugging	Plugging	
No.	Date	(gpm)	(ft)	(gpm/ft)	(ft)	(ft)	(ft)	Comments
Pre-Injection	1/17/12	3,200	107.1	29.9	100.4		-	Prior to WY 2012 Injection Season
1	3/30/12	3,100	167.3	18.5	161.9	61.5	61.5	After preliminary injection hydraulics testing
2	4/10/12	3,100	165.6	18.7	160.3	-1.6	59.9	Prior to variable rate injection test
3	4/16/12	2,800	187.6	14.9	201.0	40.7	100.6	After variable rate injection test
4	4/17/12	2,500	188.1	13.3	225.7	24.7	125.3	After initial "constant" rate injection
5	4/18/12	2,700	188.4	14.3	209.3	-16.3	108.9	
6	4/19/12	2,400	189.5	12.7	236.9	27.5	136.5	
7	4/20/12	2,600	192.0	13.5	221.5	-15.3	121.1	
8	4/23/12	2,400	186.4	12.9	233.0	11.5	132.6	End of WY 2012
	Averages	2,900	167.3	18.3	176.4	21.8	-	
						Cumulative	132.6	

Table 10. Residual Plugging Summary – SMS ASR-3

Notes:

1 - Specific Capacity. Ratio of pumping rate to draw dow n.

2 - Normalized based on ratio of 3,000 gpm to actual test pumping rate.

As discussed in the WY 2011 Summary of Operations Report, there appears to be a general positive corollary relationship between maximum water-level drawup during injection and the amount of residual plugging, in that residual plugging tends to increase with increased drawup during injection. Water-level drawup during injection is a function of the injection rate, the duration of injection, and the rate of plugging. Identifying the amount of available draw-up for any given injection well and period is a useful guide to avoid over-pressurization and compression of plugging materials while balancing both the rate and duration of injection between backflushing events. As discussed in the Backflushing section of this report, the amount of water-level drawup during injection should not exceed the available drawdown in the

⁸ Quantification of the amount of residual plugging (as measured in feet of drawdown) requires normalization of drawdown to a reference pumping rate, which allows for comparison of data that have different pumping rates. For SM ASR-2 and SMS ASR-3, a reference pumping rate of 3,000 gpm was utilized, as this was the typical maximum pumping rate for each well.

well for backflushing in order to maximize the efficacy of backflushing and limit the amount of residual plugging.

As shown on **Figures 6 and 9**, the injection water level was maintained at or below the recommended maximum available drawup at SM ASR-2 (140 feet) during WY 2012, and as shown in **Table 9**, the cumulative residual plugging was limited to 12.1 ft at the end of the season. The slight amount of residual plugging at SM ASR-2 during WY 2012 was manifested as slight declines in the specific capacity and injectivity of the well over the course of the injection season (refer to **Tables 5 and 7**).

As shown in **Table 10**, a significant amount of *apparent* residual plugging occurred at SMS ASR-3 during WY 2012, with cumulative residual plugging of 132.6 ft. at the end of the season. As discussed in the Well Performance section, a similar loss of performance phenomena has been observed at both SM ASR-1 and SM ASR-2 following the initial injection trials at these wells. This phenomenon has now been repeated at SMS ASR-3 as a result of the initial injection during WY 2012. It is believed that this phenomenon is likely due to relatively rapid particle rearrangement (mechanical jamming) and/or chemical precipitation that occurs during the initial stages of injection at a new ASR well in the Tsm, as opposed to the normal slow accumulation of particulate plugging that is typically observed over the course of an injection season. It is also likely that, similar to the experiences at SM ASR-1 and SM ASR-2, performance can be significantly restored by rehabilitation. The performance issues associated with SMS ASR-3 will be more fully evaluated following completion of the remaining portion of the baseline injection test program for this well in WY 2013.

AQUIFER RESPONSE TO INJECTION

The response of the regional aquifer system to injection has been monitored since the SMTIW project was initiated in WY 2002. Submersible water-level transducer/data logger units have been installed at eight existing offsite District monitoring well locations in the SGB. In addition, the recently constructed Seaside Middle School (SMS) monitoring wells (SMS Deep and Shallow) have been similarly instrumented. The locations of each offsite monitoring well are shown on **Figure 1**, and water-level hydrographs for the monitoring wells during WY 2012 are graphically presented on **Figures 12 through 18**. A summary of the regional water-level observations during the WY 2012 injection season is presented in **Table 11** below.

	Table 11. WY 20 [°]	12 Aquifer Res	sponse S	Summary			
Well ID	Distance from Neatest Active ASR Well (feet)	Aquifer Monitored	Figure No.	Pre- Injection DTW (ft. btoc)	Shallowest Injection DTW (ft. btoc)	Maximum Drawup Response (ft.)	
SMS (Shallow)	25 (SMS ASP 3)	QTp	12	341.2	No E	Data	
SMS (Deep)	25 (SIVIS ASR-3)	Tsm	357.2		303.8	53.4	
SM MW-1	190 (SM ASR-2)	Tsm	13	360.5	340.6	19.9	
Paralta Test	650 (SM ASR-2)	QTp & Tsm	14	331.8	323.8	8.0	
Ord Grove Test	1,820 (SM ASR-2)	QTp & Tsm		١	lo Data		
Ord Terrace (Shallow)	2,550 (SM ASR-2)	Tsm	15	No D	iscernible Res	ponse	
FO-7 (Shallow)	2 700 (SMS ASD 2)	QTp	16	453.9	453.9	0.0	
FO-7 (Deep)	3,700 (SIVIS ASK-3)	Tsm	10	488.3	482.4	5.9	
FO-9 (Deep)	6,130 (SMS ASR-3	Tsm		No Data			
PCA East (Shallow)		QTp	17	62.1	61.9	0.2	
PCA East (Deep)	0,200 (SIVIS ASK-3)	Tsm		85.5	80.9	4.6	

Notes:

FO-8 (Deep)

QTp - Paso Robles aquifer

Tsm - Santa Margarita Sandstone aquifer

6,450 (SMS ASR-3)

DTW – Depth to Water

As shown on the water-level hydrographs, water levels in the Santa Margarita Sandstone (Tsm) aquifer at the start of the WY 2012 recharge season ranged between approximately 10 to 30 feet below sea level. Positive response to injection during WY 2012 was observed at 6 of the 9 monitoring wells completed in the Santa Margarita Sandstone aguifer; however, it is noted that several dataloggers were non-operational for a variety of reasons during the water year, making evaluation of the basin water-level response to WY 2012 injection difficult. For the 6 monitoring wells with sufficient data (see Table 11 above), water-level responses ranged between approximately 5 to 53 feet, decreasing with distance from the ASR wells, as is the typical and expected aquifer response to hydraulic stresses (i.e., injection or pumping).

Tsm

18

394.1

389.2

4.9

The available water-level data also show that at the Tsm-only monitoring wells, water levels remained below sea level throughout the injection season. Under these water-level conditions, little to no groundwater flow from the Tsm aquifer offshore would be expected to occur and any "losses" associated with ASR project operations from water potentially migrating offshore are highly unlikely.

The limited available data for wells completed in the Paso Robles Formation (QTp) show no discernible response to injection and water levels in this aguifer remained above the water level in the underlying Tsm aquifer during WY 2012. Under these water-level conditions, little to no flow of water from the Tsm to the QTp aquifer would be expected to occur.

It is further noted that the Ord Terrace monitoring well continues to not show a discernible response to injection operations, as has been observed during previous injection seasons. These observations suggest that the Ord Terrace fault represents a hydraulic barrier in the Tsm aquifer.

WATER QUALITY

General

Source water for injection is supplied from the CAW municipal water system, primarily from Carmel River system wells which are treated at the CAW Begonia Iron Removal Plant (BIRP) for iron and manganese removal. The BIRP water is also disinfected and maintains a free chlorine residual. A phosphate-based corrosion inhibitor is also added to the filtered water before entering the CAW distribution system.

As in previous years, water quality was routinely monitored at the ASR well sites during WY 2012 injection and aquifer storage operations. Far-field water quality was also monitored at the CAW Paralta production well and at the PCE-East Deep monitoring well (PCA-E Deep). Summaries of the collected water-quality data during WY 2012 are presented in **Tables 12 through 19** below⁹. Analytic laboratory reports are presented in **Appendix B**. A discussion of the water-quality data collected during WY 2012 is presented below.

Mixing and Dilution

Because injection operations have occurred annually at SM ASR-1 over the past 10 Water Years (injection began at this well in WY 2002), the proximate groundwater quality has been altered from the natural subsurface conditions, making a clear distinction between "native" and "non-native" water quality both complex and somewhat subjective. In the past, the most illustrative basis for discussing water-quality changes for the ASR project was to consider groundwater conditions immediately prior to the injection season as a baseline. However, establishing baseline conditions is more complex now that injection is occurring at multiple wells, and is further complicated as a result of the significant volume of injection that occurred in WY 2010 and WY 2011 (approximately 1,111 and 1,117 af, respectively). The issue of precisely defining baseline water-quality conditions is increasingly difficult as injection occurs at multiple wells, and the practice has been dropped in this report.

⁹ It is noted that both the Santa Margarita and Seaside Middle School ASR Facilities were undergoing various phases of facility construction during WY 2012. As a result, there were numerous power interruptions at the facilities that limited water-quality sampling such that the sampling frequency could not be performed at all wells in strict accordance with the Sampling and Analysis Plan for the project. Facility construction is currently nearing completion and sampling interruptions are anticipated to be reduced as construction activities at both sites approach completion over the next year.

To track the general mixing, dilution, and interaction between injected and native groundwaters, chloride ion (Cl⁻) has historically been used for the SGB ASR project as a natural tracer. Chloride ion is very stable, highly soluble and is present in both injected and native ground waters; albeit at a 400 percent concentration differential. The historical Cl⁻ concentration of the native groundwaters within the Tsm has averaged approximately 120 milligrams per liter (mg/L) in this area of the basin. Presented in **Table 12** below is a summary of the relative percentages of injection water at each of the monitored wells before WY 2012 injection operations and at the end of the WY 2012 storage period. Calculation of the injected versus native groundwater (NGW) contribution in a given sample is based on the historical NGW and injected water Cl⁻ concentrations.

	Pre-Inje	ection C	onditions	End-St	orage C	onditions	WY 2012		
Well	Sample	CI	% Injectate	Sample	CI	% Injectate	Change	Comments	
	Date	(mg/l)	in Water	Date	(mg/l)	in Water	(%)		
SM ASR-1	2/2/12	67	56	10/31/12	110	11	-46	No injection. Used for recovery.	
SM ASR-2	1/26/12	129	0	8/2/12	85	37	37	104.7 af injected. No recovery.	
SM MW-1	1/25/12	82	40	11/1/12	34	91	51	Located between SM ASR-1 and SM ASR-2	
SMS ASR-3	10/22/10	107	14	10/30/12	90	32	18	20.6 af injected. No recovery.	
SMS Deep	3/27/12	120	0	10/30/12	90	32	32	25 ft. from SMS ASR-3.	
Paralta	11/17/11	87	35	7/24/12	107	14	-21		
PCA-E Deep	3/26/12	104	17	10/31/12	92	30	13		

As **Table 12** shows, none of the seven well locations had the same water quality prior to WY 2012 injection, and each represents a different percentage mix of injectate and native groundwater (NGW) and water from the multiple previous injection and recovery seasons. These results range from an estimated 56 percent injectate water at SM ASR-1 to 0 percent injectate water at SM ASR-2 and SMS Deep prior to the WY 2012 injection season. By the end of the WY 2012 recovery period, the concentration of injectate water at most wells increased, with the exception of SM ASR-1, which declined significantly compared to pre-injection conditions. The observations at SM ASR-1 are the expected result of no injection occurring at this well combined with its utilization for recovery pumping during WY 2012.

Although in past years the calculation of a "normalized concentration" of water-quality parameters based on injected and NGW chloride ion concentrations has been used to correct for the dilution effects of this intermixing of waters in the past; however, the substantial and repeated dilution/intermixing that has occurred now is more error prone due to the significant dilutions and the spatial variations of Cl⁻ concentrations around the ASR project sites now extant. Normalized data are therefore not included in the current data presentations.

Proventer	11-14	501	MO	Results CAW Injectate
Parameter	Unit	PQL Sample D	MCL	3/28/12
Maior Cations		Salliple	escription	IIJeciale
Calcium	ma/L	0.5		42
Magnesium	mg/L	0.5		14
Potasium	mg/L	0.5		2.8
Sodium	mg/L	0.5		45
Major Anions				
Alkalinity, Total (as CaCO3)	mg/L	2		141
Chloride	mg/L	1	250	37
Sulfate	mg/L	1	250	78
Nitrate (as NO3)	mg/L mg/l	1	45	ND
General Physical	mg/L	1	1	ND
	Std Inits			7.6
Specific Conductance (EC)		1	900	520
Total Dissolved Solids	ma/L	10	500	520
Metals	5			
Arsenic (Total)	ug/L	1	10	1
Barium (Total)	ug/L	10	1000	53
Iron (Dissolved)	ug/L	10		ND
Iron (Total)	ug/L	10	300	ND
Lithium	ug/L	1		6
Manganese (Dissolved)	ug/L	10		ND
Manganese (Total)	ug/L	10	50	ND
Molybdenum	ug/L	1	1000	2
Solonium	ug/L	10	100	
Strontium (Total)	ug/L ug/l	2	50	243
Uranium (by ICP/MS)	ug/L	1	30	ND
Vanadium (Total)	ua/L	1	1000	ND
Zinc (Total)	ug/L	10	5000	216
Miscellaneous				
Ammonia-N	mg/L	0.05		ND
Boron	mg/L	0.05		ND
Chloramines	mg/L	0.05		0.08
Gross Alpha	pCi/L	0.5	15	0.000 +/- 1.16
Kjenidani Nitrogen (Total)	mg/L	0.5		ND
Nitrogen (Total)	ug/L ma/l	0.1		ND
o_Phosphate_P	ma/L	0.5		0.27
Phosphorous (Total)	ma/l	0.03		0.27
Radium 226	pCi/L	0.00	3	0.056 +/- 0.190
Organic Analyses				
Haloacetic Acids (Total)	ug/L	1.0	60.0	12.9
Dibromoacetic Acid	ug/L	1.0		3.0
Dichloroacetic Acid	ug/L	1.0		5.7
Monobromoacetic Acid	ug/L	1.0		ND
Monochloroacetic Acid	ug/L	2.0		ND
Trichloroacetic Acid	ug/L	1.0		4.2
Organic Carbon (Dissolved)	mg/L	0.2		1.2
Tribalamethapas (Total)	mg/L	0.2	80.0	1.0
Bromodichloromethane	ug/L	1.0	00.0	23.1
Bromotorm	ug/L ua/l	0.5		1.5
Chloroform	ug/L	0.5		8.0
Dibromochloromethane	ug/L	0.5		6.1
Field Parameters				
Temperature	°C	0.1		
Specific Conductance (EC)	uS	1.0	900	
рН	Std Units	0.1	6.5 - 8.5	
ORP	mV	1.0		
Free Chlorine Residual	mg/L	0.1	2 - 5	
Dissolved Oxygen	mg/L	0.01		
	Sta Units	0.1		
H ₂ S	ma/L	2.0		

Table 13. Summary of WY 2012 Water Quality Data - Injectate

Notes: Constituents exceeding MCLs denoted in BOLD type

	SM A						SM ASR-1				
Parameter	Unit	PQL	MCL	3/21/01	11/18/11	2/2/12	5/16/12	6/21/12	7/6/12	10/31/12	
	-	Sample D	escription	NGW	WY 2011	Storage		WY 2012	Storage		
Elapsed Storage Time	Days			-	178	254	23	59	74	191	
Volume Purged at Sampling	1,000 gals									L	
Major Cations		0.5		05	10	01					
	mg/L	0.5		85	43	61			60	86	
Magnesium	mg/L	0.5		19	14	19			18	22	
Potasium	mg/L mg/l	0.5		5.3	3	3.7			3.8	5.2	
Maior Anions	IIIg/L	0.0		00	40	02			03	33	
Alkalinity Total (as CaCO3)	ma/l	2		224	142	177			171	223	
Chloride	ma/l		250	120	40	67		49	66	110	
Sulfate	ma/l	1	250	95	74	83		43	88	102	
Nitrate (as NO3)	ma/l	1	45	ND	ND				ND	ND	
Nitrite (as Nitrogen)	ma/L	1	1		110	115			ND	ND	
General Physical	5										
pH	Std Units			7.1	7.4	7.1			7.3	7.5	
Specific Conductance (EC)	uS	1	900	1015	537	724			704	987	
Total Dissolved Solids	mg/L	10	500	618					428	614	
Metals											
Arsenic (Total)	ug/L	1	10	ND	ND	1			1	1	
Barium (Total)	ug/L	10	1000	52	64	83			73	81	
Iron (Dissolved)	ug/L	10			ND	ND			37	27	
Iron (Total)	ug/L	10	300	120	ND	185			24	42	
Lithium	ug/L	1			6	143			16	32	
Manganese (Dissolved)	ug/L	10			ND	22			ND	23.0	
Manganese (Total)	ug/L	10	50	40	ND	23			ND	24	
Molybdenum	ug/L	1	1000		7	7			6	7	
Nickel	ug/L	10	100						ND	ND	
Selenium	ug/L	2	50	ND	2	ND			3	ND	
Strontium (Total)	ug/L	5			254	316			312	402	
Uranium (by ICP/MS)	ug/L	1	30		1	1			1	1	
Zina (Total)	ug/L	10	1000	10	ND	204			124	ے 101	
	uy/L	10	5000	10	205	294			134	101	
Ammonia-N	ma/l	0.05		0 33	ND	ND			ND	0.12	
Boron	ma/l	0.00		0.00	ND	0.06			0.06	0.12	
Chloramines	ma/L	0.05		0.14	ND	ND		ND	ND	ND	
Gross Alpha	pCi/L	0.00	15		2.17 +/- 1.81	2.96 +/- 1.27		115	2.84 +/- 1.49	5.57 +/- 2.32	
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	ND			1.7	ND	
Methane	ug/L	0.1			ND	0.4			0.39	3.2	
Nitrogen (Total)	mg/L	0.5			ND	ND			1.7	ND	
o-Phosphate-P	mg/L	0.05		0.46	0.16	0.12			ND	ND	
Phosphorous (Total)	mg/L	0.03			0.20	0.26			0.22	0.30	
Radium 226	pCi/L		3		0.000 +/- 0.193	0.033 +/- 0.171			0.000 +/- 0.099	0.881 +/- 0.335	
Organic Analyses											
Haloacetic Acids (Total)	ug/L	1.0	60.0		0.0	0.0	0.0	0.0	0.0	0.0	
Dibromoacetic Acid	ug/L	1.0			ND	ND	ND	ND	ND	ND	
Dichloroacetic Acid	ug/L	1.0			ND	ND	ND	ND	ND	ND	
Monobromoacetic Acid	ug/L	1.0			ND	ND	ND	ND	ND	ND	
Monochloroacetic Acid	ug/L	2.0			ND	ND	ND	ND	ND	ND	
I ricnioroacetic Acid	ug/L ma/l	1.0			ND	ND	ND	ND	ND	ND	
	mg/L	0.2		6.0	0.98	0.94			0.70	0.76	
	IIIg/L	0.2	80.0	0.3	0.95	1.1	22.6	41 5	0.70	0.99	
Remodichloromethane	ug/L	1.0	00.0		31.0	3.5	23.0	41.5	29.3	9.0	
Bromotorm	ug/L ug/l	0.5			0.2 ND	0.0	5.9 ND	12.0 ND	0.0	2.4	
Chloroform	ua/l	0.5			20.0	27	15.5	25.0	18.0	74	
Dibromochloromethane	ug/L	0.5			2.8	ND	2.2	4.5	2.7	ND	
Field Parameters	-3-										
Temperature	°C	0.1			16.9	18.3			22.5	23.0	
Specific Conductance (EC)	uS	1.0	900	1015	544	716			932	971	
pH	Std Units	0.1	6.5 - 8.5	7.1	7.3					6.94	
ORP	mV	1.0			+81	- 167			-172	-165	
Free Chlorine Residual	mg/L	0.1	2 - 5		ND	ND			ND	ND	
Dissolved Oxygen	mg/L	0.01			1.35	0.07					
Silt Density Index	Std Units	0.1									
Gas Volume	mL	2.0									
H ₂ S	mg/L	0.1		1.5	ND	ND				0.06	
Netes											

Table 14. Summary of WY 2012 Water-Quality Data - SM ASR-1

Constituents exceeding MCLs denoted in BOLD type

				Results SM ASR-2				
Devenueter	11::14	DOI	MCI	4/00/40	3WI A3R-2	0/0/40		
Parameter	Unit	PQL	MICL	1/26/12	7/3/12	8/2/12		
	-	Sample D	escription	WY 2011 Storage	WY 2012	Storage		
Elapsed Storage Time	Days			247	71	101		
Volume Purged at Sampling	1,000 gals							
Major Cations								
Calcium	mg/L	0.5		91	47			
Magnesium	ma/L	0.5		28	14			
Potasium	mg/L	0.5		4.8	3.2			
Sodium	mg/L	0.0		4.0	48			
Major Anjons	ilig/L	0.0		00	-0			
				0.40				
Alkalinity, Total (as CaCO3)	mg/L	2		243	142			
Chloride	mg/L	1	250	129	36	85		
Sulfate	mg/L	1	250	115	77			
Nitrate (as NO3)	mg/L	1	45	ND	ND			
Nitrite (as Nitrogen)	mg/L	1	1		ND			
General Physical								
р. М	Std Units			7.2	74			
Specific Conductance (EC)		1	000	1030	543			
Total Dissolved Solids	ma/l	10	500	1050	303			
	my/∟	10	500		302			
				_	-			
Arsenic (Iotal)	ug/L	1	10	2	2			
Barium (Total)	ug/L	10	1000	126	64			
Iron (Dissolved)	ug/L	10		44	52			
Iron (Total)	ug/L	10	300	139	63			
Lithium	ug/L	1		37	7			
Manganese (Dissolved)	ua/L	10		45	ND			
Manganese (Total)	ug/L	10	50	51	ND			
Malubdanum	ug/L	10	1000	11	IND 6			
Niekel	ug/L	10	1000					
	ug/L	10	100		ND			
Selenium	ug/L	2	50	2	4			
Strontium (Total)	ug/L	5		482	248			
Uranium (by ICP/MS)	ug/L	1	30	5	1			
Vanadium (Total)	ug/L	1	1000	ND	2			
Zinc (Total)	ug/L	10	5000	434	219			
Miscellaneous								
Ammonia-N	ma/l	0.05		0.06	ND			
Boron	mg/L	0.00		0.00	ND			
Chloremines	mg/L	0.05		0.11	ND	ND		
	nig/L	0.05	15	ND	ND	ND		
Gross Alpha	pCi/L		15	6.05 +/- 1.61	2.60 +/- 1.34			
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	0.4			
Methane	ug/L	0.1		0.68	0.18			
Nitrogen (Total)	mg/L	0.5		ND	ND			
o-Phosphate-P	mg/L	0.05		0.16	0.18			
Phosphorous (Total)	mg/L	0.03		0.22	0.37			
Radium 226	pCi/L		,3	0.775 +/536	0.294+/- 0.203			
Organic Analyses		•						
Haloacetic Acids (Total)	ua/l	10	60.0	0.0	3.0	0.0		
Dibromonotic Acius (10ldi)	ug/L	1.0	00.0	0.0	3.2	0.0		
Dibromoacetic Acid	ug/L	1.0		ND	ND	ND		
Dichloroacetic Acid	ug/L	1.0		ND	ND	ND		
Monobromoacetic Acid	ug/L	1.0		ND	ND	ND		
Monochloroacetic Acid	ug/L	2.0		ND	ND	ND		
Trichloroacetic Acid	ug/L	1.0		ND	3.2	ND		
Organic Carbon (Dissolved)	mg/L	0.2		0.87	0.86			
Organic Carbon (Total)	mg/L	0.2		0.91	0.93			
Tribalomethanes (Total)	ua/l	1.0	80 0	6.7	52 7	42 1		
Bromodichloromethane	- <u>9</u>	0.5	00.0	1.0	15.0	11 0		
Diomodichioi omethane	ug/L	0.5		1.2	10.0	11.0		
Bromotorm	ug/L	0.5		ND	1.5	0.9		
Chloroform	ug/L	0.5		4.8	28.0	25.0		
Dibromochloromethane	ug/L	0.5		0.7	8.2	5.2		
Field Parameters	0							
Temperature	°С	0.1		18.3	18.4			
Specific Conductance (EC)	uS	1.0	900	997	930			
pH	Std Units	0.1	6.5 - 8.5	7.0	7.1			
ORP	mV	1.0		- 96	-94			
Free Chlorine Residual	ma/L	0.1	2 - 5	ND	ND			
Dissolved Oxygen	ma/l	0.1	2.0	0.13	0.21			
Silt Density Index	Std Linita	0.07		0.13	0.21			
	Stu UTIIIS	0.1						
Gas Volume	IIIL ma/l	2.0						
120	IIIg/L	0.1		ND				

Table 15. Summary of WY 2012 Water Quality Data – SM ASR-2

Notes: Constituents exceeding MCLs denoted in BOLD type

				Results					
						SMS ASR-3			
Parameter	Unit	PQL	MCL	10/22/2010	5/22/12	6/21/12	7/3/12	10/30/12	
		Sample D	escription	NGW		WY 2012	Storage		
Elapsed Storage Time	Days				29	59	71	190	
Volume Purged at Sampling	1,000 gals								
Major Cations									
Calcium	mg/L	0.5		76	44		50	68	
Magnesium	mg/L	0.5		18	14		13	18	
Potasium	mg/L	0.5		4.5	3.0		3.4	4.8	
Sodium	mg/L	0.5		102	44		56	87	
Major Anions									
Alkalinity, Total (as CaCO3)	mg/L	2		304	141		157	223	
Chloride	mg/L	1	250	107	33	34	44	90	
Sulfate	mg/L	1	250	56	71		68	58	
Nitrate (as NO3)	mg/L	1	45	1	ND		ND	ND	
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND		ND	ND	
General Physical									
рН	Std Units			7.7	7.5		7.5	7.3	
Specific Conductance (EC)	uS	1	900	954	521		583	850	
Total Dissolved Solids	mg/L	10	500	575	317		342	503	
Metals									
Arsenic (Total)	ug/L	1	10	4	39		4	5	
Barium (Total)	ug/L	10	1000	50	55		66	77	
Iron (Dissolved)	ug/L	10		21	20		32	93	
Iron (Total)	ug/L	10	300	21	88		193	156	
Lithium	ug/L	1		36	7		10	32	
Manganese (Dissolved)	ug/L	10		27	16		18	25	
Manganese (Total)	ug/L	10	50	27	16		24	26	
Molybdenum	ug/L	1	1000		97		35	8	
Nickel	ug/L	10	100	ND	ND		ND	ND	
Selenium	ug/L	2	50	ND	8		5	2	
Strontium (Total)	ug/L	5		403	231		262	335	
Uranium (by ICP/MS)	ug/L	1	30		5		4	2	
Vanadium (Total)	ug/L	1	1000		2		ND	4	
Zinc (Total)	ug/L	10	5000		129		96	72	
Miscellaneous									
Ammonia-N	mg/L	0.05		249	0.06		ND	ND	
Boron	mg/L	0.05		ND	ND		ND	0.09	
Chloramines	mg/L	0.05		0.08	ND	ND	ND	ND	
Gross Alpha	pCi/L		15		4.43 +/- 1.59		9.15 +/- 2.26	4.12 +/- 1.97	
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	ND		ND	ND	
Methane	ug/L	0.1		ND	ND		0.17	0.61	
Nitrogen (Total)	mg/L	0.5		ND	ND		ND	ND	
o-Phosphate-P	mg/L	0.05		ND	0.10		ND	ND	
Phosphorous (Total)	mg/L	0.03		0.03	0.22		0.18	0.22	
Radium 226	pCi/L		3		0.356 +/- 0.183		0.160 +/- 0.165	0.426 +/- 0.256	
Organic Analyses									
Haloacetic Acids (Total)	ug/L	1.0	60.0	ND	16.4	23.2	9.3	0.0	
Dibromoacetic Acid	ug/L	1.0		ND	ND	2.3	ND	ND	
Dichloroacetic Acid	ug/L	1.0		ND	3.4	12.0	2.7	ND	
Monobromoacetic Acid	ug/L	1.0		ND	ND	ND	ND	ND	
Monochloroacetic Acid	ug/L	2.0		ND	ND	2.3	ND	ND	
Trichloroacetic Acid	ug/L	1.0		ND	13.0	6.6	6.6	ND	
Organic Carbon (Dissolved)	mg/L	0.2		0.71	0.87		0.78	0.66	
Organic Carbon (Total)	mg/L	0.2		0.70	1.20		0.98	0.73	
Trihalomethanes (Total)	ug/L	1.0	80.0	ND	79.0	57.7	46.5	6.3	
Bromodichloromethane	ug/L	0.5		ND	23.0	17.0	14.0	1.8	
Bromoform	ug/L	0.5		ND	2.0	1.7	1.7	0.5	
Chloroform	ug/L	0.5		ND	39.0	26.0	21.0	2.7	
Dibromochloromethane	ug/L	0.5		ND	15.0	13.0	9.8	1.3	
Field Parameters									
Temperature	°C	0.1		26.2	17.3		18.4	23.9	
Specific Conductance (EC)	uS	1.0	900	991	517		589	829	
pH	Std Units	0.1	6.5 - 8.5	7.0	7.8		7.3	7.1	
ORP	mV	1.0		-82	- 38		-126	-192	
Free Chlorine Residual	mg/L	0.1	2 - 5	ND	0.05		ND	ND	
Dissolved Oxygen	mg/L	0.01			5.83				
Silt Density Index	Std Units	0.1							
Gas Volume	mL	2.0							
H ₂ S	mg/L	0.1		0.60	ND		0.1	0.05	

Table 16. Summary of WY 2012 Water Quality Data – SMS ASR-3

Notes: Constituents exceeding MCLs denoted in BOLD type

	Unit	501		Results						
Boromotor				4/25/42	E/20/42	SM MW-1	0/2/42	44/4/40		
Parameter	Unit	Sample D	escription	1/25/12 WY 2011 Storage	5/30/12	WX 2012 Storage		11/1/12		
Elapsed Storage Time	Days			246	37	71	101	192		
Volume Purged at Sampling	1,000 gals						-			
Major Cations										
Calcium	mg/L	0.5		72	47	48		47		
Magnesium	mg/L	0.5		22	14	11		12		
Potasium	mg/L	0.5		3.9	3.1	3.1		2.9		
Sodium Maior Aniona	mg/L	0.5		61	48	47		47		
	ma/l	2		203	151	130		144		
Chloride	ma/L	1	250		35	32	59			
Sulfate	ma/L	1	250	92	70	70	00	69		
Nitrate (as NO3)	mg/L	1	45	ND	ND	ND		ND		
Nitrite (as Nitrogen)	mg/L	1	1		ND	ND		ND		
General Physical										
рН	Std Units			7.4	7.6	7.4		7.5		
Specific Conductance (EC)	uS	1	900	790	563	528		540		
Total Dissolved Solids	mg/L	10	500		363	322		340		
	ug/l	· ·	10	^						
Arsenic (10(a)) Barium (Total)	ug/L ug/l	10	1000	52		2		2		
Iron (Dissolved)	ug/L	10	1000	52 ND	ND	20 ND				
Iron (Total)	ua/L	10	300	ND	21	ND		ND		
Lithium	ug/L	1		21	21	6				
Manganese (Dissolved)	ug/L	10		13	ND	ND		ND		
Manganese (Total)	ug/L	10	50	13	ND	ND		ND		
Molybdenum	ug/L	1	1000	7		4		4		
Nickel	ug/L	10	100			ND		ND		
Selenium	ug/L	2	50	4		6		2		
Strontium (Total)	ug/L	5		383		227		247		
Uranium (by ICP/MS)	ug/L	1	30	5		2		1		
Zinc (Total)	ug/L ug/l	10	5000	ND 61						
Miscellaneous	49.2	,,,		01		115		10		
Ammonia-N	mg/L	0.05		ND	ND	ND		ND		
Boron	mg/L	0.05		0.07	ND	ND		ND		
Chloramines	mg/L	0.05		ND	ND	ND	ND	ND		
Gross Alpha	pCi/L		15	8.09 +/- 2.3		2.62 +/- 1.34		2.95 +/- 1.44		
Kjehldahl Nitrogen (Total)	mg/L	0.5		ND	0.5	ND		ND		
Methane	ug/L	0.1		0.6		0.14		0.12		
Nitrogen (Total)	mg/L	0.5		ND	0.6	ND		ND		
0-Priosphate-P	mg/L mg/l	0.05		ND	ND	ND 0.15		ND 0.06		
Radium 226	ng/L pCi/L	0.05	3	0.180 +/- 0.390	0.22	0.561 +/- 0.262		0.027 +/- 0.157		
Organic Analyses										
Haloacetic Acids (Total)	ug/L	1.0	60.0	0.0	0.0	4.0	0.0	0.0		
Dibromoacetic Acid	ug/L	1.0		ND	ND	ND	ND	ND		
Dichloroacetic Acid	ug/L	1.0		ND	ND	ND	ND	ND		
Monobromoacetic Acid	ug/L	1.0		ND	ND	ND	ND	ND		
Monochloroacetic Acid	ug/L	2.0		ND	ND	ND	ND	ND		
Trichloroacetic Acid	ug/L mail	1.0		ND	ND	4.0	ND	ND 0.61		
Organic Carbon (Dissolved)	mg/L mg/l	0.2		1.1	0.9	1.1		0.61		
Tribalomethanes (Total)	ug/L	1.0	80.0	1.0	30.0	0.93	27.6	58.7		
Bromodichloromethane	ug/L ug/l	0.5	00.0	1.0	9.4	17.0	7.2	12.0		
Bromoform	ug/L	0.5		ND	1.2	1.2	0.6	0.5		
Chloroform	ug/L	0.5		4.4	14.0	36.0	16.0	42.0		
Dibromochloromethane	ug/L	0.5		0.7	6.3	7.7	3.8	4.2		
Field Parameters										
Temperature	°C	0.1		18.9	18.5	18.5		19.6		
Specific Conductance (EC)	uS	1.0	900	761	470	516		530		
pH	Std Units	0.1	6.5 - 8.5	6.99	7.0	7.1		7.5		
UKP Eree Chlorine Residuel	111V mg/l	1.0	0 F	- 219	-135	-64		-84		
	mg/L mg/l	0.1	2-5	ND 0.26	1 04	ND		UN		
Silt Density Index	Std Units	0.07		0.20	1.04					
Gas Volume	mL	2.0								
H ₂ S	mg/L	0.1		ND	ND	ND				
Notes										

Table 17. Summary of WY 2012 Water Quality Data – SM MW-1

Constituents exceeding MCLs denoted in BOLD type

				Results						
Paramotor	Unit	POL	MCI	3/27/12	5/30/12	SMS Deep 7/3/12	8/2/12	10/30/12		
i didifetei	onn	Sample D	escription	WY 2011 Storage	5/50/12	WY 2012	Storage	10/30/12		
Elapsed Storage Time	Days			308	37	71	101	190		
Volume Purged at Sampling	1,000 gals									
Major Cations										
Calcium	mg/L	0.5		70	48	55		66		
Magnesium	mg/L	0.5		14	9	10		11		
Potasium	mg/L	0.5		4.1	2.8	3.2		4.1		
Sodium Maior Anions	mg/L	0.5		91	50	60		90		
Alkalinity, Total (as CaCO3)	ma/l	2		220	149	167		203		
Chloride	ma/L	1	250	120	32	54	80	90		
Sulfate	mg/L	1	250	53	65	60		54		
Nitrate (as NO3)	mg/L	1	45	ND	ND	ND		ND		
Nitrite (as Nitrogen)	mg/L	1	1	ND	ND	ND		ND		
General Physical										
рН	Std Units			7.3	7.7	7.6		7.4		
Specific Conductance (EC)	uS	1	900	904	533	627		796		
Total Dissolved Solids	mg/L	10	500	534	351	345		468		
Metals				-				_		
Arsenic (Total)	ug/L	1	10	6		6		7		
Barlum (100al) Iron (Dissolved)	ug/L	10	1000	54	ND	36		43		
Iron (Total)	ug/L ug/l	10	300	56	IND 14	ND 14				
Lithium	ua/L	10	500	25	14	14		29		
Manganese (Dissolved)	ug/L	10		20	ND	ND		11		
Manganese (Total)	ug/L	10	50	79	ND	ND		12		
Molybdenum	ug/L	1	1000	7		44		7		
Nickel	ug/L	10	100			ND		ND		
Selenium	ug/L	2	50	2		7		2		
Strontium (Total)	ug/L	5		457		351		413		
Uranium (by ICP/MS)	ug/L	1	30	2		5		3		
Vanadium (Total)	ug/L	1	1000	1		4		6		
Zinc (Total)	ug/L	10	5000	10		ND		17		
Miscellaneous	m m //	0.05		0.00	0.00	ND		0.00		
Annonia-N Borop	mg/L	0.05		0.09	0.06	ND 0.05		0.06		
Chloramines	ma/L	0.05		0.09 ND	ND	0.05	ND	0.00		
Gross Alpha	nG/L	0.00	15	5.20 +/- 2.30		6.21 +/- 1.96		3.34 +/- 2.58		
Kjehldahl Nitrogen (Total)	mg/L	0.5			ND	ND		ND		
Methane	ug/L	0.1		1.4		0.15		0.62		
Nitrogen (Total)	mg/L	0.5			ND	ND		ND		
o-Phosphate-P	mg/L	0.05		ND	ND	ND		ND		
Phosphorous (Total)	mg/L	0.03			0.09	0.09		0.12		
Radium 226	pCi/L		3	0.408 +/- 0.204		0.025 +/- 0.111		0.663 +/- 0.292		
Organic Analyses		4.0	<u> </u>	0.0	44.0	7.0	47			
Haloacetic Acids (I otal)	ug/L	1.0	60.0	0.0	14.8	7.8	1.7	0.0		
Diptornoacetic Acid	ug/L ug/l	1.0			ND 1 Q	ND 2.1				
Monobromoacetic Acid	ug/L	1.0		ND	4.0 N/D	2.1 ND	ND			
Monochloroacetic Acid	ug/L	2.0		ND	ND	ND	ND	ND		
Trichloroacetic Acid	ug/L	1.0		ND	10	5.7	1.7	ND		
Organic Carbon (Dissolved)	mg/L	0.2			0.89	0.66		0.55		
Organic Carbon (Total)	mg/L	0.2		0.98	0.85	0.71		0.59		
Trihalomethanes (Total)	ug/L	1.0	80.0	0.0	46.9	33.3	18.8	10.3		
Bromodichloromethane	ug/L	0.5		ND	14.0	10.0	5.2	3.0		
Bromoform	ug/L	0.5		ND	1.9	1.6	0.9	0.7		
Chloroform	ug/L	0.5		ND	20.0	14.0	8.8	4.3		
Dibromochloromethane	ug/L	0.5		ND	11.0	1.7	3.9	2.3		
Temperature	°c	0.1		0£ 1	10.0	26 E		05		
Specific Conductance (EC)	uS	1.0	ann	20.1	526	20.5 830		20 777		
pH	Std Units	0.1	6.5 - 8.5	7 1	7 4			7.21		
ORP	mV	1.0	0.0 0.0	-165	-178.2	-161		155		
Free Chlorine Residual	mg/L	0.1	2 - 5		ND	ND		ND		
Dissolved Oxygen	mg/L	0.01		2.11	2.37					
Silt Density Index	Std Units	0.1								
Gas Volume	mL	2.0								
E120	mg/L	0.1	1	0.07	0.17			0.05		

Table 18. Summary of WY 2012 Water Quality Data – SMS Deep

Constituents exceeding MCLs denoted in BOLD type

						Results	Results			
					PCA-E Deep		Par	alta		
Parameter	Unit	POL	MCL	3/26/12	6/19/12	10/31/12	11/17/11	7/24/12		
i uluitotoi	•	Sample D	oscription	WV 2011 Storago	WV 2012 Storage	WV 2012 Storage	WV 2011 Storago	WV 2012 Storago		
Maluma Dumanad at Canadia a	4 000	Sample D	escription	WI 2011 Storage	WT 2012 Storage	WT 2012 Storage	WI 2011 Storage	WT 2012 Storage		
Volume Pumped at Sampling	1,000 gais									
Major Cations										
Calcium	mg/L	0.5		53	42	51	37	63		
Magnesium	ma/L	0.5		10	8	10	10	16		
Potasium	ma/l	0.5		3.8	3.5	3.0	ND	ND		
Sodium	mg/L	0.5		J.0	3.3	J.9 01	ND	ND 01		
Sodium	IIIY/L	0.5		04	80	91	00	01		
Major Anions					-					
Alkalinity, Total (as CaCO3)	mg/L	2		192	160	185	136	225		
Chloride	mg/L	1	250	104	76	92	87	107		
Sulfate	ma/L	1	250	31	28	32	43	67		
Nitrate (as NO3)	ma/l	1	45	ND				0.7		
Nitrito (co Nitrogon)	mg/L	1	10	ND	ND	ND	ND			
Nillille (as Nilliogen)	IIIY/L	1	1	ND	ND	ND	ND	ND		
General Physical					-					
pH	Std Units			7.4	7.7	7.5				
Specific Conductance (EC)	uS	1	900	754	613	737	722	932		
Total Dissolved Solids	ma/L	10	500	437	403	440	352	522		
Metals										
And and (Testal)				-		-	-	_		
Arsenic (Total)	ug/L	1	10	8		8	3	2		
Barium (Total)	ug/L	10	1000	63		68	ND	ND		
Iron (Dissolved)	ug/L	10				35	ND	ND		
Iron (Total)	ug/L	10	300	45	ND	44	ND	ND		
Lithium	ua/L	1		23		23	7			
Manganese (Dissolved)	ug/L	10		23		23	1			
	uy/L	10				99	11			
Manganese (Total)	ug/L	10	50	104	36	101	ND	20		
Molybdenum	ug/L	1	1000	10		11	ND	ND		
Nickel	ug/L	10	100			ND	ND	ND		
Selenium	ua/L	2	50	ND		ND	4	2		
Strontium (Total)	ug/l	5		305		271	200	300		
	ug/L			303		2/1	200	500		
Uranium (by ICP/MS)	ug/L	1	30	ND		ND	ND			
Vanadium (Total)	ug/L	1	1000	ND		1	ND	ND		
Zinc (Total)	ug/L	10	5000	ND		ND	ND	ND		
Miscellaneous										
Ammonia-N	ma/L	0.05		0.06	0.05	ND	ND	ND		
Boron	ma/l	0.05		0.09	0.09	0.10	0.06	0.12		
Chlorominee	mg/L	0.05		0.03	0.03	0.10	0.00	0.12		
Chioramines	mg/L	0.05		ND		ND	ND			
Gross Alpha	pCi/L		15	0.302 +/- 1.56		0.236 +/- 1.52	5.73 +/- 0.400			
Kjehldahl Nitrogen (Total)	mg/L	0.5				ND	ND	ND		
Methane	ug/L	0.1		0.33		0.64	ND			
Nitrogen (Total)	ma/l	0.5				ND				
o Phosphate P	mg/L	0.05		ND	ND	ND	ND	ND		
	mg/L	0.00		IND	ND	110	ND	ND		
Phosphorous (Total)	mg/L	0.03				0.28	ND	ND		
Radium 226	pCi/L		3	0.278 +/- 0.288		0.080 +/- 0.173	1.40 +/- 0.673			
Organic Analyses										
Haloacetic Acids (Total)	ua/L	1.0	60.0	0.0		0.0	0.0			
Dibromoacetic Acid	ua/l	1.0		ND		ND	ND			
Dichloroacetic Add	ua/l	1.0								
	uy/L	1.0		ND		ND	ND			
Monobromoacetic Acid	ug/L	1.0		ND		ND	ND			
Monochloroacetic Acid	ug/L	2.0		ND		ND	ND			
Trichloroacetic Acid	ug/L	1.0		ND		ND	ND			
Organic Carbon (Dissolved)	mg/L	0.2				ND	0.71	0.71		
Organic Carbon (Total)	ma/l	02		0.52	0.27	0.29	0 79	0.68		
Tribalomethanes (Total)	ug/l	1.0	80.0	0.02	0.2.	0.20	2.6	3.6		
	ug/L	1.0	00.0	0.0		0.0	2.0	5.0		
Bromodichloromethane	ug/L	0.5		ND		ND	ND	0.9		
Bromoform	ug/L	0.5		ND		ND	ND	ND		
Chloroform	ug/L	0.5		ND		ND	2.6	2.7		
Dibromochloromethane	ug/L	0.5		ND		ND	ND	ND		
Field Parameters				-	-	-	-			
Tomporatura	° C	0.4		22.0	0F 0	00 F		20.0		
Constitute		0.1		23.8	25.2	20.5		20.2		
Specific Conductance (EC)	uS	1.0	900	728	344	719		893		
рН	Std Units	0.1	6.5 - 8.5	7.0	7.2	7.3		7.2		
ORP	mV	1.0		- 271	-96	-165				
Free Chlorine Residual	mg/L	0.1	2 - 5	ND	ND	ND		ND		
Dissolved Oxygen	ma/l	0.01		0.10						
Silt Density Index	Std Linita	0.07		0.13						
	olu utilis	0.1								
Gas Volume	IIIL ma/l	2.0								
120	IIIQ/L	U.1		ND	I ND	I ND		0.013		

Table 19. Summary of WY 2012 Water Quality Data – Off-Site Monitoring Wells

Notes: Constituents exceeding MCLs denoted in BOLD type

Injection Water Quality

Injection water quality from the CAW system during WY 2012 is presented in **Table 13** below. The data in **Table 13** show injection water quality was typical of recent years. Levels of Trihalomethane (THM) and Haloacetic Acid (HAA) compounds, as well as bionutrients (oxygen, nitrogen, phosphorous, and organic carbon), were all present at levels similar to previous years.

Water Quality During Aquifer Storage

Tables 14 through 16 present summaries of water-quality data collected at the three ASR wells (SM ASR-1, SM ASR-2 and SMS ASR-3, respectively). **Tables 17 and 18** present similar data collected at the on-site monitoring wells SM MW-1 and SMS Deep, respectively, and **Table 19** presents the water-quality data collected at the off-site monitoring wells (PCA-E Deep and Paralta). Data for the ASR wells include baseline water quality taken prior to WY 2012 injection (end of WY 2011 Storage) and stored water quality (WY 2012 Storage) collected periodically from the aquifer after WY 2012 injection operations were terminated.

Review of water-quality parameters gathered at the active WY 2012 ASR injection wells (SM ASR-2 and SMS ASR-3), including major anions and cations, redox potential (ORP), and conductivity all showed similar effects of significant dilution / intermixing with native groundwaters during aquifer storage. This is unremarkable when compared to years prior to WY 2012 due to the larger volume of water injected those years (i.e., over 1,000 af in both WY 2010 and WY 2011).

As found in previous ASR operations at the site, the most significant water-quality changes observed during aquifer storage were redox-related (and likely biologically mediated) reactions; these were primarily evidenced by the degradation of HAA and THM compounds and absence of hydrogen sulfide even in mixed NGW and injected waters. Disinfection Byproducts (DBPs) parameters at the on-site wells during WY 2012 are graphically presented on **Figures 19 through 23**:

- THMs at the ASR wells showed their typical initial and significant ingrowth during the storage period, which results from the presence of free chlorine and trace levels of organic carbon in the injected water. THM ingrowth generally peaked in concentration approximately 60 days after the cessation of injection, followed by a gradual decline during the storage period. After approximately 90 to 150 days of storage, THMs had degraded to below the initial injection levels. It is noted that THMs were below the Maximum Contaminant Level (MCL) of 80 ug/L throughout WY 2012.
- THMs at the on-site monitoring wells showed similar ingrowth and decay patterns as the ASR wells, with the exception that SM MW-1 showed an uncharacteristic increase in THMs at the end of the storage period.
- HAAs showed the typical limited amount of ingrowth after the cessation of injection and they degraded completely during storage within a period of approximately 90 days at all wells.

Decline in THMs at the ASR and on-site monitoring wells followed the characteristic process: rapid degradation of Bromoform and the highly brominated species with much slower decline in Chloroform. The slower than historically-observed degradation of THM's at SM MW-1 may be a result of the large volume of water injected in WY 2010 and WY 2011 and the more thorough displacement of native groundwaters; this phenomenon will need to be observed closely in subsequent operations to further assess any change in degradation rates.

Water Quality at Off-Site Monitor Wells

Samples from the closest CAW SGB production well (Paralta) and from PCA-E Deep were collected prior to the WY 2012 injection season and following the injection season. The samples were analyzed for DBP's and for trace minerals which might indicate influence from the operation of the ASR wells.

As discussed previously and as shown in **Table 12**, evaluation of chloride ion concentrations indicate that some previously injected water had reached the off-site wells prior to the WY 2012 injection season. The presence of low levels of THM compounds at the Paralta well further confirms the presence of CAW Injectate at the site, with THM levels of 2.6 to 3.6 micrograms per liter (ug/L) prior to and after the WY 2012 injection season, respectively. It is important to note, however, that the Paralta well penetrates both the QTp and Tsm formations; therefore, the precise quantification of injectate capture is not possible due to the significant and variable contribution of QTp water in the Paralta production. As related to potable water-quality standards, the THM levels detected at the Paralta Well are less than 5 percent of the MCL of 80 ug/L.

Water Quality Summary

Overall, water-quality data from WY 2012 showed no significant deviations from previous years; however, as noted in the 2011 Summary of Operations Report, the determination of precisely where the injected waters travel will likely be more challenging as multiple wells become operational and injection and recovery quantities increase. The most important factors are that: a) no evidence of adverse geochemical reactions have been observed during aquifer storage, and; b) that injection is showing direct and measurable benefit to the basin water quality vis-à-vis reductions in salinity, dissolved solids, hardness, and aesthetic parameters such as manganese and sulfide ion, which impart color and odor to the consumers' drinking water. These improvements are likely to continue as ASR operations continue and expand in the future.

CONCLUSIONS

Based on the findings from operation of Monterey Peninsula ASR Project during WY 2012, we conclude the following:

WY 2012 Recharge Operations

WY 2012 was Dry Water Year hydrologic year and relatively limited total volume of 131 af of water recharged into the Seaside Groundwater Basin at the Santa Margarita and Seaside Middle Schools ASR Facilities. The volume injected during WY 2012 was significantly less than that injected during WY 2011 (1,117 af). The total volumes injected each year reflect the relative availability of excess Carmel River flows, as well as the number of ASR wells in operation and conveyance capacity of the CAW system. A graphical presentation showing a summary of annual injection and recovery volumes since operations began at the Santa Margarita ASR Facility site is shown on **Figure 5**.

Well Performance

SM ASR-1. No injection occurred at this well during WY 2012. As a result, the well performance remained stable.

SM ASR-2. SM ASR-2 was operated at average injection rates ranging between approximately 1,340 to 1,960 gpm (5.9 to 8.7 afd), averaging approximately 1,740 gpm (7.7 afd). The 24-hour specific injectivity at ASR-2 the beginning and end of WY 2012 was approximately 33 gpm/ft and 29 gpm/ft, respectively, indicating that a minor amount of residual plugging occurred at this well over the course of the WY 2012 injection season. The pumping specific capacity similarly declined slightly over the course of WY 2012, from approximately 33 gpm/ft prior to injection to 29 gpm/ft at the end of the injection season, suggesting that backflushing did not completely remove the accumulated residual plugging during WY 2012. These results indicate that the injection rate should be reduced slightly in order to limit plugging and maintain long-term well performance.

SMS ASR-3. SMS ASR-3 underwent the initial step of baseline injection testing, consisting of a variable rate injection test, followed by limited short periods of injection for the remainder of the WY 2012 injection season. The well was tested at injection rates ranging between approximately 760 to 1,840 gpm (3.4 to 8.1 afd) and displayed specific injectivities of 17 to 9 gpm/ft at the lower and higher injection rates, respectively. It is noted that at 1,840 gpm, the water-level drawup exceeded the recommended maximum of 175 feet; therefore, for planning purposes, injection rates at this well should be maintained at approximately 1,500 gpm or less until further testing can be performed.

The pumping specific capacity of SMS ASR-3 declined significantly over the course of WY 2012, from approximately 30 gpm/ft prior to injection to 13 gpm/ft at the end of the injection season, a decline of approximately 57 percent. The significant decline in SMS ASR-3 performance following initial injection is similar to that experienced at both SM ASR-1 and SM ASR-2, each of which observed declines on the order of 60 percent. The consistent pattern of

performance loss following initial injection at all three ASR wells is indicative of particle rearrangement and/or chemical precipitation during the initial phases of injection. This phenomenon will be evaluated in further detail following completion of the baseline injection testing program during WY 2013. It is noted that rehabilitation of both SM ASR-1 and SM ASR-2 was very successful in restoring the initial loss of performance and subsequent declines in performance at these wells has been limited. It is anticipated that similar results can be achieved at SMS ASR-3.

Water Quality

Significant conclusions regarding the water-quality investigation during WY 2012 include the following:

- Consistent with previous observations, no significant ion exchange, acid-base, or precipitation reactions were observed at the ASR sites.
- THMs at the ASR sites showed characteristic and significant initial "ingrowth" that peaked at approximately 30 to 90 days of storage, followed by a gradual decline over the next 90 to 150 days of storage.
- HAAs showed little "ingrowth" following the cessation of injection and degraded completely during aquifer storage.

RECOMMENDATIONS

Based on the WY 2012 ASR program results and our experience with similar ASR projects, we offer the following recommendations for continued and future operations of the Monterey Peninsula ASR Project wells:

SM ASR-1 Well Operational Parameters (based on WY 2011 findings)

- <u>Water-Level Drawup</u>: Under the present local water-level conditions, the amount of water-level drawup should be limited to approximately 100 feet. This amount of water-level drawup during injection equals the typical available drawdown in the well for backflushing. This helps to avoid over-pressurization and compression of plugging materials, thereby maximizing the efficiency of backflushing and limiting the amount of residual plugging.
- <u>Injection Rate</u>: Based on the lack of overall residual plugging during WY 2011, SM ASR-1 can be operated at an injection rate up to approximately 1,500 gpm (6.6 afd) to avoid excessive plugging during injection. This represents a 50 percent increase in the design injection rate of 1,000 gpm.

 <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 100 feet, whichever occurs first.

SM ASR-2 Well Operational Parameters

- <u>Water-Level Drawup</u>: Under the present local water-level conditions, the amount of water-level drawup should be limited to approximately 140 feet, which is equal to the typical amount of available drawdown in the well for backflushing. Again, this helps to avoid over-pressurization and compression of plugging materials and limiting the amount of residual plugging.
- <u>Injection Rate</u>: Based on the slight amount of residual plugging that occurred during WY 2012 with the well injecting up to 1,960 gpm, we recommend the injection rate be limited to the design injection rate of 1,500 gpm in order to limit residual plugging and maintain long-term performance.
- <u>Backflushing Frequency</u>: During the recharge season, routine backflushing should continue to be performed on an approximate weekly basis, or when the amount of water-level drawup in the casing reaches approximately 140 feet, whichever occurs first.

SMS ASR-3 Well Operational Parameters

- The SMS ASR-3 baseline injection testing program should be completed in WY 2013. This includes the following steps:
 - 1. 24-hr constant rate injection test;
 - 2. 7-day constant rate injection test;
 - 3. Backflushing between each injection test, and;
 - 4. Post-injection production performance testing
- Based on the results of the variable rate injection test, injection rates at this well should be maintained at approximately 1,500 gpm or less until further testing can be performed.
- Following the completion of the baseline injections testing program, specific recommendations for long-term operation of SMS ASR-3 should be developed, including maximum recommend water-level drawup, injection rate, and backflushing frequency.

CLOSURE

This report has been prepared exclusively for the Monterey Peninsula Water Management District for the specific application to the ASR Project on the Monterey Peninsula. The findings and conclusions presented herein were prepared in accordance with generally accepted hydrogeologic and engineering practices. No other warranty, express or implied, is made.
REFERENCES

- Clark, J.C., Dupré, W.R., and Rosenberg, L.I. (1997), *Geologic Map of the Monterey and Seaside 7.5-Minute Quadrangles, Monterey County, California: a Digital Database*, U.S. Geological Survey Open-File Report 97-30.
- Driscoll, Fletcher, G., (1986), *Groundwater and Wells, Second Edition*, published by Johnson Screens.
- Fugro West, Inc. (1997), *Hydrogeologic Assessment, Seaside Coastal Groundwater Subareas, Phase III Update, Monterey County, California*, prepared for Monterey Peninsula Water Management District.
- Fugro West, Inc. (1997), *Reconnaissance-Level Feasibility Study for Seaside Basin Injection/Recovery Project*, prepared for Monterey Peninsula Water Management District.
- Huisman, L., and Olsthoorn, T.N. (1983), *Artificial Groundwater Recharge*, Delft University of Technology, Pitman Advanced Publishing Program.
- Nicholson, B.C., Dillon, P.J., and Pavelic, P. (2002), *Fate of Disinfection By-Products During Aquifer Storage and Recovery*, American Water Works Association Research Project No. 2618.
- Padre Associates, Inc. (2001), *Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well*, prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2002), *Summary of Operations, Water Year 2002 Injection Testing, Santa Margarita Test Injection Well,* prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2004), *Summary of Operations, Water Year 2003 Injection Testing, Santa Margarita Test Injection Well,* prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2005), *Summary of Operations, Water Year 2004 Injection Testing, Santa Margarita Test Injection Well,* prepared for Monterey Peninsula Water Management District.
- Padre Associates, Inc. (2006), *Summary of Operations, Water Year 2005 Injection Testing, Santa Margarita Test Injection Well,* prepared for Monterey Peninsula Water Management District.

06-0028_WY2012_SOR_rpt_20130912.doc

- Pueblo Water Resources, Inc. (2007), *Summary of Operations, Water Year 2006 Injection Testing, Santa Margarita Test Injection Well,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2008), *Summary of Operations, Well Construction and Testing, Santa Margarita Test Injection Well No. 2,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), *Summary of Operations, Phase 1 ASR Project, Water Year 2007,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2009), *Summary of Operations, Phase 1 ASR Project, Water Year 2008,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2010), *Summary of Operations, Phase 1 ASR Project, Water Year 2009,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2011), *Summary of Operations, Phase 1 ASR Project, Water Year 2010,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), *Summary of Operations, Well Construction and Testing, Seaside Middle School Test Well,* prepared for Monterey Peninsula Water Management District.
- Pueblo Water Resources, Inc. (2012), *Summary of Operations, Phase 1 ASR Project, Water Year 2011,* prepared for Monterey Peninsula Water Management District.
- Pyne, R.D. (1994), Ground Water Recharge and Wells, Boca Raton, Florida, CRC Press.
- Raines, Melton & Carella, Inc. (2002), *Plan B Project Report*, prepared for the Water Division of the California Public Utilities Commission.
- Theis, C.V. (1935), *Relationship Between Lowering of Piezometer Surface on the Fate and Duration of Discharge of a Well Using Ground Water Storage*, Transactions of the Geophysical Union, vol. 16, pp. 519-524.

FIGURES

FIGURE 1. SITE LOCATION MAP WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

FIGURE 2. SM ASR-1 AS-BUILT SCHEMATIC WY 2012 ASR Program Monterey Peninsula Water Management District

water resources

FIGURE 3. SM ASR-2 AS-BUILT SCHEMATIC WY 2012 ASR Program Monterey Peninsula Water Management District

FIGURE 4. SMS ASR-3 AS-BUILT SCHEMATIC WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

PUEBLO

water resources

FIGURE 5. SUMMARY OF ASR OPERATIONS (WY 2001 - 2012) WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

FIGURE 8. SMS ASR-3 WATER-LEVEL DATA WY 2012 ASR Program Monterey Peninsula Water Management District September 2013 Project No. 06-0028

PUEBLO water resources

FIGURE 9. SM ASR-2 WATER-LEVEL DATA - INJECTION SEASON WY 2012 ASR Program Monterey Peninsula Water Management District September 2013 Project No. 06-0028

FIGURE 10. SMS ASR-3 WATER-LEVEL DATA - INJECTION SEASON WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

FIGURE 11. SMS ASR-3 WATER-LEVEL DATA - VARIABLE RATE INJECTION TEST WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

FIGURE 15. ORD TERRACE WATER-LEVEL DATA WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

FIGURE 17. PCA-EAST WATER-LEVEL DATA WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

FIGURE 18. FO-8 WATER-LEVEL DATA WY 2012 ASR Program Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

September 2013 Project No. 06-0028

water resources

September 2013 Project No. 06-0028

water resources

Monterey Peninsula Water Management District

September 2013 Project No. 06-0028

Water resources

APPENDIX A - FIELD DATA

Well: SM ASR-2 Test: Wy 2012 - Pre-Injection Line Flucking Sheet No. / of Pressure (psi) DTW Clined Head TOV (ff bist) (dallons) se Cline Head Drawup (ft) ET (min Date/Time-v Commente/Cther $\frac{1}{2} \frac{1}{2} \frac{1}$ 350 376,45 27674/000 89 28/12/19 05 - 2000 ٥ 62 0 $505 = E(1 - T_0/T_0 \times 100) + t$ = $(1 - 18/100 \times 100) + 1S$ = $(5 - 18/100 \times 100) + 1S$ 30 2000 501: 7 = 20 sees T's = 30 T10 = T12 = 63 (SDI=406-) 505 : T = 20 sees T = T = T = 27 j545 60 200 T.s = 31 SOT = 2.37 -45 STOP Fluching, Prepare to ing 276932000 16 120

MPWMD / CAW PHASE 1 AQUIFER STORAGE AND RECOVERY PROJECT

and the second second

Sur a star

Well: SM ASR-2

Test: 672012 #1

Sheet No. 1 of <u>2</u>

Data/T		EU.	Rate	in Totalizees		SI DIKEN SELETTE			Drawuo.	
3/28/12	1700	0	-	(अफर)	70	48	350	27635	e s ta a constante da const	Fry Tark = 1400 and
44	····	1	250			トラ	245		· · · · · · · · · · · · · · · · · · ·	* Meta is FRIT-201 (T. MAC)
	Colored at 2 5 1 - Changes	2	435		89	·····	232			a Car faile Sain ann an Sanain Caraine is bhliain ann Sain Calan. Martin Saint Sain an Annaich an Saint
		3								NOTE: In first 3 min of injection
		4								Tigerman motor did not record - until
		5	575		-69	46	227			C. Evans adjusted " dampening" setting
		6					<u> </u>			on mater Estimate Z,000 gol was
		7	910				226			not recorded.
			1050			46	230	36/: 7.		Juo
		9								
		10	1150				ant.	368.7	·····	anternet () ///////////////////////////////////
6 min		15	1216			42	224	258 4		ներ է։ Արդերու է, արդերությունները հետուներին հետուներին էրուներին արտանների է համերին։ գրողարդի միջրանների լունաստանն չէրությունը գեղանում։ Հա
		20	11.15		·····	<u></u>	2/7	348 4		
			10.2				n , 7	5.07.		ала аланатану на акулартана акалдар атандар акалдардар акулардар акулардар акулардар акалдардар акулардар акулар
······	1230	30	1500	1234 6772	72	45	213	339.95	364	34 1700 cuts - 30 min - 1263 c and An
	and all and a second	35			a sa ang ang ang ang ang ang ang ang ang an			338.89		Q14 = 1267 + 364 = 37.8 00 101
		40			· · · · · · · ·			337.73		
		45						337.69		, παταδρώματα παραδρώματα δαγαρόγουμα, ατοδρώματας, αποδράτα γγγρατικάτας ματά τρατοπορικά πορογγραφιστού παρασγού παρασγού παρασγού πορογγραφιστού που παρασγού παρασγού παρασγού π Το παρασγού π
		50						33223		
		55						337.40		•
10 min	18	60						337.29		The second state of the se
		70						337.04		
		80						336.42		
	18-	90						536.27		
00	,00	100		····	i		·	226 67		
20 min		140	an ann a se an se an s-ann - na					726 61		antibum yar antibu (1977) darkan Barana (1977) darkan kana (1977) darka (19
		160						225 44		er feler forge - senere par e fele er par forfere par forfer and e selectraris e en angele - en anne esta anna e e en anna Belevar - Belevar - Par
	200	180		1,8				334 30		
30 min		210						334.12	······	
·····	210	240						333,22		a addeese a dagadaana a gadaana a aaddaana a damaana ay aadaana a addeena a dadaanaa ay dagadaana dadaanaa addee
		270						332.88		ander of Chamberson & Marineses y Consequences - Consequences (Mandelessing - Chamberson) - Kamberson y Chamberson y
	22	300						332.67		
		330				-		331.86		
	23	360						331.71		
······		390						331.32		
3/29	0	420						331,15		4
	-,00	450		·		. <u> </u>		330,67		
	1	480					L	530.57		

•

Well: SM ASR-2

Test: (11 2012 #1

Sheet No. $\overline{\mathcal{A}}$ of $\overline{\mathcal{A}}$

		E	er Rati				5517	DTW	·· Drawup	
3/29/13	3 845	945	1810	01663000	72	45	214	326.85	49.5	Aug $\alpha = 1760$ s pm
			· · · · · · · · · · · · · · · · · · ·							QA6 = 35,6 gpm/ (7)
						• • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·	90 EC = 515-15/cm, T= 14.6 C
••••••								· · · · ·	· · · · · · · · · · · ·	pH = 7.94 (Do: 4.6 mg/l)
··										Elj LID Mg IL
		· ·····			·		······································			301: T=23 secs. Tx=27
		······································	······		u	· · · · · · · · · · · · · · ·				= 0.99
3/29	165	1345	1820	02449000	72	45	213	318,45	56.1	16 Been closing FCU
	16.		Ø	02462000	87	78	340			16'3 Fuy. 5top30
	· · · · · · · · · · · · · · · · · · ·					******				16" start 13F (276934000 cals)
			·····				· · · ·			1625 Q (her ing to have color
····										1640 STOD (BF (27693500) guis)
······································				······			·····			17° 10 - min Q/s
						· · ·			1.5 7. 1 1. 1 14.	OTU - 3 #2 245 Ab at as - 2 26 99 3(FT)
			·····							OTUN = 470, 56 Matm = 277022 (20)
	······································		······							Q15 = 2902 1 pm = 97.1 [= 29.9 (m) A)
				۱ <u></u>						
			······································							ET NOTU OT
·····									·····	3 0.04
			·····							5 24.3
				· · · · · · · · · · · · · · · · · · ·						10 4.01
							·····			20 1.25
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·				·····		
					·····					
									·	

5

Well: SM ASR-2

Test: WY2012 #2

Sheet No. 1 of 2

Note	illine Tilline	STIC:	Rate	Totalizer (naliona)	Pri Pri	SSURC (DSI) FCV	DTW A bist	Drawup	Comments Other
2/29	1723	0	Þ	0246300				374.54		THEN THE FULL MANUAL AND A CONTRACT OF MANY AND A CONTRACT OF AN A CONTRACT OF A CONTRAC
7		1	11.000	·····	327	<u> </u>	225	· · · · · · · · · · · · · · · · · · ·		
		3	//00				<u>~~</u> >			
·····		4	1830	and constant of activity	72	45	213	•••••		
·····		6		· ···· · · · · · · · · · · · · · · ·						
·····		7	· · · · · · · · · · · · · · · · · · ·							
		9								
	1735	10	1830	0 2480(20)	74	45	212	335.16	39.36	1700 gpm + 30,4 = 43,1 gpm/ft
5 min		12	······ ·····							V
		20				· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	25 30	· · · · · · · · · · · ·							
		35								
		40		····						
-		50								
10 min	-1825	55 60								and and a second se
		70						· · · · · · · · · · · · · · · · · · ·		
		80 90		······································						
		100	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····				······································	
20 min	17 -	120								
		160		-				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
30 min	20-	180 210			•					
	2125	240								
	22-25	270		annya yang para salahin karya panyaka disimanika kata ya						
	-25-	330								
	23	360		······			••••••	·····		
	035	420							· · · · · · · · · · · · · · · · · · ·	
	35	450								
		400	I			L				

Well: SM ASR-2

Test: 11/2012 #2

Sheet No. 2 of 2

	1							376.45		
Date/	rime ^{inc}	ET	Rate (gpm)	(gallons)	Pr Line	essure Head	psi) FCV	DTW (ff.ötæt):	Drawup (ft)	Gömmenta/Other #111
3/30	- 35	510	· · · · · · · · · · · · · · · · ·				-		······	
1/20		570					1			12
		600								
······	435	630			. [· · · · · · · · · · · · · · · · · · ·	
		690							••• ••••••••••••••••••••••••••••••••••	
	- 53	720				1				
	-35	750							0	
•	6	/80	· • • • • • • • • • • • • • • • • • • •				 		·	
···· · ··········· · ···	235	840								-
		870				1	[
4 <u>0 min</u>	- 157	900	~ 1900	04155000	70	45	211	318.44	55,1	04155000) - 02463(000) = 1692(000) gals
1. hr		1000						· · · · · · · · · · · · · · · · · · ·		= 1880 gpm
NT77		1060							· · · · · · · · · · · · · · · · · · ·	5341 00 /Gt
		1120								
		1180		• • • • • • • • • • • • • • • • • • •						9" 301: To: 23 sees, Tig: 27
· · · · · · · · · · · ·	15 05			·				·		601:0.5
a)	15 40	1360	~ 1900	04973 (000)	73	44	212	319,94	56.51	1545 shut down inisching due to decline over the
		1420	0	04975 [000]					······································	(balow 120 cts a HWY1)
3 hr		1480		Codd, 1	1.1.7		6 -	└ ∖/		
4 18	· <u>,</u> ,	1720	· · · · · · · · · · · · · · · · · · ·	OF-1 TU	roid	y red	ungs_			1555 Bar BERT Prior To pumping 277028 pool
		1840		75			18.5			BE water alt & BC #1 277069 [000]
·		1960							· · · · · · · · · · · · · · · · · · ·	
		2080		10	- <u>=</u>		5.5		·····	1620 Begin 10-win SpC test
	······ ··· ·	2320	······································		<u> </u>		2.5		······ / ·······	
		2440		+		· · · · · · · · · · · · · · · · · · ·			· <u> </u>	10- Mm Crb 4601.30
	·i	2560							· ····	BF mitor @ 10 min 277097 1000
· · · · · · · · · · · · · · · · · · ·		2680								
		2920		······				······		PC 10 min = 2800/92.2
		3040		· · · · · · · · · · · · · · · · · · ·						- 17- 1/ 2- 101
		3160								= D. 4 gpm/+5
		3280						· · ·)	
L		0400			L					
										ASR-Z off until CR flow increases. Jul

MPWMD SANTA MARGARITA AQUIFER STORAGE AND RECOVERY PROJECT

Well: ASR-Z

Test: WY 2012 #3

निव Rate Totalizer Pressure (psi) DIAV Drawup Date/Time (min) (gpm) (gallons) Line Head FCV (ft btst) (ft) **Comments/Other** 4-1-12 1315 Д C -5025600 õ 321 start inf. - did not start new test on rugged reader II 91 277104 000 weste meter pror to Act PRV 202 and De-Activating PRV-205 and opening HV-202 (24200)F count) 1320 1740 78 42 215 277106/000) white - ~ 2000 gal went through PRV-205 when 1st changed to mj. mode 4-2-12-0800 1,220 6625000 22 22 212 0803 1,305 277107[00] weste - incoming pressure u.s. offer 202 fluctuation between 22 and over 100 every 5 minutes or 50. 54 44 226 0820 1,367 22 29 212 405 FCV back +0212 0830 1,120 60 45 231 0837 1,410 43 52 220 Tried to adj. FCV while nead prossure was between 40 and 45 psi. TL While on site, pressure in CAW line fluctuate wildle, from ~ 30 to 100 + psi. Talk to Mike Magnette ~ DRO value issue? Still fluctuating - another call for M. Magnetto 1015 935 36 35 230 6824 1000 80 11.10 1200 44 231 JWO 1,110 0 7028000 50-7100 0 Placed out Like PSI is I interactual pegan clusing FCV - closed to 350 pci - still registery - 30 g/m - raised it 355 psi ad closed HV-202 - still read - 30 g/m. 277108000 wave meter 7127000 0 GPM TL does to llowup TIGERMAG incler reads to check on meter operation. Jwo 4/2/900 1405 4-5-12 0255 4-6-2-0240

Sheet No. 1 of $^{\mathcal{L}}$

MPWMD SANTA MARGARITA AQUIFER STORAGE AND RECOVERY PROJECT

Well: #5R-2 Test: WY 2012 # 3

Sheet No. 2 of <u>2</u>

	ET	Rate	Totalizer	Pres	ssure (psi)	DTW	Drawup	
Date/Time	(min)	(gpm)	(gallons)	Line	Head	FCV	(ft btst)	(ft)	Comments/Other
4-3-17-1355						355			BEASR-2
									277108000 warde like
									7066ROJTON WEER
									270 had There Are F
									NTU
									I MW 5,8G
									7.11752
									$\frac{2}{\Gamma}$ $\frac{1}{1}$ $\frac{1}{7}$
	·								$\sum m N = 171 \ge 0$
									10 MW 7117
									$\frac{1}{2} \sim 1 \sim $
			ar notai			, af	ter 20 min	rest	COMIN C. J.
		OTLY LOM	TH UL MELET				27517		305000 tourd offer 7. At
		Waste	CTT[[][000]			-	5+5165		- Confidence Company DE
						≯	57712		
			22212162				1110 50		77111-00 Count 1/2 a rais
		IOWIN	2++1+1000	and the data second set of the second se			70+120		25410001 + COURT 10 MIN/
							0,0,0,0		
							40,38		19,000/90,00 - 210,2/10
									21.0
									76126 Libe off
								····	
	L				1		l		

Well: SM ASR-2 Test: WY ZOIZ #44 € #5

J

Sheet No. <u>1</u> of <u>3</u>

	71.		Pate	Totalizer	Dra	ssure ((nsi)	DTW	Drawup	Enter - 12-0
Date/Ti	me	(min)	(apm)	(gallons)	Line	Head	FCV	(ft btst)	(ft)	Comments/Other
4/13/12 0	900		0	R) 7127000	90	0	355	376.54	0	· Reading prior to inj start. BFmeler = 277173000
		~								TIGERNAC (B = 665 000
	300	c	200		80	47	250		an 18 1117	• Startinj - vestort HCRM11
		1.0					011	71/2 511	31 00	RE to < 777175 600
	NO.	/0	1815	4145 000	+5	- 44	214	340-57	56.0U	- in the called a training to init
// ^	25	~ <u>~</u>	1,3 77	7. 20 000	25	44	714	234.66	41.88	Must be all & to ini total value
/0	2.9	23	(0.55	<u>+1 10 000</u>	~ /				11 00	
13	45		1725		~ ~	÷. •				
ĥ	00		1815	B 7855 200	74	46	216			• Flow from ItsR-3 to pit (@ 1900 GPM) is NOW OFF.
					·					TIGERMAG (E) = 665000
ululus of	25	HUDE	10.17	6697 000	23	46	711	307.54	74.00	· 24 hr ini So C = 1830 (ave)/74 = 24.7 gpm/ft
4/14/12 O	1 Z. 5	1903	1714	70110		70	16			, 15±-10- N
11	10	1510	1945	9893 000	62	47	216		· · · · · · · · · · · · · · · · · · ·	· ASR-3 step injection test started at 1040 (750 gom)
	e <u>· -</u>		L. <u>· · ·</u> ./							TIGERMAG (F) = 665 000 BF meter > 277175 (000)
						L				
14		1700	1890	10268 000	51	43	212			• ASR- > Step fest now on 3' step (1500 gpm)
	40				······.	7.1	720			Al: + ii / well at some some down to
/4	+v		1790		.57	24	200			24 in anter this of any a trade with
										4th step @ HSR-3.
15	30		1800	10 396 000	52	34	206			
					11-					- NA - + 1 + Utted - finan
	,′°		1845	10464 000	75	36	207			oth - 5 styplest now on 4" step (1875 gpm).
										DET PLV TO POS "(1000 Cred Flow 6 170).
4/1-1- 11	36		1390	12160 000	74	34	2.14	31272	59.31	· ASR-3 is OFF at this time. Heliust FLV to
(115/12 1	1		1805	100,000	77-	34	205	300-65		increase flow.
M0.01			100							
					 					
								· · · · · · · · · · · · · · · · · · ·		ATR. 3 . + 11 off
4-11	0835		1.120	14436.000		27	208	303.26	73.28	Adrust FOV to incluse May
1-16			1,810		++	1,2-	502	297.20		F- count = 665 (000) W= 2771(6900)
	1620		1,860	152000	58	34	204	293.5		
				F740 000						
				1700 000						

Well: MSR-2

Test: 104 2012 #4 + #5

Sal.

Sheet No. <u>~</u> of <u>3</u>

a chuinde dina thair shirt a that a that a that a start

Parties designer.

TEST 14	ET	Rate	Totalizer	Pre	ssure ((psi)	DTW	Drawup	
Date/Time	(min)	(gpm)	(gallons)	Line	Head	FCV	(ft btst)	(ft)	Comments/Other
4-17-12 0820		1924	17116000	73	33	204	Z90,08	86.46	AS12-3 off- though staves injecting yesterday th
									-Message from Jwo indicates (al. Am surf of 1
								·	4512-3 last night-likely by closely the gente value -
									have att the further notice.
0400		- Ø	17189 000	96	36	327	364,45		Shit of F well
									227 1/1 man 1 primal PE
	aan				- · · · · · · · · · · · · · · · · · · ·				277166000 Waste 10000 to01
							1110 0	1	ZYAGON LEFT = 75 (BPM/Ft
							760.0	10 M	
							ZA 13.5		VEST ZOMIN IN TEST
									Drw 10= 371,89 with 10 = 277250000
									DTW(H0 = 466.08 meter; = 277223000
							3		0 94.19 Z7000/94.2
									= 28.75pm/ff
TEST \$5			•	A111	1			1	27726 (000) ofter power down to result in
4-17-12 1015	0	Ø.	17189000	90	Ø	330	(374.48)		96734 (fon Lube Lite off
/020	5	1810			<u> </u>	203	333.40		277269 000 on BF meter after PSV-205 closes
1030	15	1805	17215000	76	32	204	309.65		: 8000 gal went to wasto \$ will be added to
									injection volume.
									E mige - 03 737 800 gel
					7/				$C \rightarrow C = C = C = C$
4/18/12 0800		1936	K) 19615 000	59	76	205	1 11 11 11		2277 C (TOD TO BE WITH NOTE: 3000 Cal less
1 0815							711.11	: 232	they waster four (
							21110	9 1500	Man yesterday. Joo
***			-						
whalm ng 15		2097 (7,2524000	53	37	205	the second second		
1/1/10 00 0900		1790	2)72547000	13	33	206	310.41	64.03	MAG(F). 754 000
/						-			
1 1	-,								
4/20/12 0830		2000 (25297000	54	38	207	297.26	77.22	27726 500 - waste
		C	1						D: 759 000
				<u> </u>				1 78/	
1705		1980	26205000]	58	35	204	248.70	75,70	
					~ 1	5.61		- V 1 1	222759 100 lun +
412111410		2145	28963600	5,3	<u></u>	206	288.87	85.61	-TT-S LUU WINDUS
Well: ASR#2

Test: WY 2012 #4 \$ 5

DTW Drawup TEST#S(contd) ET Rate Totalizer Pressure (psi) **Comments/Other** Date/Time (gallons) Line Head FCV (ft btst) (ft) (min) (gpm) A=759000 87.16 4-22-12,035 287:32 2190 31600000 69 36 202 Paritation thrown PSV-202 very loud a little lectory e past PSV-205, headle a little lectory e past PSV-205, headle stouly dripping into pit <53pm cuchurse on 1000 ly dripping into pit <500 cuchurse on 1000 ly dripping into pit 76.67 < FCV still cutry up up vegulater adjusticut 31664000 297.81 69 36 206 1105 1925 Use one 56/53 psi, 0:33 ctm 3424800 65 35 214 317,75 1410 4-73-12-1042 CLEARE FOUND WASHER 2772501200 154 Bt 0 1050 2 1117 502 10 365,86 1045 1160.15 IOMIN Took Iniv Nora A 1. Bager because Free S. -15 340 21252000 Ø 1º 1110 <u>1</u> <u>2</u> <u>10</u> <u>15</u> <u>20</u> <u>3.7</u> <u>1.95</u> <u>38.6</u> <u>11.2</u> <u>2.63</u> <u>2.12</u> <u>-</u> <u>2.00/12.24</u> ZA G ARWIH Shul comp <80 cts in prior. 277307 E00] - waste

Sheet No. 3 of 3

MPWMD / CAW

Well: SMS A	SR-3			IASE 2 A	QUIFER	R STOR	AGE AND REG	COVERY PR	OJECT
Test: <u></u>	2012.	- Line	Flushing						Sheet No. / of /
in Date, think to			(Callons)	il Pr	elessierier Reference			Drawup,	Comments Citier
3/29/12/10	0	-	(20234/20)	90	88	332	350.95		FGI-305 (Bacsflugh)
1/20	10	405		83	45				FQIT-301 (Ini/Mas) = 45/09/00] ands
1/23		1270		78	44				0
1/ 50	30	1580		77	45				Adjust PRU-302 to reduce clasmostronm
	35	200		54	45		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	psi to 45 (some as ASR.2)
		•							3RE: T. = 27- sacs
		• • • • • • • • • • • • • • • • • • •							J.S. =
···· · · · · · · · · · · · · · · · · ·	·····		• ••••••••••••••••••••••••••••••••••••			<u> </u>			
				1		••••	• ,		(BDT-CT)
									(CASE - BLO_)
1220	70	2010		54	47				SDI T = 29 Sees T. + 1/7
χ.	· · · · · · · · · · · · · · · · · · ·				e				(SOT : 5.0)
			· · · · · · · · · · · · · · · · · · ·		ļ		t	· · · · · · · ·	
12 40	90	2010		<u>L</u>	uΖ	· · · · · · · · · · · · · · · · · · ·	·		
ана на									302 7 = x0 secs , 125 = 121
**************************************			· · · · · · · · · · · · · · · · · · ·			*****			SDETAIL
~				*****			;		
1300				· · ·				······································	Been to Stup Flushing
15-0			-*						
	· · · · · · · · · · · · · · · · · · ·		00049300						STOP Fluch:
		.	(BF motor)			******		<i>*</i>	(FQ I)
									FQTT = 4794/00 gals
	4		······································	• • • • • • • •					
	1						•••••••••••••••••••••••••••••••••••••••		
-								and the second	
				•					
	د مرو <u>ست</u> م و محمد مستو								
					Ang a		· ·· · · · · · ·		
				وة العربي (). مستخدمة				<u>x</u>	
								·	
	· · · · · · · · · · · · · ·		······					anna a' Chaonna à anadas	
	**************************************					<u>.</u>			
· · · · · · · · · · · · · · · · · · ·		.							

We	II: SMS AS	SR-3								
Tes	st: <u>w/</u>	2012#1	1 - In	jection Hyp	Laul	ies "	Testi	щ		Sheet No. 1 of
		ANNAL CHAINS AND AND AND AND AND		TIGERMAG				1		
	Time		Content Content			esisuto. Merzia	PSD CV	D. W.S.	Crawup	B. Comments (Other
3/29/	1420	C)	0477000	68	88	332	350 96		1420 Restart Loscon & Besin Openin
		1		(mAG miter)		1				FEU. 00 0 0
					l		-			
		4								
	·	5	5					······		n an die 11 Tenningendermiteken eine Landenberg, is unterstellingen gesche eine eine Vertreichen eine eine Bergemeine B
		6						· · · · · · · · · · · · · · · · · · ·		
		7				·	l,			······································
		9					. .,			· · · · · · · · · · · · · · · · · · ·
		10	780		81	40	230	336.23		1450 Adj. PRU to clearence downstern
		12		-					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
5 min		15	875		80	140	226	329.4		
	1445	20	1075		78	40	226	3/21		
`	· · · · · · · · · · · · · · · · · · ·	30	1325		67	40	222	290.1		·
	1465	35					220			
	15	40	1400	· · · · · · · · · · · · · · · · · · ·	65.	40	220	270.1	[·····	
		50	1600		62	40	217	243 8		· · · · · · · · · · · · · · · · · · ·
		55	1700	· · · · · · · · · · · · · · · · · · ·	58	40	216	219.6		
10 miŋ	15	60								
	35	70	1800	174821260	57	40	213	20.9	161 8	35 8-2 1/10 201
	/	90 90		(MAG moto)				101.5	100.0	4871200- 4776000 = 095 240 6415 - 75 -
		100								= 1270 gohn Ag
20 min		120			<u> </u>					G/s = 7.6 gp-/ft
	1245	140	ø	04477050	90	38	335			1545 T. China
	<i>[]</i>	180		(MAC T)			0			
30 min		210		(mite water)						
	· · · · · ·	240						·····		
· · · · · ·	· · · · · · · · · · · · · · · · · · ·	300				· · · · · ·				· · · · · · · · · · · · · · · · · · ·
		330								
	ە . بىتۇنىيىسەمەمەورى	360				<u> </u>				
		390	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
		450							· · · · ·	
		480			1	1	T	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		n na

			PH	ASE 2 A	QUIFEF	R STORA	GE AND RE	COVERY PR	ROJECT		
Well: SMS ASR-3											
Test: UY	2012 -	Backf	Plushig (Por	<u>st :</u>	Enjer	afim	Hydraul	ics Te	<u>stin</u> Sheet No. 1 of 1		
MARKAN AND AND AND				Distant Pr	ana ana ang ang ang ang ang ang ang ang			PON			
Date/Timé	(min)	(gpm)4	(gallons)	Line	Head	FCV	(ft.btst)		Comments/Other		
3/30/12/00	0		000493000)	88	0	350	350,51		FQI - 305 (BF Meter)		
			(BF mater)	L					unter Lube: Totalizen = co14030 gais		
			-		<u> </u>				up:59psi, Du:58psi, 2.19pml		
	<u> </u>				l				110 Start Puna		
er mer mer en d'aller same							·····		(pllect TU Supples @ ET 2, 5, 10, 15, 20		
11/2	2	3100		88	23	352					
						ļ	200	6.1.7	-3100 gpm vin dial ET NTU		
	10	3100			20	ł	330.1	131.6	Q/2 & 1.4.1 gpm/Pt) & 24.4		
טלון	20	3100			†		532.7		STOP PUMP 10- 17.1		
									15 9.71		
		\$	000554000						Q = 3050 gpm 20 5.00		
			(BF meter)-						0'		
••• •• •••					+	}			10-min 10/5 (1150)		
· · · · · · · · · · · · · · · · · · ·											
									ETTO METER = 000354/00, 12TW = 352.9		
									ET10 " 2000585(00) " 5024,3		
····			ar 1999au 1997 y 1997 y 1998 y 1999						31,000 171,9		
						<u> </u>			10 JICF PORP.		
									Q15= 3100 Spm /171.4 = 18.1 Apm/FL		
									40		
			· · · · · · · · · · · · · · · · · · ·						1920-15" Duturn Brokflish/Brokensh		
					i				Lycle (see PWR/RGM Field Obs Report)		
····					t				1600 start Dump for 10-min Q/s		
						I			Meter Dru		
					ļ				ET 000741/000 353,9		
				····				an departer committee analysis suggest	10 0007 12/0023 521, 2		
						1			16" STOP DUMD:		
						 					
							L		(10 min Q/S = 3100 gom/167.5 = 18.5 gom/f		
• • • • • • • • • • • • • • • • • • • •					 		·				
197 - Yahamata Internet, Internet and Internet Internet and Internet Internet					l			· · ·	EDE-335(RE) (121)222(315)		
			······································					······································	FaIT-301 (1. Mus) 044319(77)		
· ····································	· · ·		······································					·			

Well: SMS ASR-3

Test: Backflushing

Sheet No. / of 2

a data data da	in the second	510 10 (120)	Pérsole All 20022	i Sennas					istor (min Maria) s	Comment	(Other . c	
4/10/12 100			000772000	0	0	350	356.	7	D 🕴	* FAI- 3US (BFlush W	ictur) Ta	nk= 1900 ps;
11			ITT +							FUIT- JUI (Tim Ma	120493	1900 gals
			(Dr Meter)							8	ť'	0
										11" Start Pump	ET	NTU)
· · · · · · · · · · · · · · · · · · ·										-3100 gpm, 23 psi	<u> </u>	<u> </u>
- · · · · · · · · · · · · · · · · · · ·										Detectible odur of 4,	55	<u></u>
				·					i dalam mananana ang sa gang gala manana			1.3
					· · · ·					-11 PWL = 521, 5 6+4T	15	0.7
				e	{	10-	Min	-Q	15 7	qued dats evil	20	0, †
						3100	9 Pm	116	1.8	1135 Restart Pump	ET	NTU
· · ·							01				.2	1.5
						= 18	. 8 gp	m/5	+]	1203 PWL = 523,7	5	0.9
					Ľ			/			10	0.7
									·		15	0.5
										12'2 Stop Pump	20	0.5
			. <u> </u>							Tothizer=000893(00)		
										1250 Restant Pump	ET	NTU
										4	2	0.6
						10-1	nin G	2/5		13" PWL = 524.7	5	0.7
								1.		STOP PUMD	10	0,6
						3/00	9.pm	/(3.	59.2-524	Totaliza= de 92400)	15	
							0. /		.تلاد	= 31,000	20	
						= 18	7 96	<u>m/</u>	9	"Suraing"		
							<u> </u>				· ··	· · · · · · · · · · · · · · · · · · ·
							v		·	13" Deflate FLU to 2	w psi	oun I min
			· · · ·							12 DTW = 3599		
						· · · ·				13" TOTW = 356.7		
						•	<u> </u>			30 ft of	rise	
										Keinthate FLU to 350 p	<u>.</u>	
									<u>_</u>	13 Kostant Fimp	ET	NTU
i		···										0.6
					······				: 47. ₀ .		<u>></u>	
			·····		·							0.7
										1.240 clie -		<u> </u>
······			·							Lis sub bruds	20	
			··			~~~~				······································		

Well: SMS ASR-3 Well: SMS ASK-J Tost: Backflushing & "Surging 'n Sheet No. 2 of 2 1412 Deflade FCU to 200 psi ("Surge", 14¹⁵ Restant Pump - 3100 gpm, 25 psi ET and the second March 1 **Dimi**time - (musii in 4/10/12 0 -----_ 5 1.6 0.9 10 ,4 0.6 14135 Stop pump 1502 Deflate TCV to 200 psi ("Surge" 1500 Rostant Pump FT NTU 0.7 2 0.7 5 10 0.6 0.6 15 stop Pump 20 15 10 min Q/5 ET. Jourison = 00111400, DTW= 361.7 and the = <u>527,3</u> 165,6 $\frac{10}{24} = 3 100 \text{ gr / 165.6 St}$ ETIO = 18,7 a. pm/ft

MPWMD / CAW PHASE 2 AQUIFER STORAGE AND RECOVERY PROJECT

Well: <u>SMS A</u>	<u>SR-3</u>		_						
Test:	n. Fl	ush'in							Sheet No. 🥇 of 🖊
			MAG meter						
	Keren er	ROOM		1 Ber	Sastine		SS OTW	Distance	
Date/Time	(m)n).	(gpm)	(gallone)	E E Here	No. Contra	1. R. O. S.	(ft bist)	(ft)	Comments/Other
4/13/12 1400	-	-	04952100	92	0	350	352.8	-	FORFT-JUILTiger Ming)
<u> </u>									FQI-305 (BF Meter P: 001145 00) gals
1400	0	2300	04932120						14 OPEN PRU-302 + 4U-302,
				 					Flow initially 1 2300 gpm
·····				·			·····		Throttle HU-305 to ratice Drow to
		1910		Ed	4	260	267 4		- 1400 apm
/'	- 10					32	22210	<i>F</i>	1445 SDT TE = 30 SALS
	· · · · · ·	·				· · · · · · · · · · · · · · · · · · ·			T- 236
	ł			1					$T_{0} = 46$ SDI = 3.0
······································					·			»	Tip = 55
1520	60		05041300	58	43				15" SDI 7: = 27 Secs
						_			75 = 28
					<u></u>				$T_{10} = 35 \left[S_{D} T = 25 \right]$
/6*			05215400	90	0	350		· · · · · · · · · · · · · · · · · · ·	<u> </u>
					<u>-</u> _				195
			· · · · · · · · · · · · · · · · ·		<u>}</u>			•••	$15 551 6 = x7 5205 \dots$
					· ·				$\overline{\tau} = \overline{\tau} = (\overline{DT}; 22)$
								······································	14 - 40
			· · · · · · · · · · · · · · · · · · ·						
	1		· · · · ·		· · · · · · · · · · · · · · · · · · ·				16 SOT T = 25 Secs
				<u> </u>					$T_5 = 26$ [SOT - 18]
									T ₁₀ = (341 - 1.0)
									<u> </u>
			· · · · · · · · · · · · · · · · · · ·						
									1/50
······································	}				·		· ·		U STOP FIUSNINg
		· · · · ·	·			• •			EAT THE JOINTIER - MUHZALOW ALS
	· · · · · ·	+				<u></u>		·	Tues as to the state s dering door gails
	· · · · ·			t	t	1			······································
	1	[·							
				· · ·		RAN			
	· · · · · · · · · · · · · · · · · · ·					·			
	· ·	I							

N

Well	SMS AS	SR-3		_		1		+-)		
Test	57	ep In	iection	- step	١	(い	Y 201	2 #Z)		Sheet No. 1 of <u>4</u>
	ί.			MAG meter)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Sugar Sec.		ET.		A REPORT OF THE			psi).		Drawija	
Dater	lime .	🌒 (min)	(gipm)	(gallons)	2 jje v	t figad	FOV	(ft hiet)	A (ft)	Commenta/Other
4/14/12	1040	. Ο		05220000	88	10	352	349.6	ø	Tank = ~ 1775 ps:
//		1						336,6		BFMeter = 001428000 gals
		2	~750		78	42	228	330.6		Note: XD RP is
		3	3					3302		
		4	·					328.6		
		5	5	·			ļ	327.9	·	······································
		6	5 		· · · ·		ļ	327.2		
		7						3265		·
[8	· · · · · · · · · · · · · · · · · · ·			-		526.2	· · · · ·	······································
		9		1			ł	325.5		
<u> </u>		10	~ 750	05226560	78	41	228	525.1	24.7	~ 650 gpm Aug.
		12	<u> </u>					324.2		<u> </u>
<u>5 min</u>		15			20	1-131	0.74	2105	· · · · · · · · · · · · · · · · · · ·	
		20	703		70		20 7	57.5		Open FCU Slightly CIpsis
	170	20	~ +00				de T	<u>317.</u> B	}	
· ··		30								$\frac{11}{10} \frac{10}{10} = 20 \frac{10}{20} \frac{10}{10} = 200$
·	20-		1			+ <u></u> ;	220	2116	-	Tr = 22 (0T = 34)
		40	1 773	·	1.7_	+-'/	240	311.5		10 = 30 (3152 - 3.1)
	- 30		~ 7.40		24	1 41	224	2093	403	<u> </u>
	· <u>·</u> ····	50	7 80	· · · · · · · · · · · · · · · · · · ·	77				70,00	
10 min	-,,40	00				↓ · ·				
<u> </u>	1,50	70	785		24	41	228	31723	1 ·······	
	-1200	80	150			· · · · · · · · · · · · · · · · · · ·	<u> </u>	205 4		
			7.00				·	~~ (
·	7220	100	240	05 796360	14	41	228	304.7	44.9	763 a on And
20 min		120			1	1				STEPIO
		140)	· · · · · · · · · · · · · · · · · · ·			· · · · ·			Q15 = 763 apr + 44.9 = 17.0 apr/6
· · ·	·	160)		l ·					
		180								
30 min		210								
		240								
		270								
		300		·		L			· · · · · · · · · · · · · · · · · · ·	
		330	· · ·		L	<u> </u>	I			
		360	·					·	ļ	
		390	· · - · · · - · · · · · · · · · · · · ·	L	<u> </u>	_	I		· · · · ·	
		420	2	ļ]					·
		450	4		<u> </u>	l				· · · · · · · · · · · · · · · · · · ·
ľ		480		1	_	1				

SW6 = 349.6

MPWMD / CAW PHASE 2 AQUIFER STORAGE AND RECOVERY PROJECT

....

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tes	it: <u>SMS AS</u> it: <u>Ste</u>	p. <u>Fnj</u> e	uction .	- Step 2	[w	y 201-	こせご)	- 	Sheet No. 7 of <u>4</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S. I.		ET	e Rate in	Totalizer			ionus Descare	DTW	ser avap.	Companie/atta
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4/14	1220	0		05296300	e construction l			304,7	44.9	Restart La Cycle on XD Intelocan
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1						300.1		0 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	1115				225	291.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	1120	· · · · · · · · · · · · · · · · · · ·	70		225	286 6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5							· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	1125		70	4,	225	285.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_12	<u> </u>	1125	05307500	70	<u> 4)</u>	225	284.2	<u>65.4</u>	1/20 gpm Aug.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 min		15								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ	1270	20	1/30		69	41	226	281.2	68.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1250		1/35		╂	+		279.6		SDE T= 212 Sees
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·		35								$T_{\zeta} = 21$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	40							L	Tio=22 (SOI= 0.9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			45 50	·		·	- .				T15=23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			55	1135		20	41	226	275.7	73.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 min	1320	60								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			70	1140	·	70	41	226	273,8	75.8	······································
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u></u>			÷					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1400	100	1140	0540961001	<u> </u>			270,4	79.2	1133 gpm Aug
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 min		120								0, 0
160 0 0 180 1 1 30 min 210 1 240 1 1 270 1 1 300 1 1 330 1 1 360 1 1 360 1 1 420 1 1 450 1 1			140	······							Q15= 1133 gpm + 79.2 = 14.5 gpm
30 min 210 240 240 270 270 300 200 330 200 330 200 330 200 360 200 420 200 430 200 480 200		·······	180	· · · · · · · · · · · · · · · · · · ·		l				·	
240	30 min	-	210								
270			240		•••••••••••••••••••••••••••••••••••••••						
300 330 330 360 360 390 420 390 420 390 480 390			270		·	<u> </u>				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
360 390 420 450 480			300			 	<u> </u>				
390			360			· · · · ·	-	1	· · ·		
420			390				<u> </u>				
	·		420			_	 			<u>.</u>	
			450					<u> </u>	·····	I	

SWL = 349,6 Bowls & 530 Max Dup = 180 Min DTW = 170

MPWMD / CAW PHASE 2 AQUIFER STORAGE AND RECOVERY PROJECT

Well: SMS ASR-3 (WY ZD12 #2 Sheet No. 7 of 4 Step Injection - Step 3 Test: (ft.btst) Drewup Commente/Other Date/Time. ales (ft Restart Log Cycle on xo dutiloggin 4/14/12 14/00 054096001 270.4 31450 218 250.9 1470 63 41 61500 218 247.3 1410 05724000 63 41 218 249.4 105.2 1440 gpm Aug. 10 1500 12 15 20 1500 25 30 1500 5 min 1420 41 218 239.7 63 1470 236.3 1500 35 14 40 45 145 50 55 55 60 1490 70 80 1500 90 150 218 229.1 DE TO = 21 Secs To = 23 To = 25 To = 25 To = 27 1489 Apr Ary 65 41 10 min 15 64 41 218 223.7 <u>.</u>544, 220,4 129.2 100 1500 055585FU 120 20 min Q/s = 1489 gpm + 129.2 (= 11.5 gpm/ft 140 160 180 210 30 min 240 270 300 330 360 390 420 450 480

SWL: 349.6 BOWI = 530.0, Max DUP = 180, Min DTN = 190

Sheet No. 7 of <u>4</u>

MPWMD / CAW PHASE 2 AQUIFER STORAGE AND RECOVERY PROJECT

Well: SMS ASR-3 Test: <u>Step injection - Step 4</u> (WY 2012 # 2)

Dist		ET	Rate	Contallizar					O)miwith	
4714	1540	0	A SHOUL	05558500				220.4		Restant xo datilyon
		1								<u> </u>
┠		2	1680		— —					· · · · · · · · · · · · · · · · · · ·
<u> </u>		4	7000		· · · · ·	· · · · · · · · · · · · · · · · · · ·				
		5			·	L		· · · · · · · · · · · · · · · · · · ·		
		7	150	·			<u> </u>	190.5		· · · · · · · · · · · · · · · · · · ·
		8	1870				210			
		9	1 4 4 4 4		22			191 1		
	5	10	1865	1097767601	<u>>></u>	<u> </u>	210	1 22.2	167.1	1780 gpm Aug
5 min		15		· · · · · · · · · · · · · · · · · · ·				178.8		
	1600	20	1860	· · · · · · · · · · · · · · · · · · ·	55	42	209	175.4		
	1610-	25 30	1865		55-	42	209	167.7	- · · · · · · · · · · · · · · · · · · ·	······································
······································		35					<u> </u>			
	15	40	1860	· · · ·		·		162.2	187.4	
	11,30	<u>45</u> 50	1850	-	58	42	209	156.7		30T. T 21 Sees
		55			~ ~				· ·	<u> </u>
10 min	16	60	1000		1.5	1		11100-2		To = 26 (SDJ=20)
	1700	<u>70</u> 80	1650		24	42	210	178.5		7,6 = 30
		90							· · · · · · · · · · · · · · · · · · ·	
	17	100	1820	057424/00)	57	42	210	139.1		1
20 min	1225	140	ø	157474001	93	42	350	302.8		17th Begin Closing FCV
	_1_7	160	1							1800 Backflush
	·	180								BF met-1-2001428(00) DTW = 343.8
30 min		240	· · · · · · · · · · · · · · · · · · ·					·····		ABORT ET AITU
		210	,							L> PSU didnet a
		300	··]			open, Flange @ 5
		360							<u> </u>	Hib control out 13
		390						· · · · · · · · · · · · · · · · · · ·	······	shut of Pump, 20
		420								
		450	·]	[l	

Well: SMS ASR-3	ILGERMAC		
Toot Right Chiefe	- 46		Sheet No. 1. of
Test: The Prosting	AC71179 [01]		
	05 +771 001	an and the restance water water and the second and the second and the second second second second second second	
Reference and the Reference of the Refer		servessione upsolation and prime prevent	
	(gallons) ?		Sommenter 20ef
4/15/12	05846950 4	$\frac{10}{0}$ $\frac{0}{356}$ $\frac{360.1}{-}$ B	F Mater = UDIS25/UTO gals
		ω	at- Luce = 12213301, 60 bei 158 pai
			45 Juin on Pump
······································			ET NTU
	· · · · · · · · ·		PWL=537.2+ 2 24.5
	······		a_{1}
	· · · · · · · · · · · · · · · · · · ·		$\frac{1}{1} = \frac{1}{1} = \frac{1}$
			16 20 JIDFIT TILLA PARTITION TO TO T
			05 00 00 00 00 00
			Turn off rund, do 7.2
			stalizen =00137800] = 2650 gpm Ay
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
			24
		/2	TURNON PUMP ET NTU
			2 3,5
		12	³³ PWL = 537.2+ 5 4,9
· · · · · · · · · · · · · · · · · · ·		G	15=2700/187=(14,4gpm/A) 10 57
			15 2.8
	·····		TUCA OFF PUMD 20 2.0
			1 View = (12) (-32(17)) = 2742) a cm An
· · · · · · · · · · · · · · · · · · ·			
··· ····			STUD DUND FF AIGH
····	.		
······································			r = 63724 $r = 63724$
			5=2630/87/ =117.2 10 x.5
			35 <u>15</u> <u>2.0</u>
		/ / 3	> Turn Pump Off , 20 1.8
			whilizen = (201685/020) = 2650 gpm Ay
			· · · · · · · · · · · · · · · · · · ·
			·
			Dit FUM, Stop Buckflushiv OPS
· · · · · · · · · · · · · · · · ·			
	·· ·· ·		
······································			·
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	······································	· · · · · · · · · · · · · · · · · · ·

MPWMD / CAW

Well: ASR-3 WY 2012 #3 Test:

Totalizer Pressure (psi) DTW Drawup ET Rate (gallons) Line Head FCV (min) (gpm) (ft btst) (ft) **Comments/Other** Date/Time 3F ΦΦ 1685000 PeepMW = 0048240 gd PEIM + 0 BF 1200->Turnon MW to 5846900 BF \$\$\$ 1685000 4-16-12 1200 d 88 Ø Þ collect Wa: SAMPLED MW PRICE TO INJECTION [1224] TIME ORP - 295 min 743 / (OND : 25.12 TENP 7.29 PH ; O.11(O2) mall ; H25 = 0.02 O01689 [200] Prior to BF I min Turbidaly 2" 5" 10 ." 15 " 20" 349.55 1300 473.55 1301 537.22 1305 @ 10 min 001717 [500] SpC = 14.9 BF meter = 001743[000] prim to opening CAW line 1310 1312 [Stop BFing] 1315 [Stort linoflush] 1320 Stop (inflush] 1335 [Start injection] 58550 00 ----58 660 00 ---350.0 ____ 67 253 70 5 1290 _ _ 1340 70 74 279.17 67 255 1350 15 1150 5892400 72 970 260 1355 ZO Steve T. speaks to Paul Gasta, adjusts 8" (Car Val, adjustments to FCV Draphynam apparently stuck after 474 hammer Classical after 474 hammer Classical 73 72 259 277.59 5974500 105 960 1520 -+-1 -154 ORF 1570 230 262,65 88.35 1665 1125 6019100 72 42 4-17-12 0810 ϕ 6590300 26 Ø Cal An shet off last wight by closing gate value 227 325 Triad ECV up.

Sheet No. 1 - of Z

Sheet No. $\frac{2}{2}$ of $\frac{2}{2}$

Well: ASR-3 Test: wy 2012 #3

and the case of the second second

est de anse		ЕТ	Rate	Totalizer	Pre	ssure (psi)	DTW (ft.htst)	Drawup (fb)	Commonts (Other
Date/	11, 05	(min)	(gpm)	(galions)	Line	пеао	FCV	(It Dist)		comments/ other
71+/12	16'0	mepore		000006590300	9 % 89	0	325	349.25		3F miter = 001758 pos 2.500/188.06=13.3
	1620					40		<u>E 272 41</u>		Note that there is 40 psi on gauge upstrum of PSV - 305, not certain it this value is
1/17/12	1640			6570300				352.08		322 the way open. 5f meter = 001785(006)
	1715 1715 1745	5 25 35	765 1145 125	65 78 3 33	92	25		267.32	84.72	Stort injection test @ It JWO
<u>əheji</u> 2	- 25:5		90%	- <u>1:</u>	17	-77		≥ 5 4.0€	92.0 T	001785[000] on BFmeter (no change). juo
	1400		903	77379039	71,.«	72	263	501410 249.2	102.9	0017-85/000 wish Lube line on = 003047 []g @ 1420
	1425									60 psi u.s. / 59 psi dize of siller Q= (18 gin on cusa law @ (425 begin closing FCV 3 1427 ingreton such down
·										Sper 17: p2V - 305
15- 131	1435		<i>P</i>	7754100	86	<i>\$</i>	758	340.90		ET <u>L</u> <u>2</u> <u>5</u> <u>10</u> NTU 97.05.4 19.4 78.6
				1				537126*		031311 6007 10000 - (13.3 g/m/(+)
surt th	ω 15							346.70		* church dawn of the weather down in Surging . We tot bowls; bolow Construct.
	1510							53930-		0 0 1 5 3 1 50 7 26 000/190 10 1 19.7 1 19.7
				a a dan 1 - a contact o 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						10 6.4

Well: ASR-3 #4 Test: WY ZOIZ

Date/Time

4/18/12-1557

4/19/12 0200

1600

1610

1705

4-15.12

-2,02 85

MAG Totalizer Pressure (psi) DTW ET Rate Drawup **Comments/Other** (gpm) Line Head FCV (ft btst) (ft) (min) (gallons) 1525 Start 001837000 348.7 Pump ET NTU 81 6.8 4.8 2 5 5³⁵ stop Dump 10 5.2 Totalizan = 001864000] R/S 2700 - 188.4 = (14.3 gpm/Ft) 537.1 Rem 356 Start opening FCU 07754100 89 348.8 0 O02 0 272 450 5 79 70 254 296.4 1000 07767200)78 70 15 255 277.5 71.3 1010 1700 SDI: To = 22 Sacs QX=977 gem Ts = -70 07822500) 72 68 255 268.9 79.9 1010 $G_{15} = 122 a_{100}^{2} T_{10} = 24 \text{ SDI} = 0.8$ $F_{15}^{2} = 25$ Rem 08712860 68 66 254 24516 103,20 900 Shul of a 0 225 at 159 red of Land - CLEVAL

		N.Y	Į	のないとなったが、						The second
			,							
4/19/12		prepareto	r BF#1	09783800	86	0		344.51		BF miter = 001910/000 @ start
	0950	Stort BF-	>3000+	NOTE: HIter .	2 min	, rate	Includ	tes - · PUMPI	rin bowls.	
	1000					/		537.26	7	BF meter = 00/936 500 @ 10 min
										10 min Sp C = 2650/192,75 = 13.7
										1 2 5 10.
										ET NTU 59.0 3.4 13.4 20.2
										NOTE: Alter Z min, press + / low are surging
										due to pumping from bowls. Air in water could
										be influencing turb readings.
	1015	Start BF	ŧ _{Z_}	08783800	88	0		347-80		BF meter = 001932 000 @ start,
				NOTE: Line pres	s was	25 05	i initi	ely. Stor	is to	10MN = 601944/000 24000/189,5
				/ Instructe	at 1:	45 mi	h.	537.30		= 12.7 apall
faktor of an and a second second and a second s				<u> </u>						ET 1 2 5 10
										N-TU 27.8 7.9 6.5 7.1

Sheet No. ____ of ____

March 1990 Charles and Constant Constant Systems (Constant Systems)

Well: ______ASR-3 WY 2012 Test:

#5

Sheet No. $_$ of $_$

	ET	Rate	Totalizer	Pre	ssure ((psi)	DTW	Drawup	
Date/Time	(min)	(gpm)	(gallons)	Line	Head	FCV	(ft btst)	(ft)	Comments/Other
4/19/12 1100		0	8826500	72	70		347.80		BF miter = 001965000 prior to PRV opening
		1	60 51 5 0-0		0 -		361131		BFMater = 00 2002 [000] after PSV closed!
		1000	0836300	42	72	261	264.46	85.34	
1545		982							Shut in temporail while cla-val we works
·····					·····				on PRV.
				1 .					J ^{UU}
<u> </u>		1008		+3	36		255.80		
						<u> </u>			
4/20 0815		1010	10086700	66	35	(227.5)	253,53	94.3	PSI @ PSV-305=40
-						\sim			002025 bee - waste - tair amount of water
						- <u>9774 R</u>	V-1- Ja		on ground, dripping from sile venot on East side
							······································		i cyric a 02 / MIN
1450		1005	10484400	69	37	227	2 31.84		
							538,74		0020255000 - waster 135 37 10min
									breaks curling intermited to the 2"
									L Z 5 10
									52.6 E.C 43.1 37.0
									002020 LORD 1 10 F 22 Zud BF (Dain
							,		2020500001; 345 1 2 5 10
15-16		þ	1042:5500	I.S.	43	Ť,	The state		TPE 21.3 12.0 9.7 10.9
1541 /2006		950		75	43	2.2.8			Restrict La Gelma
4/21/12/11/26		945	117 217-00	Cot	U 3	778	246102	111.83	
-1/-1/1- 190			1110115	<i>\</i>			- 12		
1725-1730		945-0	119529.00	25	45	350			shut F(V and PRV-302 + HV-302
		5 trute	there at very us	to t	Cal-	Aur			00207610001 WASLE
4-75-172			· · · · · · · · · · · · · · · · · · ·	12	1	75 C	< (7) (C	1 1	- 002 076 000 1 W. T.
· · · · ·									
									14 para and for stand Card
							No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	,,	
J									

769 31 28 32.6

- Mar Ala

Well: <u>A</u> 45 WY ZOIZ Test:

	ET	Rate	Totalizer	Pres	ssure (psi)	DTW	Drawup	
Date/Time	(min)	(apm)	(gallons)	Line	Head	FCV	(ft btst)	(ft)	Comments/Other
					ant et geographie et sole			<u> </u>	MANY RE SOLATION AND
•••••						••• ••• • • •• •			
									2 · · · · · · · · · · · · · · · · · · ·
									·····································
			119552	100 UT 100			The second		
					1.1				
restort									
11-66		······································		<u>.</u>			······································		
<u></u>				ut i him					They want a set of any of the set of the
17.00			and the second		· · · · ·	• • • • • • • •			the second secon
$ \in C$						<u>11160</u>			and new 4 car she she was a rear to
				and a second					will find the fill domain and the
									OF Maker in CAO STAR GODT
•									
							• •••• • • • • • • • • • • • • • • • •		
······									
		No haard dharandaha ada							
							" " " " " " " " " " " " " " " " " " "		
	1999 900 100 100 100 100 100 100 100 100		and all the transmission and a communication of the two stations in the		117				
									1
				1					
							ve.t		
(1), 1), - (-), (-), (-), (-), (-), (-), (-),	A	1 1 1 1 1 1 1 1 1 1							

and the second state of the se

Sheet No. 2 of 2

APPENDIX B – WATER-QUALITY LABORATORY REPORTS

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Wednesday, April 25, 2012

Page 1 of 2

Г

Lab Number: AA86209

Collection Date/Time: 3/28/2012 Submittal Date/Time: 3/29/2012

Sample Collector: Sample ID

16:00

10:00

LEAR J

Sample Description: Injectate										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	141	2		3/29/2012				
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		3/30/2012				
Arsenic, Total	EPA200.8	ug/L	1	1	10	3/30/2012				
Barium, Total	EPA200.8	ug/L	53	10	1000	3/30/2012				
Boron	EPA200.7	mg/L	Not Detected	0.05		4/2/2012				
Calcium	EPA200.7	mg/L	42	0.5		4/2/2012				
Chloramines	SM4500-CI G	mg/L	0.08	0.05		3/29/2012				
Chloride	EPA300.0	mg/L	37	1	250	3/29/2012				
Chlorine Residual, Free (Field)	4500-CI G	mg/L	1.08	0.05	2.00	3/28/2012				
Chlorine Residual, Total (Field)	4500-CI G	mg/L	1.20	0.05	2.00	3/28/2012				
Copper, Total	EPA200.8	ug/L	9	4	1300	3/30/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	1.2 E	0.2		4/6/2012				
Gross Alpha	EPA900.0	pCi/L	0.000 ± 1.16 E		15	4/12/2012				
Haloacetic Acids	EPA552	ug/L	13 E		60	4/9/2012				
Iron	EPA200.7	ug/L	Not Detected	10	300	4/2/2012				
Iron, Dissolved	EPA 200.7	ug/L	Not Detected	10	300	4/2/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.5		3/30/2012				
Lithium	EPA200.8	ug/L	6	1		3/30/2012				
Magnesium	EPA200.7	mg/L	14	0.5		4/2/2012				
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected	10	50	4/2/2012				
Manganese, Total	EPA 200.7	ug/L	Not Detected	10	50	4/2/2012				
Methane	EPA174/175	ug/L	Not Detected E	5		4/6/2012				
Molybdenum, Total	EPA200.8	ug/L	2	1	1000	3/30/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	3/29/2012				
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	3/29/2012				
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	3/29/2012				
o-Phosphate-P	EPA300.0	mg/L	0.27	0.10		3/29/2012				
pH (Laboratory)	4500-H+B	STD. Units	7.6			3/29/2012				
Phosphorus, Total	HACH 8190	mg/L	0.32	0.03		4/6/2012				

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Page 2 of 2

Lab Number	A A 00000								
Lab Number:	AA86209								
Collection Date/Time:	3/28/2012	16:00	Sampl	e Collector:	LEAR J				
Submittal Date/Time:	3/29/2012	10:00	Sampl	e ID					
			Sam	ple Descrip	tion: Injectate	;			
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Potassium			EPA200.7	mg/L	2.8		0.1		4/2/2012
QC Anion Sum x 100			Calculaltion	%	106%				4/25/2012
QC Anion-Cation Balar	nce		Calculaltion	%	-2				4/25/2012
QC Cation Sum x 100			Calculaltion	%	101%				4/5/2012
Selenium, Total			EPA200.8	ug/L	3		2	50	3/30/2012
Sodium			EPA200.7	mg/L	45		0.5		4/2/2012
Specific Conductance	(E.C)		2510B	umhos/cm	520		1	900	3/29/2012
Strontium, Total			EPA200.8	ug/L	243		5		3/30/2012
Sulfate			EPA300.0	mg/L	78		1	250	3/29/2012
Total Nitrogen			Calculation	mg/L	Not Detected		0.5		4/20/2012
Total Organic Carbon			SM5310C	mg/L	0.95	E	0.20		4/6/2012
Total Radium 226			EPA903.0	pCi/L	0.056 ± 0.190	E		3	4/10/2012
Trihalomethanes			EPA524.2	ug/L	23	E		80	4/3/2012
Uranium by ICP/MS			EPA200.8	ug/L	Not Detected		1	30	3/30/2012
Vanadium, Total			EPA200.8	ug/L	Not Detected		1	1000	3/30/2012
Zinc, Total			EPA200.8	ug/L	216		10	5000	3/30/2012

Sample Comments:

Report Approved by:

<u>D</u> ١Č 1

David Holland, Laboratory Director

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Certificate of Analysis**

Sampled by: J Lear

Matrix: Drinking Water

 Report Issue Date:
 04/11/2012
 15:57

 Received Date:
 04/03/2012

 Received Time:
 07:30

Lab Sample ID:A2D0111-01Sample Date:03/28/2012 16:00Sample Type:Grab

Sample Description: Injectate // 86209

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.2	0.20	mg/L	1	A203567	04/06/12	04/06/12	
Total Organic Carbon	SM 5310 C	0.95	0.20	mg/L	1	A203569	04/06/12	04/06/12	X01
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	7.9	0.50	ug/L	1	A203332	04/03/12	04/03/12	
Bromoform	EPA 524.2	1.1	0.50	ug/L	1	A203332	04/03/12	04/03/12	
Chloroform	EPA 524.2	8.0	0.50	ug/L	1	A203332	04/03/12	04/03/12	
Dibromochloromethane	EPA 524.2	6.1	0.50	ug/L	1	A203332	04/03/12	04/03/12	
Surrogate: Bromofluorobenzene	EPA 524.2	111 %		Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		23	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	3.0	1.0	ug/L	1	A203543	04/06/12	04/09/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	5.7	1.0	ug/L	1	A203543	04/06/12	04/09/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A203543	04/06/12	04/09/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A203543	04/06/12	04/09/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	4.2	1.0	ug/L	1	A203543	04/06/12	04/09/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	105 %		Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		13	2.0	ug/L					

A2D0111 FINAL 04112012 1557

www.bsklabs.com

Page 3 of 11

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 MONTEREY BAY ANALYTICAL SERVICES PRECISION • ACCURACY • DEPENDABILITY

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2

Lab Number: AA82568

 Collection Date/Time:
 11/18/2011
 15:15

 Submittal Date/Time:
 11/18/2011
 15:25

Sample Collector: LINDBERG T

		Sample De
2011	15:25	Sample ID

ble Description: ASR 1

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	142		2		11/22/2011
Ammonia-N	4500NH3 D	mg/L	Not Detected		0.05		11/23/2011
Arsenic, Total	EPA200.8	ug/L	Not Detected		1	10	12/2/2011
Barium, Total	EPA200.8	ug/L	64		10	1000	12/2/2011
Boron	EPA200.7	mg/L	Not Detected		0.05		11/18/2011
Calcium	EPA200.7	mg/L	43		0.5		11/18/2011
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		11/18/2011
Chloride	EPA300.0	mg/L	40		1	250	11/18/2011
Copper, Total	EPA200.8	ug/L	5		4	1300	12/2/2011
Dissolved Organic Carbon	SM5310-C	mg/L	0.98	E	0.2		11/28/2011
Gross Alpha	EPA900.0	pCi/L	2.17 ± 1.81	E		15	12/16/2011
Haloacetic Acids	EPA552	ug/L	Not Detected	E		60	11/30/2011
Iron	EPA200.7	ug/L	Not Detected		10	300	11/18/2011
Iron, Dissolved	EPA 200.7	ug/L	Not Detected		10	300	11/18/2011
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.2		11/23/2011
Lithium	EPA200.8	ug/L	6		1		12/2/2011
Magnesium	EPA200.7	mg/L	14		0.5		11/18/2011
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected		10	50	11/18/2011
Manganese, Total	EPA 200.7	ug/L	Not Detected		10	50	11/18/2011
Methane	EPA174/175	ug/L	Not Detected	Е	5		11/28/2011
Molybdenum, Total	EPA200.8	ug/L	7		1	1000	12/2/2011
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	11/18/2011
o-Phosphate-P	EPA300.0	mg/L	0.16		0.05		11/18/2011
pH (Laboratory)	4500-H+B	STD. Units	7.4				11/18/2011
Phosphorus, Total	HACH 8190	mg/L	0.20		0.03		11/21/2011
Potassium	EPA200.7	mg/L	3.0		0.1		11/18/2011
QC Anion Sum x 100	Calculation	%	103%				11/23/2011
QC Anion-Cation Balance	Calculation	%	-1				11/23/2011
QC Cation Sum x 100	Calculation	%	100%				11/23/2011

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Page 2 of 2

Lab Number:	AA82568								
Collection Date/Time:	11/18/2011	15:15	Sampl	le Collector:	LINDBERG T				
Submittal Date/Time:	11/18/2011	15:25	Sampl	le ID					
			Sar	nple Descri	ption: ASR 1				
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Selenium, Total			EPA200.8	ug/L	2		2	50	12/2/2011
Sodium			EPA200.7	mg/L	46		0.5		11/18/2011
Specific Conductance	(E.C)		2510B	umhos/cm	537		1	900	11/21/2011
Strontium, Total			EPA200.8	ug/L	254		5		12/2/2011
Sulfate			EPA300.0	mg/L	74		1	250	11/18/2011
Total Nitrogen			Calculation	mg/L	Not Detected		0.2		11/23/2011
Total Organic Carbon			SM5310C	mg/L	0.95	Е	0.20		11/28/2011
Total Radium 226			EPA903.0	pCi/L	0.000 ± 0.193	Е		3	12/7/2011
Trihalomethanes			EPA524.2	ug/L	31	E		80	11/30/2011
Uranium by ICP/MS			EPA200.8	ug/L	1		1	30	12/2/2011
Vanadium, Total			EPA200.8	ug/L	Not Detected		1	1000	12/2/2011

Sample Comments:

Zinc, Total

Report Approved by:

ug/L

EPA200.8

.00 \mathbf{O}

10

5000

12/2/2011

205

David Holland, Laboratory Director

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Certificate of Analysis**

Sampled by: T Lindberg

Matrix: Drinking Water

 Report Issue Date:
 12/02/2011
 10:44

 Received Date:
 11/23/2011

 Received Time:
 07:40

 Lab Sample ID:
 A1K1711-01

 Sample Date:
 11/18/2011 15:15

 Sample Type:
 Grab

Sample Description: ASR-1 // 82568

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.98	0.20	mg/L	1	A114001	11/28/11	11/28/11	
Total Organic Carbon	SM 5310 C	0.95	0.20	mg/L	1	A114002	11/28/11	11/28/11	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	8.2	0.50	ug/L	1	A114043	11/29/11	11/30/11	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A114043	11/29/11	11/30/11	
Chloroform	EPA 524.2	20	0.50	ug/L	1	A114043	11/29/11	11/30/11	
Dibromochloromethane	EPA 524.2	2.8	0.50	ug/L	1	A114043	11/29/11	11/30/11	
Surrogate: Bromofluorobenzene	EPA 524.2	93 %		Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		31	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A114067	11/29/11	11/30/11	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A114067	11/29/11	11/30/11	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A114067	11/29/11	11/30/11	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A114067	11/29/11	11/30/11	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A114067	11/29/11	11/30/11	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	95 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A1K1711 FINAL 12022011 1044

www.bsklabs.com

Page 3 of 11

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Page 1 of 2

MPWMD

Joe Oliver

P.O. Box 85

Monterey, CA 93442-0085

Wednesday, March 28, 2012 Lab Number: AA84670 Collection Date/Time: Sample Collector: 2/2/2012 14:30 LEAR, J Submittal Date/Time: 2/2/2012 15:40 Sample ID Sample Description: ASR-1 Analyte Method Unit Result Qual PQL MCL Date Analyzed Alkalinity, Total (as CaCO3) 2320B 177 2 2/3/2012 mg/L Ammonia-N 4500NH3 D mg/L Not Detected 0.05 2/3/2012 Arsenic, Total EPA200.8 ug/L 1 1 10 2/9/2012 Barium, Total EPA200.8 83 10 1000 2/9/2012 ug/L Boron EPA200.7 mg/L 0.06 0.05 2/6/2012 Calcium EPA200.7 0.5 2/6/2012 mg/L 61 0.05 Chloramines SM4500-CI G 2/2/2012 mg/L Not Detected Chloride EPA300.0 67 1 250 2/3/2012 mg/L Copper, Total EPA200.8 4 1300 ug/L 4 2/9/2012 **Dissolved Organic Carbon** SM5310-C mg/L 0.94 Е 0.2 2/9/2012 EPA900.0 Gross Alpha Е pCi/L 2.96 ± 1.27 15 2/15/2012 Haloacetic Acids Not Detected E 2/14/2012 EPA552 60 ug/L Iron EPA200.7 ug/L 185 10 300 2/6/2012 Iron, Dissolved EPA 200.7 143 10 300 2/6/2012 ug/L Kjehldahl Nitrogen 4500-NH3 B,C.E Not Detected 0.5 2/3/2012 mg/L Lithium EPA200.8 ug/L 1 2/9/2012 22 0.5 2/6/2012 Magnesium EPA200.7 mg/L 19 Manganese, Dissolved EPA 200.7 ug/L 22 10 50 2/6/2012 Manganese, Total EPA 200.7 23 10 50 2/6/2012 ug/L Methane EPA174/175 ug/L 0.40 Е 5 3/6/2012 Molybdenum, Total EPA200.8 ug/L 7 1 1000 2/9/2012 Nitrate as NO3 EPA300.0 mg/L Not Detected 1 45 2/3/2012 Nitrate as NO3-N EPA300.0 10 2/3/2012 mg/L Not Detected mg/L Nitrite as NO2-N 1.00 2/3/2012 EPA300.0 Not Detected o-Phosphate-P EPA300.0 mg/L 0.12 0.05 2/3/2012 pH (Laboratory) 4500-H+B STD. Units 2/2/2012 7.1 Phosphorus, Total HACH 8190 mg/L 0.26 0.03 2/10/2012 Potassium EPA200.7 mg/L 3.7 0.1 2/6/2012 QC Anion Sum x 100 Calculation % 99% 2/8/2012 QC Anion-Cation Balance Calculation % 2/8/2012 2 QC Cation Sum x 100 Calculation % 102% 2/8/2012

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Zinc, Total

Sample Comments:

Lab Number:	AA84670								
Collection Date/Time: Submittal Date/Time:	2/2/2012 2/2/2012	14:30 15:40	Samp Samp	le Collector: le ID	LEAR, J				
			Sar	nple Descr	iption: ASR-1				
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Selenium, Total			EPA200.8	ug/L	Not Detected	k	2	50	2/9/2012
Sodium			EPA200.7	mg/L	62		0.5		2/6/2012
Specific Conductance	(E.C)		2510B	umhos/cm	724		1	900	2/3/2012
Strontium, Total			EPA200.8	ug/L	316		5		2/9/2012
Sulfate			EPA300.0	mg/L	83		1	250	2/3/2012
Total Nitrogen			Calculation	mg/L	Not Detected	ł	0.5		2/3/2012
Total Organic Carbon			SM5310C	mg/L	1.1	E	0.20		2/14/2012
Total Radium 226			EPA903.0	pCi/L	0.033 ± 0.171	ΙE		3	2/20/2012
Trihalomethanes			EPA524.2	ug/L	3.5	E		80	2/9/2012
Uranium by ICP/MS			EPA200.8	ug/L	1		1	30	2/9/2012
Vanadium, Total			EPA200.8	ua/l	2		1	1000	2/9/2012

Report Approved by:

ug/L

EPA200.8

O \subseteq

10

294

5000

2/9/2012

David Holland, Laboratory Director

mg/L: Milligrams per literug/L : Micrograms per literPQL : Practical Quantitation LimitMCL: Maximum Contamination LevelH = Analyzed ouside of hold timeE = Analysis performed by External Laboratory; See External Laboratory Report attachments.

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Certificate of Analysis**

Sampled by: Lear, J. Matrix: Water
 Report Issue Date:
 02/16/2012
 9:33

 Received Date:
 02/07/2012

 Received Time:
 10:15

 Lab Sample ID:
 A2B0394-01

 Sample Date:
 02/02/2012 14:30

 Sample Type:
 Grab

Sample Description: ASR-1 // 84670

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.94	0.20	mg/L	1	A201397	02/09/12	02/09/12	
Total Organic Carbon	SM 5310 C	1.1	0.20	mg/L	1	A201549	02/14/12	02/14/12	
Organics									
Analuta	Mothod	Popult	Ы	Linito	RL	Potob	Bronarad	Applyzod	Qual
Analyte	Method	Result	RL	Units	Mult	Datch	Prepareu	Analyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	0.76	0.50	ug/L	1	A201388	02/09/12	02/09/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A201388	02/09/12	02/09/12	
Chloroform	EPA 524.2	2.7	0.50	ug/L	1	A201388	02/09/12	02/09/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A201388	02/09/12	02/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %	A	Acceptable range:	70-130 %	5			
*Total Trihalomethanes, EPA 524.2		3.5	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A201494	02/13/12	02/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A201494	02/13/12	02/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A201494	02/13/12	02/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A201494	02/13/12	02/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A201494	02/13/12	02/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	97 %	A	Acceptable range:	70-130 %	5			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2B0394 FINAL 02162012 0933

www.bsklabs.com

Page 3 of 11

American Water 1115 South Illinois Street Belleville, IL 62220-3102

Phone: (618) 235-3600 Fax: (618) 235-6349

May 29, 2012

Travis Peterson California American Water 511 Forrest Lodge Road Suite 100 Pacific Grove, CA 93950

RE: Workorder: 165284 Santa Margarita Well SM DBP 1

Dear Travis Peterson:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, May 17, 2012. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Linda Henry (Digitally Signed)

Report ID: 165284

Page 1 of 4

Phone: (618) 235-3600 Fax: (618) 235-6349

SAMPLE SUMMARY

Profile 254 Monterey District

Workorder: 165284 Santa Margarita Well SM DBP 1

Lab ID	Sample ID		Ма	trix
PWSID	Facility ID	Site ID	Site Sample Type	Certified Lab ID
16528401	Santa Marg	arita Well	Dri	nking Water
CA2710004			RAW	1225

Report ID: 165284

Page 2 of 4

CERTIFICATE OF ANALYSIS

Phone: (618) 235-3600 Fax: (618) 235-6349

PROJECT SUMMARY

Profile

Workorder: 165284 Santa Margarita Well SM DBP 1

Sample Analysis Comments

Lab ID 22607 Client ID Subway Hckry - ...(17577901MS)

Analyte/Monochloroacetic Acid

N = Spiked analyte recovery in sample matrix is outside control limits.

Lab ID 22700 Client ID CCCL7 for HBN 11899 [GC/1373]

Analyte/Dibromoacetic Acid

A = Spiked analyte recovery is outside control limits.

Hits Summary

Sample ID	Compound Name	Results Units	RDL	DF	Qual	MCL (S/P)
16528401	Bromodichloromethane	5.9 ug/L	0.5	1		
16528401	Chloroform	15.5 ug/L	0.5	1		
16528401	Dibromochloromethane	2.2 ug/L	0.5	1		
16528401	Total Trihalomethanes	23.6 ug/L	0.5	1		80

Report ID: 165284

Page 3 of 4

CERTIFICATE OF ANALYSIS

Phone: (618) 235-3600 Fax: (618) 235-6349

ANALYTICAL RESULTS

Profile

Workorder: 165284 Santa Margarita Well SM DBP 1

FOR COMPLIANCE											
Lab ID:	16528401			Date Received:	5/17/20	12 07:00 Matrix	c D	rinking W	/ater		
Sample ID:	Santa Margarita	a Well		Date Collected:	5/16/20	12 13:30					
Parameters		Results Units	RDL	DF Prepared	By	Analyzed	Ву	Qual	MCL S/P		
HALOACETI	C ACIDS (HAAs)										
EPA 552.3			Preparation Method: E	EPA 552.3 Prep							
			Analytical Method:								
Bromochloroa	acetic Acid	ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
Dibromoacetic Acid		ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
Dichloroacetic Acid		ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
Monobromoacetic Acid		ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
Monochloroacetic Acid		ND ug/L	2.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
Total Haloace	etic Acids	ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT		60		
Trichloroaceti	c acid	ND ug/L	1.0	1 5/21/2012 18:00	LT	5/22/2012 18:17	LT				
TRIHALOME	THANES (THMs)										
EPA 524.2			Analytical Method:								
Bromodichlor	omethane	5.9 ug/L	0.5	1		5/18/2012 17:35	ALJ				
Bromoform		ND ug/L	0.5	1		5/18/2012 17:35	ALJ				
Chloroform		15.5 ug/L	0.5	1		5/18/2012 17:35	ALJ				
Dibromochlor	omethane	2.2 ug/L	0.5	1		5/18/2012 17:35	ALJ				
Total Trihalom	nethanes	23.6 ug/L	0.5	1		5/18/2012 17:35	ALJ		80		
Field pH			Analytical Method:								
Field Chlorine	e Residual	0.00 mg/L		1		5/16/2012 13:30	FLD				

Report ID: 165284

Page 4 of 4

CERTIFICATE OF ANALYSIS

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Monday, July 09, 2012

Page 1 of 1

Lab Number:	AA89184								
Collection Date/Time:	6/21/2012	13:20	Sample	Collector:	LINDBERG T				
Submittal Date/Time:	6/21/2012	14:15	Sample ID						
			Sample D	escriptio	n: ASR-1 Back	lush			
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Chloramines			SM4500-CI G	mg/L	Not Detected		0.05		6/21/2012
Chloride			EPA300.0	mg/L	49		1	250	6/22/2012
Haloacetic Acids			EPA552	ug/L	Not Detected	Е		60	7/1/2012
Trihalomethanes			EPA524.2	ug/L	42	E		80	6/27/2012
Sample Comments:									
Sample Comments:			Report Appro	ved by:	$\overline{\mathbf{n}}$	4	el_	\bigcirc	

David Holland, Laboratory Director

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Certificate of Analysis**

Sampled by: T. Lindberg

Matrix: Water

 Report Issue Date:
 07/06/2012
 15:28

 Received Date:
 06/26/2012
 15:28

 Received Time:
 10:00
 10:00

Lab Sample ID:A2F2128-01Sample Date:06/21/2012 13:20Sample Type:Grab

Sample Description: ASR-1 Backflush // 89184

Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	12	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Chloroform	EPA 524.2	25	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Dibromochloromethane	EPA 524.2	4.5	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable	range: 70-130	%			
*Total Trihalomethanes, EPA 524.2		42	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A206948	06/29/12	07/01/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	100 %		Acceptable	range: 70-130	%			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2F2128 FINAL 07062012 1528

www.bsklabs.com

Page 3 of 10

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Wednesday, August 01, 2012

Page 1 of 2

Lab Number: AA89597

Collection Date/Time: 7/6/2012 Submittal Date/Time: 7/6/20

Sample Collector: Sample ID

LINDBERG T

12	15:30	

14:00

Sample Description: ASR-1 Backflush

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
						_	
Alkalinity, Total (as CaCO3)	2320B	mg/L	171		2		7/11/2012
Ammonia-N	4500NH3 D	mg/L	Not Detected		0.05		7/10/2012
Arsenic, Total	EPA200.8	ug/L	1		1	10	7/13/2012
Barium, Total	EPA200.8	ug/L	73		10	1000	7/13/2012
Boron	EPA200.7	mg/L	0.06		0.05		7/10/2012
Calcium	EPA200.7	mg/L	60		0.5		7/10/2012
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		7/6/2012
Chloride	EPA300.0	mg/L	66		1	250	7/6/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.77	E	0.2		7/23/2012
Gross Alpha	EPA900.0	pCi/L	2.84 ± 1.49	E		15	7/20/2012
Haloacetic Acids	EPA552	ug/L	Not Detected	E		60	7/26/2012
Iron	EPA200.7	ug/L	37		10	300	7/10/2012
Iron, Dissolved	EPA 200.7	ug/L	24		10	300	7/10/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	1.7		0.2		7/11/2012
Lithium	EPA200.8	ug/L	16		1		7/13/2012
Magnesium	EPA200.7	mg/L	18		0.5		7/10/2012
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected		10	50	7/10/2012
Manganese, Total	EPA 200.7	ug/L	Not Detected		10	50	7/10/2012
Methane	EPA174/175	ug/L	0.39	Е	0.1		7/13/2012
Molybdenum, Total	EPA200.8	ug/L	6		1	1000	7/13/2012
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	7/13/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	7/6/2012
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.10	10	7/6/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.10	1.00	7/6/2012
o-Phosphate-P	EPA300.0	mg/L	Not Detected		0.10		7/6/2012
pH (Laboratory)	4500-H+B	рН (Н)	7.3				7/6/2012
Phosphorus, Total	HACH 8190	mg/L	0.22		0.03		7/9/2012
Potassium	EPA200.7	mg/L	3.8		0.1		7/10/2012
QC Anion Sum x 100	Calculation	%	101%				7/12/2012

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Lab Number:	AA89597								
Collection Date/Time:	7/6/2012	14:00	Sampl	e Collector:	LINDBERG T				
Submittal Date/Time:	7/6/2012	15:30	15:30 Sample ID						
			Sample [Description	: ASR-1 Back	flush			
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
QC Anion-Cation Balar	nce		Calculatiion	%	1				7/12/2012
QC Cation Sum x 100			Calculaltion	%	104%				7/12/2012
QC Ratio TDS/SEC			Calculation		0.61				7/11/2012
Selenium, Total			EPA200.8	ug/L	3		2	50	7/13/2012
Sodium			EPA200.7	mg/L	63		0.5		7/10/2012
Specific Conductance	(E.C)		2510B	umhos/cm	704		1	900	7/10/2012
Strontium, Total			EPA200.8	ug/L	312		5		7/13/2012
Sulfate			EPA300.0	mg/L	88		1	250	7/6/2012
Total Diss. Solids			2540C	mg/L	428		10	500	7/9/2012
Total Nitrogen			Calculation	mg/L	1.7		0.5		7/12/2012
Total Organic Carbon			SM5310C	mg/L	0.78	E	0.20		7/23/2012
Total Radium 226			EPA903.0	pCi/L	0.000 ± 0.099	E		3	7/24/2012
Trihalomethanes			EPA524.2	ug/L	29	E		80	7/19/2012
Uranium by ICP/MS			EPA200.8	ug/L	1		1	30	7/13/2012
Vanadium, Total			EPA200.8	ug/L	1		1	1000	7/13/2012
Zinc, Total			EPA200.8	ug/L	134		10	5000	7/13/2012

Sample Comments:

Report Approved by:

20 Holl ς<u>ι</u> ΄

David Holland, Laboratory Director

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

David Holland Monterey Bay Analytical 4 Justin Court Suite D Monterey, CA 93940 **Certificate of Analysis**

Sampled by: T Lindberg

Matrix: Ground Water

 Report Issue Date:
 07/30/2012
 14:23

 Received Date:
 07/17/2012

 Received Time:
 17:07

 Lab Sample ID:
 A2G1476-01

 Sample Date:
 07/12/2012 14:00

 Sample Type:
 Grab

Sample Description: ASR-1 Backflush // 89597

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.77	0.20	mg/L	1	A207921	07/23/12	07/23/12	
Total Organic Carbon	SM 5310 C	0.78	0.20	mg/L	1	A207922	07/23/12	07/23/12	
Organics									
Analida		Desult	Ы	l le ite	RL	Detek	Deserved	A	0
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	8.0	0.50	ug/L	1	A207753	07/19/12	07/19/12	
Bromoform	EPA 524.2	0.62	0.50	ug/L	1	A207753	07/19/12	07/19/12	
Chloroform	EPA 524.2	18	0.50	ug/L	1	A207753	07/19/12	07/19/12	
Dibromochloromethane	EPA 524.2	2.7	0.50	ug/L	1	A207753	07/19/12	07/19/12	
Surrogate: Bromofluorobenzene	EPA 524.2	96 %		Acceptable range:	70-130 9	%			
*Total Trihalomethanes, EPA 524.2		29	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A207901	07/24/12	07/26/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A207901	07/24/12	07/26/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A207901	07/24/12	07/26/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A207901	07/24/12	07/26/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A207901	07/24/12	07/26/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	112 %		Acceptable range:	70-130 %	%			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2G1476 FINAL 07302012 1422

www.bsklabs.com

Page 3 of 11

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93960

Collection Date/Time: 10/31/2012 16:00 Submittal Date/Time: 11/1/2012

15:10

Sample Collector: LINDBERG T Sample ID

Coliform Designation:

Wednesday, December 05, 2012

	Sam	ple Desc	ription: ASR-1			
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	223	2		11/7/2012
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/9/2012
Ammonia-N	4500NH3 D	mg/L	0.12	0.05		11/6/2012
Arsenic, Total	EPA200.8	ug/L	1	1	10	11/9/2012
Barium, Total	EPA200.8	ug/L	81	10	1000	11/9/2012
Bicarbonate (as HCO3-)	2320B	mg/L	272	10		11/8/2012
Boron	EPA200.7	mg/L	0.13	0.05		11/6/2012
Bromide	EPA300.0	mg/L	0.22	0.10		11/2/2012
Calcium	EPA200.7	mg/L	86	0.5		11/6/2012
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/1/2012
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		11/1/2012
Chloride	EPA300.0	mg/L	110	1	250	11/2/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.76 E	0.2		11/14/2012
Fluoride	EPA300.0	mg/L	0.18	0.10	2.0	11/2/2012
Gross Alpha	EPA900.0	pCi/L	5.57 ± 2.32 E		15	11/16/2012
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/14/2012
Iron	EPA200.7	ug/L	42	10	300	11/6/2012
Iron, Dissolved	EPA200.7	ug/L	27	10	300	11/6/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012
Lithium	EPA200.8	ug/L	32	1		11/9/2012
Magnesium	EPA200.7	mg/L	22	0.5		11/6/2012
Manganese, Dissolved	EPA200.7	ug/L	23	10	50	11/6/2012
Manganese, Total	EPA200.7	ug/L	24	10	50	11/6/2012
Methane	EPA174/175	ug/L	3.2 E	0.1		11/14/2012
Molybdenum, Total	EPA200.8	ug/L	7	1	1000	11/9/2012

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93960

Collection Date/Time: 10/31/2012 16:00 Submittal Date/Time: 11/1/2012

15:10

LINDBERG T

Sample Collector:

Sample ID

Coliform Designation:

Sample Description: ASR-1

Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/9/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	11/2/2012
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	11/2/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	11/2/2012
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		11/2/2012
pH (Laboratory)	4500-H+B	рН (Н)	7.5			11/1/2012
Phosphorus, Total	HACH 8190	mg/L	0.30			11/8/2012
Potassium	EPA200.7	mg/L	5.2	0.1		11/6/2012
QC Anion Sum x 100	Calculation	%	98%			11/8/2012
QC Anion-Cation Balance	Calculation	%	3			11/8/2012
QC Cation Sum x 100	Calculation	%	104%			11/8/2012
QC Ratio TDS/SEC	Calculation		0.62			11/9/2012
Selenium, Total	EPA200.8	ug/L	Not Detected	2	50	11/9/2012
Silica as SiO2, Total	EPA200.7	mg/L	42	0.5		11/6/2012
Sodium	EPA200.7	mg/L	93	0.5		11/6/2012
Specific Conductance (E.C)	2510B	umhos/cm	987	1	900	11/2/2012
Strontium, Total	EPA200.8	ug/L	402	5		11/9/2012
Sulfate	EPA300.0	mg/L	102	1	250	11/2/2012
Total Diss. Solids	2540C	mg/L	614	10	500	11/6/2012
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/15/2012
Total Organic Carbon	SM5310C	mg/L	0.99 E	0.20		11/14/2012
Total Radium 226	EPA903.0	pCi/L	0.881 ± 0.335 E		3	11/26/2012
Trihalomethanes	EPA524.2	ug/L	9.8 E		80	11/13/2012
Uranium by ICP/MS	EPA200.8	ug/L	1	1	30	11/9/2012
Vanadium, Total	EPA200.8	ug/L	2	1	1000	11/9/2012
Zinc, Total	EPA200.8	ug/L	181	10	5000	11/9/2012

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb) E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

Report Approved by:

C1

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)ug/L : Micrograms per liter (=ppb)PQL : Practical Quantitation LimitH = Analyzed ouside of hold timeE = Analysis performed by External Laboratory; See External Laboratory Report attachments.D = Method deviates from standard method due to insufficient sample for MS/MSD

Certificate of Analysis

Sampled by: T. Lindberg

Matrix: Water

 Report Issue Date:
 11/20/2012
 11:24

 Received Date:
 11/08/2012

 Received Time:
 09:36

 Lab Sample ID:
 A2K0639-01

 Sample Date:
 10/31/2012 16:00

 Sample Type:
 Grab

Sample Description: ASR-1 // 93960

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.76	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.99	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
Analyta	Mathad	Decult	Ы	Lipito	RL	Datab	Droporod	Applyzod	Qual
Analyte	wethod	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	2.4	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	7.4	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	112 %		Acceptable rai	nge: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		9.8	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	103 %		Acceptable rai	nge: 70-130 %	6			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

www.bsklabs.com

Tuesday, February 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA84503

Collection Date/Time: 1/26/2012 Submittal Date/Time: 1/26/2012

15:15 16:45

Sample Description: ASR-2

LINDBERG T

Sample Collector:

Sample ID

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	243		2		1/31/2012
Ammonia-N	4500NH3 D	mg/L	0.06		0.05		2/3/2012
Arsenic, Total	EPA200.8	ug/L	2		1	10	1/31/2012
Barium, Total	EPA200.8	ug/L	126		10	1000	1/31/2012
Boron	EPA200.7	mg/L	0.11		0.05		2/6/2012
Calcium	EPA200.7	mg/L	91		0.5		2/6/2012
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		1/26/2012
Chloride	EPA300.0	mg/L	129		1	250	1/26/2012
Copper, Total	EPA200.8	ug/L	7		4	1300	1/31/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.87	E	0.2		2/9/2012
Gross Alpha	EPA900.0	pCi/L	6.05 ± 1.61	Е		15	2/6/2012
Haloacetic Acids	EPA552	ug/L	Not Detected	Е		60	2/4/2012
Iron	EPA200.7	ug/L	139		10	300	2/6/2012
Iron, Dissolved	EPA 200.7	ug/L	44		10	300	2/6/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.5		2/3/2012
Lithium	EPA200.8	ug/L	37		1		1/31/2012
Magnesium	EPA200.7	mg/L	28		0.5		2/6/2012
Manganese, Dissolved	EPA 200.7	ug/L	45		10	50	2/6/2012
Manganese, Total	EPA 200.7	ug/L	51		10	50	2/6/2012
Methane	EPA174/175	ug/L	0.68	Е	5		2/7/2012
Molybdenum, Total	EPA200.8	ug/L	11		1	1000	1/31/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	1/26/2012
o-Phosphate-P	EPA300.0	mg/L	0.16		0.05		1/26/2012
pH (Laboratory)	4500-H+B	STD. Units	7.2				1/26/2012
Phosphorus, Total	HACH 8190	mg/L	0.22		0.03		2/10/2012
Potassium	EPA200.7	mg/L	4.8		0.1		2/6/2012
QC Anion Sum x 100	Calculation	%	106%				2/7/2012
QC Anion-Cation Balance	Calculation	%	-1				2/7/2012
QC Cation Sum x 100	Calculation	%	104%				2/7/2012
Selenium, Total	EPA200.8	ug/L	2		2	50	1/31/2012

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

 H = Analyzed ouside of hold time
 E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 D = Method deviates from standard method due to insufficient sample for MS/MSD

Tuesday, February 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA84503

Collection Date/Time: 1/26/2012 Submittal Date/Time: 1/26/2012

15:15 16:45

Sample ID

Sample Collector:

Sample Description: ASR-2

LINDBERG T

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Sodium	EPA200.7	mg/L	85		0.5		2/6/2012
Specific Conductance (E.C)	2510B	umhos/cm	1030		1	900	1/26/2012
Strontium, Total	EPA200.8	ug/L	482		5		1/31/2012
Sulfate	EPA300.0	mg/L	115		1	250	1/26/2012
Total Nitrogen	Calculation	mg/L	Not Detected	I	0.5		2/3/2012
Total Organic Carbon	SM5310C	mg/L	0.91	E	0.20		2/6/2012
Total Radium 226	EPA903.0	pCi/L	0.775 ± 0.536	ε		3	2/7/2012
Trihalomethanes	EPA524.2	ug/L	6.7	E		80	2/3/2012
Uranium by ICP/MS	EPA200.8	ug/L	5		1	30	1/31/2012
Vanadium, Total	EPA200.8	ug/L	Not Detected		1	1000	1/31/2012
Zinc, Total	EPA200.8	ug/L	434		10	5000	1/31/2012

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: T. Lindberg Matrix: Water
 Report Issue Date:
 02/10/2012
 14:32

 Received Date:
 02/01/2012

 Received Time:
 09:00

 Lab Sample ID:
 A2B0028-02

 Sample Date:
 01/26/2012
 15:15

 Sample Type:
 Grab

Sample Description: ASR-2 // 84503

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.87	0.20	mg/L	1	A201397	02/09/12	02/09/12	
Total Organic Carbon	SM 5310 C	0.91	0.20	mg/L	1	A201235	02/06/12	02/06/12	
Organics									
Analyte	Method	Result	RI	Linits	RL	Batch	Prenared	Analyzed	Qual
Analyte	Wethod	result		Onits	Mult	Daton	Перагео	Analyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	1.2	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Chloroform	EPA 524.2	4.8	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Dibromochloromethane	EPA 524.2	0.66	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Surrogate: Bromofluorobenzene	EPA 524.2	103 %	,	Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		6.7	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A201108	02/01/12	02/04/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	94 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2B0028 FINAL 02102012 1432

www.bsklabs.com

Page 4 of 12

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89545

 Collection Date/Time:
 7/3/2012
 13:45

 Submittal Date/Time:
 7/3/2012
 16:05

16:05

Sample Collector: LEAR, J Sample ID

	Sample Description: ASR 2											
Analyte	Method	Unit	Result Qu	al PQL	MCL	Date Analyzed						
Alkalinity, Total (as CaCO3)	2320B	mg/L	142	2		7/11/2012						
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		7/10/2012						
Arsenic, Total	EPA200.8	ug/L	2	1	10	7/5/2012						
Barium, Total	EPA200.8	ug/L	64	10	1000	7/5/2012						
Boron	EPA200.7	mg/L	Not Detected	0.05		7/10/2012						
Calcium	EPA200.7	mg/L	47	0.5		7/10/2012						
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		7/3/2012						
Chloride	EPA300.0	mg/L	36	1	250	7/3/2012						
Dissolved Organic Carbon	SM5310-C	mg/L	0.86 E	0.2		7/9/2012						
Gross Alpha	EPA900.0	pCi/L	2.60 ± 1.34 E		15	7/13/2012						
Haloacetic Acids	EPA552	ug/L	3.2 E		60	7/14/2012						
Iron	EPA200.7	ug/L	63	10	300	7/10/2012						
Iron, Dissolved	EPA 200.7	ug/L	52	10	300	7/10/2012						
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	0.4	0.2		7/11/2012						
Lithium	EPA200.8	ug/L	7	1		7/5/2012						
Magnesium	EPA200.7	mg/L	14	0.5		7/10/2012						
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected	10	50	7/10/2012						
Manganese, Total	EPA 200.7	ug/L	Not Detected	10	50	7/10/2012						
Methane	EPA174/175	ug/L	0.18 E	5		7/10/2012						
Molybdenum, Total	EPA200.8	ug/L	6	1	1000	7/5/2012						
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	7/5/2012						
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	7/3/2012						
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	7/3/2012						

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb) PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89545

> Sample Collector: LEAR, J Sample ID

Collection Date/Time:	7/3/2012	13:45
Submittal Date/Time:	7/3/2012	16:05

_____s

Sample Description: ASR 2

Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	7/3/2012
o-Phosphate-P	EPA300.0	mg/L	/L 0.18			7/3/2012
pH (Laboratory)	4500-H+B	рН (Н)	рН (Н) 7.4			7/3/2012
Phosphorus, Total	HACH 8190	mg/L	0.37	0.03		7/9/2012
Potassium	EPA200.7	mg/L	3.2	0.1		7/10/2012
QC Anion Sum x 100	Calculation	%	101%			7/12/2012
QC Anion-Cation Balance	Calculation	%	2			7/12/2012
QC Cation Sum x 100	Calculation	%	104%			7/12/2012
QC Ratio TDS/SEC	Calculation		0.56			7/9/2012
Selenium, Total	EPA200.8	ug/L	4	2	50	7/5/2012
Sodium	EPA200.7	mg/L	48	0.5		7/10/2012
Specific Conductance (E.C)	2510B	umhos/cm	543	1	900	7/3/2012
Strontium, Total	EPA200.8	ug/L	248	5		7/5/2012
Sulfate	EPA300.0	mg/L	77	1	250	7/3/2012
Total Diss. Solids	2540C	mg/L	302	10	500	7/5/2012
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		7/12/2012
Total Organic Carbon	SM5310C	mg/L	0.93 E	0.20		7/11/2012
Total Radium 226	EPA903.0	pCi/L	0.294 ± 0.203 E		3	7/23/2012
Trihalomethanes	EPA524.2	ug/L	53 E		80	7/9/2012
Uranium by ICP/MS	EPA200.8	ug/L	1	1	30	7/5/2012
Vanadium, Total	EPA200.8	ug/L	2	1	1000	7/5/2012
Zinc, Total	EPA200.8	ug/L	219	10	5000	7/5/2012

Sample Comments:

Report Approved by:

ug/L : Micrograms per liter (=ppb)

David Holland, Laboratory Director

PQL : Practical Quantitation Limit

mg/L: Milligrams per liter (=ppm)

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water
 Report Issue Date:
 07/18/2012
 16:20

 Received Date:
 07/06/2012

 Received Time:
 08:30

 Lab Sample ID:
 A2G0476-01

 Sample Date:
 07/03/2012 13:45

 Sample Type:
 Grab

Sample Description: ASR 2 // 89545

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.86	0.20	mg/L	1	A207230	07/09/12	07/09/12	
Total Organic Carbon	SM 5310 C	0.93	0.20	mg/L	1	A207360	07/11/12	07/11/12	
Organics									
Analista	Mathad	Deput	ы	l luite	RL	Datab	Drenered	Analyzad	Qual
Analyte	Iviethod	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	15	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Bromoform	EPA 524.2	1.5	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Chloroform	EPA 524.2	28	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Dibromochloromethane	EPA 524.2	8.2	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	100 %		Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		53	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A207442	07/12/12	07/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	3.2	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	110 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		3.2	2.0	ug/L					

A2G0476 FINAL 07182012 1620

www.bsklabs.com

Page 3 of 15

Thursday, August 30, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA90582

 Collection Date/Time:
 8/2/2012
 14:30

 Submittal Date/Time:
 8/2/2012
 16:41

Sample Collector: Sample ID

eID

LEAR J

	Sample Description: ASR 2										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed					
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		8/2/2012					
Chloride	EPA300.0	mg/L	85	1	250	8/2/2012					
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	8/14/2012					
Trihalomethanes	EPA524.2	ug/L	42 E		80	8/9/2012					

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

Sampled by: Jonathan Lear

Matrix: Water

 Report Issue Date:
 08/15/2012
 16:29

 Received Date:
 08/08/2012
 16:29

 Received Time:
 09:30
 16:29

Lab Sample ID:A2H0678-02Sample Date:08/02/2012 14:30Sample Type:Grab

Sample Description: ASR 2 // 90582

Organics

					RL				. .
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	11	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Bromoform	EPA 524.2	0.88	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Chloroform	EPA 524.2	25	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Dibromochloromethane	EPA 524.2	5.2	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	111 %		Acceptable r	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		42	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A208842	08/10/12	08/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	107 %		Acceptable r	ange: 70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2H0678 FINAL 08152012 1629

www.bsklabs.com

Page 4 of 12

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Thursday, June 14, 2012

Page 1 of 2

Lab Number: AA88252

Collection Date/Time: 5/22/2012 Submittal Date/Time: 5/22/2012 13:30 Sample ID 13:50

Sample Collector: LINDBERG T

	0	aı	Ц

Sample Description: ASR-3

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	141		2		5/22/2012
Ammonia-N	4500NH3 D	mg/L	0.06		0.05		5/25/2012
Arsenic, Total	EPA200.8	ug/L	39		1	10	5/25/2012
Barium, Total	EPA200.8	ug/L	55		10	1000	5/25/2012
Bicarbonate (as HCO3-)	2320B	mg/L	172		10		5/22/2012
Boron	EPA200.7	mg/L	Not Detected		0.05		5/23/2012
Calcium	EPA200.7	mg/L	44		0.5		5/23/2012
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		5/22/2012
Chloride	EPA300.0	mg/L	33		1	250	5/22/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.87	E	0.2		5/31/2012
Gross Alpha	EPA900.0	pCi/L	4.43 ± 1.59	E		15	6/2/2012
Haloacetic Acids	EPA552	ug/L	16	E		60	5/31/2012
Iron	EPA200.7	ug/L	88		10	300	5/23/2012
Iron, Dissolved	EPA 200.7	ug/L	20		10	300	5/23/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	E mg/L	Not Detected		0.2		5/23/2012
Lithium	EPA200.8	ug/L	7		1		5/25/2012
Magnesium	EPA200.7	mg/L	14		0.5		5/23/2012
Manganese, Dissolved	EPA 200.7	ug/L	16		10	50	5/23/2012
Manganese, Total	EPA 200.7	ug/L	16		10	50	5/23/2012
Methane	EPA174/175	ug/L	Not Detected	E	5		5/25/2012
Molybdenum, Total	EPA200.8	ug/L	97		1	1000	5/25/2012
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	5/25/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	5/22/2012
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.10	10	5/22/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.10	1.00	5/22/2012
o-Phosphate-P	EPA300.0	mg/L	0.10		0.10		5/22/2012
pH (Laboratory)	4500-H+B	STD. Units (7.5				5/22/2012
Phosphorus, Total	HACH 8190	mg/L	0.22		0.03		5/25/2012
Potassium	EPA200.7	mg/L	3.0		0.1		5/23/2012

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Page 2 of 2

Lab Number:	AA88252												
Collection Date/Time:	5/22/2012	13:30	Sampl	e Collector:	LINDBERG T								
Submittal Date/Time:	5/22/2012	13:50	Sampl	e ID									
	Sample Description: ASR-3												
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed				
QC Anion Sum x 100			Calculatiion	%	100%				5/24/2012				
QC Anion-Cation Balar	nce		Calculaltion	%	1				5/24/2012				
QC Cation Sum x 100			Calculaltion	%	102%				5/24/2012				
QC Ratio TDS/SEC			Calculation		0.60				5/25/2012				
Selenium, Total			EPA200.8	ug/L	8		2	50	5/25/2012				
Sodium			EPA200.7	mg/L	44		0.5		5/23/2012				
Specific Conductance	(E.C)		2510B	umhos/cm	524		1	900	5/22/2012				
Strontium, Total			EPA200.8	ug/L	231		5		5/25/2012				
Sulfate			EPA300.0	mg/L	71		1	250	5/22/2012				
Total Diss. Solids			2540C	mg/L	317		10	500	5/22/2012				
Total Nitrogen			Calculation	mg/L	Not Detected		0.5		5/25/2012				
Total Organic Carbon			SM5310C	mg/L	1.2	E	0.20		5/31/2012				
Total Radium 226			EPA903.0	pCi/L	0.356 ± 0.183	E		3	6/13/2012				
Trihalomethanes			EPA524.2	ug/L	79	E		80	5/31/2012				
Uranium by ICP/MS			EPA200.8	ug/L	5		1	30	5/25/2012				
Vanadium, Total			EPA200.8	ug/L	2		1	1000	5/25/2012				
Zinc, Total			EPA200.8	ug/L	129		10	5000	5/25/2012				

Sample Comments: Uranium 3 pCi/L

Report Approved by:

20 Holl $\langle \mathbf{L} \rangle$

David Holland, Laboratory Director

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Tom Lindberg Matrix: Water
 Report Issue Date:
 06/05/2012
 15:30

 Received Date:
 05/24/2012

 Received Time:
 09:00

 Lab Sample ID:
 A2E2040-01

 Sample Date:
 05/22/2012 13:30

 Sample Type:
 Grab

Sample Description: ASR-3 // 88252

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.87	0.20	mg/L	1	A205698	05/31/12	05/31/12	
Total Organic Carbon	SM 5310 C	1.2	0.20	mg/L	1	A205699	05/31/12	05/31/12	
Organics									
Analista	Mathad	Desult	DI	Linite	RL	Datah	Desmand	Anglungel	Qual
Analyte	wethod	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	23	0.50	ug/L	1	A205608	05/29/12	05/31/12	
Bromoform	EPA 524.2	2.0	0.50	ug/L	1	A205608	05/29/12	05/31/12	
Chloroform	EPA 524.2	39	0.50	ug/L	1	A205608	05/29/12	05/31/12	
Dibromochloromethane	EPA 524.2	15	0.50	ug/L	1	A205608	05/29/12	05/31/12	
Surrogate: Bromofluorobenzene	EPA 524.2	116 %		Acceptable	range: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		79	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A205562	05/29/12	05/31/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	3.4	1.0	ug/L	1	A205562	05/29/12	05/31/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A205562	05/29/12	05/31/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A205562	05/29/12	05/31/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	13	1.0	ug/L	1	A205562	05/29/12	05/31/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	91 %		Acceptable	range: 70-130 %	0			
*Total Haloacetic Acids, EPA 552.2		16	2.0	ug/L					

A2E2040 FINAL 06052012 1530

www.bsklabs.com

Page 3 of 11

Monday, July 09, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89179

Collection Date/Time: 6/21/2012 11:40 Submittal Date/Time: 6/21/2012 11:50 Sample Collector: LEAR J Sample ID

Sample Description: ASR-3										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		6/21/2012				
Chloride	EPA300.0	mg/L	34	1	250	6/22/2012				
Haloacetic Acids	EPA552	ug/L	23 E		60	7/1/2012				
Trihalomethanes	EPA524.2	ug/L	58 E		80	6/27/2012				

Sample Comments:

Г

Report Approved by:

١O v 4

David Holland, Laboratory Director

Certificate of Analysis

Sampled by: J. Lear Matrix: Water
 Report Issue Date:
 07/06/2012
 16:51

 Received Date:
 06/26/2012
 16:51

 Received Time:
 10:00
 10:00

 Lab Sample ID:
 A2F2143-01

 Sample Date:
 06/21/2012 11:40

 Sample Type:
 Grab

Sample Description: ASR-3 // 89179

Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	17	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Bromoform	EPA 524.2	1.7	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Chloroform	EPA 524.2	26	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Dibromochloromethane	EPA 524.2	13	0.50	ug/L	1	A206808	06/27/12	06/27/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable	range: 70-130	%			-
*Total Trihalomethanes, EPA 524.2		58	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	2.3	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	12	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	2.3	2.0	ug/L	1	A206948	06/29/12	07/01/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	6.6	1.0	ug/L	1	A206948	06/29/12	07/01/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	99 %		Acceptable	range: 70-130	%			
*Total Haloacetic Acids, EPA 552.2		23	2.0	ug/L					

A2F2143 FINAL 07062012 1651

www.bsklabs.com

Page 3 of 12

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89547

> Sample Collector: LEAR, J Sample ID

Collection Date/Time:	7/3/2012	15:30
Submittal Date/Time:	7/3/2012	16:05

ç

Sample Description: ASR 3

		-					
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	157		2		7/11/2012
Ammonia-N	4500NH3 D	mg/L	Not Detected		0.05		7/10/2012
Arsenic, Total	EPA200.8	ug/L	4		1	10	7/5/2012
Barium, Total	EPA200.8	ug/L	66		10	1000	7/5/2012
Boron	EPA200.7	mg/L	Not Detected		0.05		7/10/2012
Calcium	EPA200.7	mg/L	50		0.5		7/10/2012
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		7/3/2012
Chloride	EPA300.0	mg/L	44		1	250	7/3/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.78	E	0.2		7/9/2012
Gross Alpha	EPA900.0	pCi/L	9.15 ± 2.26	E		15	7/13/2012
Haloacetic Acids	EPA552	ug/L	9.3	E		60	7/17/2012
Iron	EPA200.7	ug/L	193		10	300	7/10/2012
Iron, Dissolved	EPA 200.7	ug/L	32		10	300	7/10/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.2		7/11/2012
Lithium	EPA200.8	ug/L	10		1		7/5/2012
Magnesium	EPA200.7	mg/L	13		0.5		7/10/2012
Manganese, Dissolved	EPA 200.7	ug/L	18		10	50	7/10/2012
Manganese, Total	EPA 200.7	ug/L	24		10	50	7/10/2012
Methane	EPA174/175	ug/L	0.17	E	5		7/10/2012
Molybdenum, Total	EPA200.8	ug/L	35		1	1000	7/5/2012
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	7/5/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	7/3/2012
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.10	10	7/3/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.10	1.00	7/3/2012
o-Phosphate-P	EPA300.0	mg/L	Not Detected		0.10		7/3/2012
pH (Laboratory)	4500-H+B	pH (H)	7.5				7/3/2012

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

old time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D}=\mathsf{M}\mathsf{e}\mathsf{thod}$ deviates from standard method due to insufficient sample for MS/MSD

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89547

Collection Date/Time: 7/3/2012 15:30 Submittal Date/Time: 7/3/2012 16:05

Sample Collector: LEAR, J Sample ID

	Sample Description: ASR 3											
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed					
Phosphorus, Total	HACH 8190	mg/L	0.18		0.03		7/9/2012					
Potassium	EPA200.7	mg/L	3.4		0.1		7/10/2012					
QC Anion Sum x 100	Calculation	%	99%				7/12/2012					
QC Anion-Cation Balance	Calculation	%	2				7/31/2012					
QC Cation Sum x 100	Calculation	%	104%				7/31/2012					
QC Ratio TDS/SEC	Calculation		0.59				7/9/2012					
Selenium, Total	EPA200.8	ug/L	5		2	50	7/5/2012					
Sodium	EPA200.7	mg/L	56		0.5		7/10/2012					
Specific Conductance (E.C)	2510B	umhos/cm	583		1	900	7/3/2012					
Strontium, Total	EPA200.8	ug/L	262		5		7/5/2012					
Sulfate	EPA300.0	mg/L	68		1	250	7/3/2012					
Total Diss. Solids	2540C	mg/L	342		10	500	7/5/2012					
Total Nitrogen	Calculation	mg/L	Not Detected	I	0.5		7/12/2012					
Total Organic Carbon	SM5310C	mg/L	0.98	E	0.20		7/11/2012					
Total Radium 226	EPA903.0	pCi/L	0.160 ± 0.165	i E		3	7/23/2012					
Trihalomethanes	EPA524.2	ug/L	46	E		80	7/9/2012					
Uranium by ICP/MS	EPA200.8	ug/L	4		1	30	7/5/2012					
Vanadium, Total	EPA200.8	ug/L	Not Detected	l	1	1000	7/5/2012					
Zinc, Total	EPA200.8	ug/L	96		10	5000	7/5/2012					

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

H = Analyzed ouside of hold time

ug/L : Micrograms per liter (=ppb) E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

PQL : Practical Quantitation Limit

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water
 Report Issue Date:
 07/18/2012
 16:20

 Received Date:
 07/06/2012

 Received Time:
 08:30

 Lab Sample ID:
 A2G0476-03

 Sample Date:
 07/03/2012 15:30

 Sample Type:
 Grab

Sample Description: ASR 3 // 89547

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.78	0.20	mg/L	1	A207230	07/09/12	07/09/12	
Total Organic Carbon	SM 5310 C	0.98	0.20	mg/L	1	A207360	07/11/12	07/11/12	
Organics									
Analista	Mathad	Decult		l laite	RL	Datab	Dronorod	Analyzad	Qual
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	14	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Bromoform	EPA 524.2	1.7	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Chloroform	EPA 524.2	21	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Dibromochloromethane	EPA 524.2	9.8	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable range	e: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		46	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	2.7	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A207499	07/13/12	07/17/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	6.6	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	101 %		Acceptable range	e: 70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		9.3	2.0	ug/L					

A2G0476 FINAL 07182012 1620

www.bsklabs.com

Page 5 of 15

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93860

Collection Date/Time: 10/30/2012 12:00 Submittal Date/Time: 10/30/2012 14:16

Sample Collector: LEAR J Sample ID

Coliform Designation:

Sample Description: ASR-3											
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	223		2		11/2/2012				
Aluminum, Total	EPA200.8	ug/L	Not Detected		10	1000	11/1/2012				
Ammonia-N	4500NH3 D	mg/L	Not Detected	Not Detected			11/6/2012				
Arsenic, Total	EPA200.8	ug/L	5		1	10	11/1/2012				
Barium, Total	EPA200.8	ug/L	77		10	1000	11/1/2012				
Bicarbonate (as HCO3-)	2320B	mg/L	272		10		11/20/2012				
Boron	EPA200.7	mg/L	0.09		0.05		11/6/2012				
Bromide	EPA300.0	mg/L	Not Detected		0.10		10/31/2012				
Calcium	EPA200.7	mg/L	68		0.5		11/6/2012				
Carbonate as CaCO3	2320B	mg/L	Not Detected		10		11/2/2012				
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		10/30/2012				
Chloride	EPA300.0	mg/L	90		1	250	10/31/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	0.66	E	0.2		11/7/2012				
Fluoride	EPA300.0	mg/L	0.23		0.10	2.0	10/31/2012				
Gross Alpha	EPA900.0	pCi/L	4.12 ± 1.97	E		15	11/16/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected	E		60	11/7/2012				
Iron	EPA200.7	ug/L	156		10	300	11/6/2012				
Iron, Dissolved	EPA200.7	ug/L	93		10	300	11/6/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.2		11/14/2012				
Lithium	EPA200.8	ug/L	32		1		11/1/2012				
Magnesium	EPA200.7	mg/L	18		0.5		11/6/2012				
Manganese, Dissolved	EPA200.7	ug/L	25		10	50	11/6/2012				
Manganese, Total	EPA200.7	ug/L	26		10	50	11/6/2012				
Methane	EPA174/175	ug/L	0.61	E	0.1		11/9/2012				
Molybdenum, Total	EPA200.8	ug/L	8		1	1000	11/1/2012				
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	11/1/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	11/2/2012				

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93860

Collection Date/Time: 10/30/2012 12:00 Submittal Date/Time: 10/30/2012 14:16

Sample ID

Sample Collector: LEAR J

Coliform Designation:

Sample Description: ASR-3 MCL Method Unit PQL Analyte Qual Date Analyzed Result Nitrate as NO3-N EPA300.0 10/31/2012 mg/L 0.10 0.10 10 Nitrite as NO2-N 10/31/2012 EPA300.0 0.10 1.00 mg/L Not Detected o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 10/31/2012 pH (Laboratory) 4500-H+B pH (H) 10/30/2012 7.3 Phosphorus, Total HACH 8190 0.22 0.03 11/8/2012 mg/L Potassium EPA200.7 mg/L 4.8 0.1 11/6/2012 QC Anion Sum x 100 % 11/7/2012 Calculation 97% 11/15/2012 **QC** Anion-Cation Balance Calculation % 3 QC Cation Sum x 100 Calculation % 11/15/2012 103% QC Ratio TDS/SEC Calculation 0.59 11/5/2012 Selenium, Total EPA200.8 2 50 11/1/2012 ug/L 2 Silica as SiO2, Total EPA200.7 mg/L 41 0.5 11/6/2012 Sodium EPA200.7 mg/L 87 0.5 11/6/2012 Specific Conductance (E.C) 2510B 850 10/30/2012 1 900 umhos/cm Strontium, Total EPA200.8 335 5 11/1/2012 ug/L Sulfate EPA300.0 mg/L 58 1 250 10/31/2012 Total Diss. Solids 2540C 503 10 500 10/31/2012 mg/L Total Nitrogen Calculation mg/L Not Detected 0.5 11/15/2012 **Total Organic Carbon** SM5310C 0.73 0.20 11/7/2012 mg/L F Total Radium 226 EPA903.0 0.426 ± 0.256 E pCi/L 3 11/26/2012 Trihalomethanes EPA524.2 ug/L 6.3 Е 80 11/5/2012 Uranium by ICP/MS EPA200.8 30 11/1/2012 ug/L 2 1 Vanadium, Total EPA200.8 ug/L 4 1 1000 11/1/2012 Zinc, Total EPA200.8 72 5000 11/1/2012 10 ug/L

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Lear, J.

Matrix: Water

Report Issue Date: 11/13/2012 16:22 Received Date: 11/02/2012 Received Time: 09:20

 Lab Sample ID:
 A2K0138-01

 Sample Date:
 10/30/2012 12:00

 Sample Type:
 Grab

Sample Description: ASR-3 // 93860

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.66	0.20	mg/L	1	A212622	11/07/12	11/07/12	
Total Organic Carbon	SM 5310 C	0.73	0.20	mg/L	1	A212623	11/07/12	11/07/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	1.8	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Bromoform	EPA 524.2	0.52	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Chloroform	EPA 524.2	2.7	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Dibromochloromethane	EPA 524.2	1.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		6.3	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-I	<u>MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212495	11/05/12	11/07/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	94 %		Acceptable range:	70-130 %	6			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0138 FINAL 11132012 1622

www.bsklabs.com

Page 3 of 12

Tuesday, February 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA84502

Collection Date/Time: 1/26/2012 Submittal Date/Time: 1/26/2012

)12 14:20)12 16:45 Sample Collector: LINDBERG T

Sample ID

Sample Description: MW-1										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed			
Alkalinity, Total (as CaCO3)	2320B	mg/L	203		2		1/31/2012			
Ammonia-N	4500NH3 D	mg/L	Not Detected		0.05		2/3/2012			
Arsenic, Total	EPA200.8	ug/L	2		1	10	1/31/2012			
Barium, Total	EPA200.8	ug/L	52		10	1000	1/31/2012			
Boron	EPA200.7	mg/L	0.07		0.05		2/6/2012			
Calcium	EPA200.7	mg/L	72		0.5		2/6/2012			
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		1/26/2012			
Chloride	EPA300.0	mg/L	82		1	250	1/26/2012			
Copper, Total	EPA200.8	ug/L	Not Detected		4	1300	1/31/2012			
Dissolved Organic Carbon	SM5310-C	mg/L	1.1	Е	0.2		2/9/2012			
Gross Alpha	EPA900.0	pCi/L	8.09 ± 2.30	Е		15	2/6/2012			
Haloacetic Acids	EPA552	ug/L	Not Detected	Е		60	2/4/2012			
Iron	EPA200.7	ug/L	Not Detected		10	300	2/6/2012			
Iron, Dissolved	EPA 200.7	ug/L	Not Detected		10	300	2/6/2012			
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.5		2/3/2012			
Lithium	EPA200.8	ug/L	21		1		1/31/2012			
Magnesium	EPA200.7	mg/L	22		0.5		2/6/2012			
Manganese, Dissolved	EPA 200.7	ug/L	13		10	50	2/6/2012			
Manganese, Total	EPA 200.7	ug/L	13		10	50	2/6/2012			
Methane	EPA174/175	ug/L	0.63	Е	5		2/7/2012			
Molybdenum, Total	EPA200.8	ug/L	7		1	1000	1/31/2012			
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	1/26/2012			
o-Phosphate-P	EPA300.0	mg/L	Not Detected		0.05		1/26/2012			
pH (Laboratory)	4500-H+B	STD. Units	7.4				1/26/2012			
Phosphorus, Total	HACH 8190	mg/L	0.07		0.03		2/10/2012			
Potassium	EPA200.7	mg/L	3.9		0.1		2/6/2012			

- mg/L: Milligrams per liter (=ppm)
- ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Tuesday, February 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA84502

Collection Date/Time: 1/26/2012 Submittal Date/Time: 1/26/2012 14:20 16:45

Sample ID

LINDBERG T

Sample Collector:

Sample Description: MW-1 Analyte Method Unit Result Qual PQL MCL Date Analyzed QC Anion Sum x 100 Calculation % 105% 2/7/2012 **QC** Anion-Cation Balance Calculation -1 2/7/2012 % QC Cation Sum x 100 % 103% 2/7/2012 Calculation Selenium, Total EPA200.8 ug/L 4 2 50 1/31/2012 EPA200.7 Sodium 0.5 2/6/2012 mg/L 61 Specific Conductance (E.C) 2510B umhos/cm 790 1 900 1/26/2012 Strontium, Total EPA200.8 5 1/31/2012 ug/L 383 1/26/2012 Sulfate EPA300.0 mg/L 92 1 250 Total Nitrogen Calculation Not Detected 0.5 2/3/2012 mg/L **Total Organic Carbon** SM5310C mg/L 1.0 Е 0.20 2/6/2012 Total Radium 226 EPA903.0 pCi/L 0.180 ± 0.390 E 3 2/7/2012 Trihalomethanes EPA524.2 ug/L 6.1 Е 80 2/3/2012 Uranium by ICP/MS EPA200.8 5 1 1/31/2012 ug/L 30 Vanadium, Total EPA200.8 ug/L Not Detected 1 1000 1/31/2012 Zinc, Total EPA200.8 ug/L 61 10 5000 1/31/2012

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: T. Lindberg Matrix: Water
 Report Issue Date:
 02/10/2012
 14:32

 Received Date:
 02/01/2012

 Received Time:
 09:00

Lab Sample ID:A2B0028-01Sample Date:01/26/2012 14:20Sample Type:Grab

Sample Description: MW-1 // 84502

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.1	0.20	mg/L	1	A201397	02/09/12	02/09/12	
Total Organic Carbon	SM 5310 C	1.0	0.20	mg/L	1	A201235	02/06/12	02/06/12	
Organics									
Analvte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analvzed	Qual
					wut			.,	
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	1.0	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Chloroform	EPA 524.2	4.4	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Dibromochloromethane	EPA 524.2	0.70	0.50	ug/L	1	A201115	02/02/12	02/03/12	
Surrogate: Bromofluorobenzene	EPA 524.2	126 %	,	Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		6.1	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A201108	02/01/12	02/04/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A201108	02/01/12	02/04/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	99 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2B0028 FINAL 02102012 1432

www.bsklabs.com

Page 3 of 12

Thursday, June 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA88487

 Collection Date/Time:
 5/30/2012
 13:40

 Submittal Date/Time:
 5/30/2012
 14:45

Г

5 Sample ID

Sample Description: MW 1

LEAR, J

Sample Collector:

Analyte	Method	Unit	Result C	Qual PQL	MCL	Date Analyzed					
Alkalinity, Total (as CaCO3)	2320B	mg/L	151	2		6/1/2012					
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		5/31/2012					
Boron	EPA200.7	mg/L	Not Detected	0.05		5/31/2012					
Calcium	EPA200.7	mg/L	47	0.5		5/31/2012					
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		5/30/2012					
Chloride	EPA300.0	mg/L	35	1	250	5/30/2012					
Dissolved Organic Carbon	SM5310-C	mg/L	0.94 E	0.2		6/7/2012					
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	6/12/2012					
Iron	EPA200.7	ug/L	21	10	300	5/31/2012					
Iron, Dissolved	EPA 200.7	ug/L	Not Detected	10	300	5/31/2012					
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	0.5	0.5		6/8/2012					
Magnesium	EPA200.7	mg/L	14	0.5		5/31/2012					
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected	10	50	5/31/2012					
Manganese, Total	EPA 200.7	ug/L	Not Detected	10	50	5/31/2012					
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	5/30/2012					
Nitrate as NO3-N	EPA300.0	mg/L	0.10	0.10	10	5/30/2012					
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	5/30/2012					
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		5/30/2012					
pH (Laboratory)	4500-H+B	Units (H)	7.6			5/30/2012					
Phosphorus, Total	HACH 8190	mg/L	0.22	0.03		6/12/2012					
Potassium	EPA200.7	mg/L	3.1	0.1		5/31/2012					
QC Anion Sum x 100	Calculation	%	97%			6/1/2012					
QC Anion-Cation Balance	Calculation	%	2			6/1/2012					
QC Cation Sum x 100	Calculation	%	101%			6/1/2012					
QC Ratio TDS/SEC	Calculation		0.64			6/13/2012					
Sodium	EPA200.7	mg/L	48	0.5		5/31/2012					

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

f hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D}=\mathsf{M}\mathsf{e}\mathsf{thod}$ deviates from standard method due to insufficient sample for MS/MSD

Thursday, June 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA88487

Collection Date/Time: 5/30/2012 13:40 Submittal Date/Time: 5/30/2012 14:45

Sample ID

LEAR, J

Sample Collector:

Sample Description: MW 1										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed			
Specific Conductance (E.C)	2510B	umhos/cm	563		1	900	6/1/2012			
Sulfate	EPA300.0	mg/L	70		1	250	5/30/2012			
Total Diss. Solids	2540C	mg/L	363		10	500	6/5/2012			
Total Nitrogen	Calculation	mg/L	0.6		0.5		6/8/2012			
Total Organic Carbon	SM5310C	mg/L	0.85	E	0.20		6/6/2012			
Trihalomethanes	EPA524.2	ug/L	31	E		80	6/2/2012			
0 1 0 1										

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments. D = Method deviates from standard method due to insufficient sample for MS/MSD

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water
 Report Issue Date:
 06/13/2012
 14:39

 Received Date:
 06/01/2012

 Received Time:
 08:15

 Lab Sample ID:
 A2F0002-02

 Sample Date:
 05/30/2012 13:40

 Sample Type:
 Grab

Sample Description: MW-1 // 88487

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.94	0.20	mg/L	1	A205988	06/07/12	06/07/12	
Total Organic Carbon	SM 5310 C	0.85	0.20	mg/L	1	A205911	06/06/12	06/06/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	9.4	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Bromoform	EPA 524.2	1.2	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Chloroform	EPA 524.2	14	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Dibromochloromethane	EPA 524.2	6.3	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Surrogate: Bromofluorobenzene	EPA 524.2	113 %	,	Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		31	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A205995	06/07/12	06/12/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	93 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2F0002 FINAL 06132012 1439

www.bsklabs.com

Page 4 of 12

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89546

Collection Date/Time: 7/3/2012

Submittal Date/Time: 7/3/2012

Sample Collector: 12:30 16:05 Sample ID

LEAR, J

	Sample Description: MW 1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed					
Alkalinity, Total (as CaCO3)	2320B	mg/L	139	2		7/11/2012					
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		7/10/2012					
Arsenic, Total	EPA200.8	ug/L	2	1	10	7/5/2012					
Barium, Total	EPA200.8	ug/L	25	10	1000	7/5/2012					
Boron	EPA200.7	mg/L	Not Detected	0.05		7/10/2012					
Calcium	EPA200.7	mg/L	48	0.5		7/10/2012					
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		7/3/2012					
Chloride	EPA300.0	mg/L	32	1	250	7/3/2012					
Dissolved Organic Carbon	SM5310-C	mg/L	1.1 E	0.2		7/9/2012					
Gross Alpha	EPA900.0	pCi/L	2.62 ± 1.34 E		15	7/13/2012					
Haloacetic Acids	EPA552	ug/L	4.0 E		60	7/14/2012					
Iron	EPA200.7	ug/L	Not Detected	10	300	7/10/2012					
Iron, Dissolved	EPA 200.7	ug/L	Not Detected	10	300	7/10/2012					
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		7/11/2012					
Lithium	EPA200.8	ug/L	6	1		7/5/2012					
Magnesium	EPA200.7	mg/L	11	0.5		7/10/2012					
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected	10	50	7/10/2012					
Manganese, Total	EPA 200.7	ug/L	Not Detected	10	50	7/10/2012					
Methane	EPA174/175	ug/L	0.14 E	5		7/10/2012					
Molybdenum, Total	EPA200.8	ug/L	4	1	1000	7/5/2012					
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	7/5/2012					
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	7/3/2012					
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	7/3/2012					
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	7/3/2012					
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		7/3/2012					
pH (Laboratory)	4500-H+B	pH (H)	7.4			7/3/2012					

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89546

Collection Date/Time: 7/3/2012 Sample Collector: 12:30 Submittal Date/Time: 7/3/2012 16:05 Sample ID

LEAR, J

Sample Description: MW 1											
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed				
Phosphorus, Total	HACH 8190	mg/L	0.15		0.03		7/9/2012				
Potassium	EPA200.7	mg/L	3.1		0.1		7/10/2012				
QC Anion Sum x 100	Calculaltion	%	97%				7/31/2012				
QC Anion-Cation Balance	Calculaltion	%	3				7/31/2012				
QC Cation Sum x 100	Calculaltion	%	103%				7/31/2012				
QC Ratio TDS/SEC	Calculation		0.61				7/9/2012				
Selenium, Total	EPA200.8	ug/L	6		2	50	7/5/2012				
Sodium	EPA200.7	mg/L	47		0.5		7/10/2012				
Specific Conductance (E.C)	2510B	umhos/cm	528		1	900	7/3/2012				
Strontium, Total	EPA200.8	ug/L	227		5		7/5/2012				
Sulfate	EPA300.0	mg/L	70		1	250	7/3/2012				
Total Diss. Solids	2540C	mg/L	322		10	500	7/5/2012				
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		7/12/2012				
Total Organic Carbon	SM5310C	mg/L	0.95	Е	0.20		7/11/2012				
Total Radium 226	EPA903.0	pCi/L	0.561 ± 0.262	Е		3	7/23/2012				
Trihalomethanes	EPA524.2	ug/L	62	Е		80	7/9/2012				
Uranium by ICP/MS	EPA200.8	ug/L	2		1	30	7/5/2012				
Vanadium, Total	EPA200.8	ug/L	2		1	1000	7/5/2012				
Zinc, Total	EPA200.8	ug/L	Not Detected		10	5000	7/5/2012				

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

H = Analyzed ouside of hold time

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

D = Method deviates from standard method due to insufficient sample for MS/MSD

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water
 Report Issue Date:
 07/18/2012
 16:20

 Received Date:
 07/06/2012

 Received Time:
 08:30

 Lab Sample ID:
 A2G0476-02

 Sample Date:
 07/03/2012
 12:30

 Sample Type:
 Grab

Sample Description: MW 1 // 89546

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	1.1	0.20	mg/L	1	A207230	07/09/12	07/09/12	
Total Organic Carbon	SM 5310 C	0.95	0.20	mg/L	1	A207360	07/11/12	07/11/12	
Organics									
Analuta	Mothod	Popult	Ы	Linita	RL	Potob	Bronarad	Applyzod	Qual
Analyte	Method	Result	RL	UTIIIS	Mult	Dalch	Fiepaieu	Analyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	17	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Bromoform	EPA 524.2	1.2	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Chloroform	EPA 524.2	36	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Dibromochloromethane	EPA 524.2	7.7	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	100 %	A	cceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		62	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A207442	07/12/12	07/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	4.0	1.0	ug/L	1	A207442	07/12/12	07/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	103 %	A	cceptable range:	70-130 %	ó			
*Total Haloacetic Acids, EPA 552.2		4.0	2.0	ug/L					

A2G0476 FINAL 07182012 1620

www.bsklabs.com

Page 4 of 15

Thursday, August 30, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA90583

 Collection Date/Time:
 8/2/2012
 15:00

 Submittal Date/Time:
 8/2/2012
 16:41

Sample Collector: Sample ID

eib

LEAR J

Sample Description: MW-1										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed				
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		8/2/2012				
Chloride	EPA300.0	mg/L	59	1	250	8/2/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	8/14/2012				
Trihalomethanes	EPA524.2	ug/L	28 E		80	8/9/2012				

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

Certificate of Analysis

Sampled by: Jonathan Lear

Matrix: Water

 Report Issue Date:
 08/15/2012
 16:29

 Received Date:
 08/08/2012
 16:29

 Received Time:
 09:30
 16:29

Lab Sample ID:A2H0678-03Sample Date:08/02/2012 15:00Sample Type:Grab

Sample Description: MW 1 // 90583

Organics

					RL				. .
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	7.2	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Bromoform	EPA 524.2	0.63	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Chloroform	EPA 524.2	16	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Dibromochloromethane	EPA 524.2	3.8	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	111 %		Acceptable r	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		28	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A208842	08/10/12	08/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	100 %		Acceptable r	ange: 70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2H0678 FINAL 08152012 1629

www.bsklabs.com

Page 5 of 12

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93961

Collection Date/Time: 11/1/2012 Submittal Date/Time: 11/1/2012

15:10

15:00

Sample ID

LINDBERG T

Sample Collector:

Coliform Designation:

Sample Description: MW-1

Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	144	2		11/7/2012
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/9/2012
Ammonia-N	4500NH3 D	mg/L	Not Detected	0.05		11/6/2012
Arsenic, Total	EPA200.8	ug/L	2	1	10	11/9/2012
Barium, Total	EPA200.8	ug/L	21	10	1000	11/9/2012
Bicarbonate (as HCO3-)	2320B	mg/L	176	10		11/8/2012
Boron	EPA200.7	mg/L	Not Detected	0.05		11/6/2012
Bromide	EPA300.0	mg/L	Not Detected	0.10		11/2/2012
Calcium	EPA200.7	mg/L	47	0.5		11/6/2012
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/1/2012
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		11/1/2012
Chloride	EPA300.0	mg/L	34	1	250	11/2/2012
Dissolved Organic Carbon	SM5310-C	mg/L	0.61 E	0.2		11/14/2012
Fluoride	EPA300.0	mg/L	0.16	0.10	2.0	11/2/2012
Gross Alpha	EPA900.0	pCi/L	2.95 ± 1.44 E		15	11/16/2012
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/14/2012
Iron	EPA200.7	ug/L	Not Detected	10	300	11/6/2012
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	11/6/2012
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012
Lithium	EPA200.8	ug/L	8	1		11/9/2012
Magnesium	EPA200.7	mg/L	12	0.5		11/6/2012
Manganese, Dissolved	EPA200.7	ug/L	Not Detected	10	50	11/6/2012
Manganese, Total	EPA200.7	ug/L	Not Detected	10	50	11/6/2012
Methane	EPA174/175	ug/L	0.12 E	0.1		11/14/2012
Molybdenum, Total	EPA200.8	ug/L	4	1	1000	11/9/2012
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/9/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	11/2/2012
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected	0.10	10	11/2/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	11/2/2012

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, December 05, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93961

Collection Date/Time: 11/1/2012 15:00 Submittal Date/Time: 11/1/2012

15:10

Sample ID

LINDBERG T

Sample Collector:

Coliform Designation:

Sample Description: MW-1

Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		11/2/2012
pH (Laboratory)	4500-H+B	pH (H)	7.5			11/1/2012
Phosphorus, Total	HACH 8190	mg/L	0.06	0.03		11/8/2012
Potassium	EPA200.7	mg/L	2.9	0.1		11/6/2012
QC Anion Sum x 100	Calculation	%	98%			11/8/2012
QC Anion-Cation Balance	Calculation	%	2			11/8/2012
QC Cation Sum x 100	Calculation	%	101%			11/8/2012
QC Ratio TDS/SEC	Calculation		0.63			11/9/2012
Selenium, Total	EPA200.8	ug/L	2	2	50	11/9/2012
Silica as SiO2, Total	EPA200.7	mg/L	26	0.5		11/6/2012
Sodium	EPA200.7	mg/L	47	0.5		11/6/2012
Specific Conductance (E.C)	2510B	umhos/cm	540	1	900	11/2/2012
Strontium, Total	EPA200.8	ug/L	247	5		11/9/2012
Sulfate	EPA300.0	mg/L	69	1	250	11/2/2012
Total Diss. Solids	2540C	mg/L	340	10	500	11/6/2012
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/15/2012
Total Organic Carbon	SM5310C	mg/L	0.71 E	0.20		11/14/2012
Total Radium 226	EPA903.0	pCi/L	0.027 ± 0.157 E		3	11/26/2012
Trihalomethanes	EPA524.2	ug/L	59 E		80	11/13/2012
Uranium by ICP/MS	EPA200.8	ug/L	1	1	30	11/9/2012
Vanadium, Total	EPA200.8	ug/L	2	1	1000	11/9/2012
Zinc, Total	EPA200.8	ug/L	13	10	5000	11/9/2012

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: T. Lindberg

Matrix: Water

 Report Issue Date:
 11/20/2012
 11:24

 Received Date:
 11/08/2012

 Received Time:
 09:36

 Lab Sample ID:
 A2K0639-02

 Sample Date:
 11/01/2012
 15:00

 Sample Type:
 Grab

Sample Description: MW-1 // 93961

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.61	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.71	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
		D #	i.		RL	5.4.1	D		. .
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	12	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	0.51	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	42	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	4.2	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	107 %	Д	cceptable range:	70-130 %	5			
*Total Trihalomethanes, EPA 524.2		59	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-M	<u>IS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %	Д	cceptable range:	70-130 %	5			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

www.bsklabs.com

Page 4 of 12

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Thursday, May 10, 2012

Page 1 of 2

Г

Lab Number: AA86133

Collection Date/Time: 3/27/2012 Submittal Date/Time: 3/27/2012

Sample Collector: Sample ID ~

14:00

15:00

LEAR, J

	Samp	le Descripti	on: SSMS (E))			
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	229		2		3/29/2012
Ammonia-N	4500NH3 D	mg/L	0.09		0.05		3/30/2012
Arsenic, Total	EPA200.8	ug/L	6		1	10	4/13/2012
Barium, Total	EPA200.8	ug/L	54		10	1000	4/13/2012
Boron	EPA200.7	mg/L	0.09		0.05		3/28/2012
Bromide	EPA300.0	mg/L	0.21		0.10		3/28/2012
Calcium	EPA200.7	mg/L	70		0.5		3/28/2012
Chloramines	SM4500-CI G	mg/L	Not Detected	I	0.05		3/27/2012
Chloride	EPA300.0	mg/L	120		1	250	3/28/2012
Fluoride	EPA300.0	mg/L	0.20		0.10	2.0	3/28/2012
Gross Alpha	EPA900.0	pCi/L	5.20 ± 2.30	Е		15	5/2/2012
Haloacetic Acids	EPA552	ug/L	Not Detected	ΙE		60	4/5/2012
Hardness (as CaCO3)	2340B	mg/L	232		10		3/29/2012
Iron	EPA200.7	ug/L	56		10	300	3/28/2012
Lithium	EPA200.8	ug/L	25		1		4/13/2012
Magnesium	EPA200.7	mg/L	14		0.5		3/28/2012
Manganese, Total	EPA 200.7	ug/L	79		10	50	3/28/2012
Methane	EPA174/175	ug/L	1.4	E	5		4/2/2012
Molybdenum, Total	EPA200.8	ug/L	7		1	1000	4/13/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected	I	1	45	3/28/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	I	0.10	1.00	3/28/2012
o-Phosphate-P	EPA300.0	mg/L	Not Detected	I	0.10		3/28/2012
pH (Laboratory)	4500-H+B	STD. Units	7.3				3/27/2012
Potassium	EPA200.7	mg/L	4.1		0.1		3/28/2012
QC Anion Sum x 100	Calculation	%	100%				4/20/2012
QC Anion-Cation Balance	Calculation	%	-2				4/20/2012
QC Cation Sum x 100	Calculation	%	96%				4/20/2012
QC Ratio TDS/SEC	Calculation		0.59				4/10/2012
Selenium, Total	EPA200.8	ug/L	2		2	50	4/13/2012

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Lab Number: AA86133

 Collection Date/Time:
 3/27/2012
 14:00

 Submittal Date/Time:
 3/27/2012
 15:00

Sample Collector: LEAR, J Sample ID

	Sam	ple Descripti	on: SSMS ([))				
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	
Sodium	EPA200.7	mg/L	91		0.5		3/28/2012	
Specific Conductance (E.C)	2510B	umhos/cm	904		1	900	3/27/2012	
Strontium, Total	EPA200.8	ug/L	457		5		4/13/2012	
Sulfate	EPA300.0	mg/L	53		1	250	3/28/2012	
Total Diss. Solids	2540C	mg/L	534		10	500	4/5/2012	
Total Organic Carbon	SM5310C	mg/L	0.98	Е	0.20		4/4/2012	
Total Radium 226	EPA903.0	pCi/L	0.408 ± 0.204	4 E		3	5/9/2012	
Trihalomethanes	EPA524.2	ug/L	Not Detected	l E		80	3/30/2012	
Uranium by ICP/MS	EPA200.8	ug/L	2		1	30	4/13/2012	
Vanadium, Total	EPA200.8	ug/L	1		1	1000	4/13/2012	
Zinc, Total	EPA200.8	ug/L	10		10	5000	4/13/2012	
								-

Sample Comments:

Report Approved by:

20 Holl ٢L

David Holland, Laboratory Director

Certificate of Analysis

Sampled by: J. Lear Matrix: Water
 Report Issue Date:
 04/09/2012
 14:57

 Received Date:
 03/28/2012

 Received Time:
 08:00

 Lab Sample ID:
 A2C1984-01

 Sample Date:
 03/27/2012 14:00

 Sample Type:
 Grab

Sample Description: SSMS (D) // 86133

General Chemistry

Analyte	Method	Result	RL	Units	F	RL Iult	Batch	Prepared	Analyzed	Qual
Total Organic Carbon	SM 5310 C	0.98	0.40	mg/L		2	A203380	04/04/12	04/04/12	
Organics										
Analyte	Method	Result	RL	Units	F	RL Iult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS										
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L		1	A203229	03/30/12	03/30/12	
Bromoform	EPA 524.2	ND	0.50	ug/L		1	A203229	03/30/12	03/30/12	
Chloroform	EPA 524.2	ND	0.50	ug/L		1	A203229	03/30/12	03/30/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L		1	A203229	03/30/12	03/30/12	
Surrogate: Bromofluorobenzene	EPA 524.2	97 %		Acceptable	range: 70-	130 %	5			
*Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L						
Haloacetic Acids by GC-ECD										
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L		1	A203279	04/02/12	04/05/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L		1	A203279	04/02/12	04/05/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L		1	A203279	04/02/12	04/05/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L		1	A203279	04/02/12	04/05/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L		1	A203279	04/02/12	04/05/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	102 %		Acceptable i	range: 70-	130 %	5			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L						

A2C1984 FINAL 04092012 1457

www.bsklabs.com

Page 3 of 11

Thursday, June 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA88486

 Collection Date/Time:
 5/30/2012
 14:10

 Submittal Date/Time:
 5/30/2012
 14:45

San

Sample Collector: LEAR, J

Sample ID

Sample Description: SMS (Deep)

•	•	(I <i>)</i>			
Method	Unit	Result Qual	PQL	MCL	Date Analyzed
2320B	mg/L	148	2		6/1/2012
4500NH3 D	mg/L	0.06	0.05		5/31/2012
EPA200.7	mg/L	Not Detected	0.05		5/31/2012
EPA200.7	mg/L	48	0.5		5/31/2012
SM4500-CI G	mg/L	Not Detected	0.05		5/30/2012
EPA300.0	mg/L	32	1	250	5/30/2012
SM5310-C	mg/L	0.89 E	0.2		6/7/2012
EPA552	ug/L	15 E		60	6/12/2012
EPA200.7	ug/L	14	10	300	5/31/2012
EPA 200.7	ug/L	Not Detected	10	300	5/31/2012
4500-NH3 B,C.E	mg/L	Not Detected	0.5		6/8/2012
EPA200.7	mg/L	9	0.5		5/31/2012
EPA 200.7	ug/L	Not Detected	10	50	5/31/2012
EPA 200.7	ug/L	Not Detected	10	50	5/31/2012
EPA300.0	mg/L	Not Detected	1	45	5/30/2012
EPA300.0	mg/L	Not Detected	0.10	10	5/30/2012
EPA300.0	mg/L	Not Detected	0.10	1.00	5/30/2012
EPA300.0	mg/L	Not Detected	0.10		5/30/2012
4500-H+B	Units (H)	7.7			5/30/2012
HACH 8190	mg/L	0.09	0.03		6/12/2012
EPA200.7	mg/L	2.8	0.1		5/31/2012
Calculation	%	98%			6/1/2012
Calculation	%	2			6/1/2012
	Method 2320B 4500NH3 D EPA200.7 EPA200.7 SM4500-Cl G EPA300.0 SM5310-C EPA552 EPA552 EPA200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 300.0 EPA3	Method Unit 2320B mg/L 4500NH3 D mg/L EPA200.7 mg/L EPA200.7 mg/L SM4500-CI G mg/L SM4500-CI G mg/L SM4500-CI G mg/L SM4500-CI G mg/L EPA200.7 mg/L EPA300.0 mg/L EPA300.0 mg/L EPA552 ug/L EPA200.7 ug/L EPA300.0 mg/L EPA200.	Method Unit Result Qual 2320B mg/L 148 Qual 2320B mg/L 148 Qual 2320B mg/L 148 Qual 2320B mg/L 0.06 Qual EPA200.7 mg/L Not Detected Qual EPA200.7 mg/L Not Detected Qual EPA300.0 mg/L 48 Qual SM4500-CI G mg/L Not Detected Qual EPA300.0 mg/L 32 Qual SM SM5310-C mg/L 0.89 E E EPA300.0 mg/L 14 E E E E E E E A E E E E E E E E E E E Qual I E E E Qual E E A Gual E A Gual E A Gual Gual	Method Unit Result Qual PQL 2320B mg/L 148 2 4500NH3 D mg/L 0.06 0.05 EPA200.7 mg/L Not Detected 0.05 EPA200.7 mg/L 48 0.5 SM4500-CI G mg/L Not Detected 0.05 EPA200.7 mg/L 32 1 SM5310-C mg/L 32 1 SM5310-C mg/L 15 E EPA200.7 ug/L 14 10 EPA200.7 ug/L 14 10 EPA200.7 ug/L 14 10 EPA200.7 ug/L Not Detected 0.5 EPA200.7 ug/L Not Detected 10 4500-NH3 B,C.E mg/L Not Detected 10 EPA200.7 ug/L Not Detected 10 EPA300.0 mg/L Not Detected 10 EPA300.0 mg/L Not Detected 0.10 <td>Method Unit Result Qual PQL MCL 2320B mg/L 148 2 4500NH3 D mg/L 0.06 0.05 EPA200.7 mg/L Not Detected 0.05 EPA200.7 mg/L 48 0.5 SM4500-Cl G mg/L Not Detected 0.05 EPA300.0 mg/L 32 1 250 SM5310-C mg/L 0.89 E 0.2 EPA552 ug/L 15 E 60 EPA200.7 ug/L 14 10 300 EPA200.7 ug/L 14 10 300 EPA200.7 ug/L Not Detected 0.5 5 EPA200.7 ug/L Not Detected 10 300 4500-NH3 B,C.E mg/L Not Detected 0.5 5 EPA 200.7 ug/L Not Detected 10 50 EPA 200.7 ug/L Not Detected 0.10 50</td>	Method Unit Result Qual PQL MCL 2320B mg/L 148 2 4500NH3 D mg/L 0.06 0.05 EPA200.7 mg/L Not Detected 0.05 EPA200.7 mg/L 48 0.5 SM4500-Cl G mg/L Not Detected 0.05 EPA300.0 mg/L 32 1 250 SM5310-C mg/L 0.89 E 0.2 EPA552 ug/L 15 E 60 EPA200.7 ug/L 14 10 300 EPA200.7 ug/L 14 10 300 EPA200.7 ug/L Not Detected 0.5 5 EPA200.7 ug/L Not Detected 10 300 4500-NH3 B,C.E mg/L Not Detected 0.5 5 EPA 200.7 ug/L Not Detected 10 50 EPA 200.7 ug/L Not Detected 0.10 50

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

H = Analyzed ouside of hold time

Thursday, June 14, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA88486

Collection Date/Time: 5/30/2012 Submittal Date/Time: 5/30/2012

14:10 14:45 Sample Collector: LEAR, J Sample ID

Sample Description: SMS (Deep)

Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Calculation	%	101%				6/1/2012
Calculation		0.66				6/13/2012
EPA200.7	mg/L	50		0.5		5/31/2012
2510B	umhos/cm	533		1	900	6/1/2012
EPA300.0	mg/L	65		1	250	5/30/2012
2540C	mg/L	351		10	500	6/5/2012
Calculation	mg/L	Not Detected		0.5		6/8/2012
SM5310C	mg/L	0.85	E	0.20		6/6/2012
EPA524.2	ug/L	47	Е		80	6/2/2012
	Method Calculaltion Calculation EPA200.7 2510B EPA300.0 2540C Calculation SM5310C EPA524.2	MethodUnitCalculation%CalculationEPA200.7mg/L2510Bumhos/cmEPA300.0mg/L2540Cmg/LCalculationmg/LSM5310Cmg/LEPA524.2ug/L	MethodUnitResultCalculaltion%101%Calculation0.66EPA200.7mg/L502510Bumhos/cm533EPA300.0mg/L652540Cmg/L351Calculationmg/LNot DetectedSM5310Cmg/L0.85EPA524.2ug/L47	Method Unit Result Qual Calculaltion % 101% Calculation 0.66 EPA200.7 mg/L 50 2510B umhos/cm 533 EPA300.0 mg/L 65 2540C mg/L 351 Calculation mg/L Not Detected SM5310C mg/L 0.85 E EPA524.2 ug/L 47 E	Method Unit Result Qual PQL Calculaltion % 101%	Method Unit Result Qual PQL MCL Calculaltion % 101%

Sample Comments:

Report Approved by:

X

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments. D = Method deviates from standard method due to insufficient sample for MS/MSD

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water

Report Issue Date: 06/13/2012 14:39 Received Date: 06/01/2012 Received Time: 08:15

Lab Sample ID: A2F0002-01 Sample Date: 05/30/2012 14:10 Sample Type: Grab

Sample Description: SMS (Deep) // 88486

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.89	0.20	mg/L	1	A205988	06/07/12	06/07/12	
Total Organic Carbon	SM 5310 C	0.85	0.20	mg/L	1	A205911	06/06/12	06/06/12	
Organics									
Analyta	Mothod	Popult	DI	Unito	RL	Patab	Bronarad	Applyzod	Qual
Analyte	Method	Result	RL	UTIIIS	Mult	Datch	Fiepaieu	Analyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	14	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Bromoform	EPA 524.2	1.9	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Chloroform	EPA 524.2	20	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Dibromochloromethane	EPA 524.2	11	0.50	ug/L	1	A205749	06/01/12	06/02/12	
Surrogate: Bromofluorobenzene	EPA 524.2	100 %	A	cceptable range:	70-130 %	5			
*Total Trihalomethanes, EPA 524.2		47	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	4.8	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A205995	06/07/12	06/12/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	10	1.0	ug/L	1	A205995	06/07/12	06/12/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	92 %	A	cceptable range:	70-130 %	5			
*Total Haloacetic Acids, EPA 552.2		15	2.0	ug/L					

A2F0002 FINAL 06132012 1439

www.bsklabs.com

Page 3 of 12

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89548

Collection Date/Time: 7/3/2012 Submittal Date/Time: 7/3/2012

14:35 16:05 Sample Collector: LEAR, J Sample ID

	Sample Description: SSMS Deep										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed				
Alkalinity, Total (as CaCO3)	2320B	mg/L	167		2		7/11/2012				
Ammonia-N	4500NH3 D	mg/L	Not Detected		0.05		7/10/2012				
Arsenic, Total	EPA200.8	ug/L	6		1	10	7/5/2012				
Barium, Total	EPA200.8	ug/L	36		10	1000	7/5/2012				
Boron	EPA200.7	mg/L	0.05		0.05		7/10/2012				
Calcium	EPA200.7	mg/L	55		0.5		7/10/2012				
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		7/3/2012				
Chloride	EPA300.0	mg/L	54		1	250	7/3/2012				
Dissolved Organic Carbon	SM5310-C	mg/L	0.71	E	0.2		7/11/2012				
Gross Alpha	EPA900.0	pCi/L	6.21 ± 1.96	E		15	7/16/2012				
Haloacetic Acids	EPA552	ug/L	Not Detected	E		60	7/17/2012				
Iron	EPA200.7	ug/L	14		10	300	7/10/2012				
Iron, Dissolved	EPA 200.7	ug/L	Not Detected		10	300	7/10/2012				
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected		0.2		7/11/2012				
Lithium	EPA200.8	ug/L	13		1		7/5/2012				
Magnesium	EPA200.7	mg/L	10		0.5		7/10/2012				
Manganese, Dissolved	EPA 200.7	ug/L	Not Detected		10	50	7/10/2012				
Manganese, Total	EPA 200.7	ug/L	Not Detected		10	50	7/10/2012				
Methane	EPA174/175	ug/L	0.15	E	5		7/10/2012				
Molybdenum, Total	EPA200.8	ug/L	44		1	1000	7/5/2012				
Nickel, Total	EPA200.8	ug/L	Not Detected		10	100	7/5/2012				
Nitrate as NO3	EPA300.0	mg/L	Not Detected		1	45	7/3/2012				
Nitrate as NO3-N	EPA300.0	mg/L	Not Detected		0.10	10	7/3/2012				
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected		0.10	1.00	7/3/2012				
o-Phosphate-P	EPA300.0	mg/L	Not Detected		0.10		7/3/2012				
pH (Laboratory)	4500-H+B	pH (H)	7.6				7/3/2012				

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, August 01, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89548

Collection Date/Time: 7/3/2012 14: Submittal Date/Time: 7/3/2012 16:

14:35 16:05 Sample Collector: LEAR, J Sample ID

	Sample Description: SSMS Deep										
Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed				
Phosphorus, Total	HACH 8190	mg/L	0.09		0.03		7/9/2012				
Potassium	EPA200.7	mg/L	3.2		0.1		7/10/2012				
QC Anion Sum x 100	Calculation	%	97%				7/12/2012				
QC Anion-Cation Balance	Calculation	%	3				7/31/2012				
QC Cation Sum x 100	Calculation	%	104%				7/31/2012				
QC Ratio TDS/SEC	Calculation		0.55				7/9/2012				
Selenium, Total	EPA200.8	ug/L	7		2	50	7/5/2012				
Sodium	EPA200.7	mg/L	66		0.5		7/10/2012				
Specific Conductance (E.C)	2510B	umhos/cm	627		1	900	7/3/2012				
Strontium, Total	EPA200.8	ug/L	351		5		7/5/2012				
Sulfate	EPA300.0	mg/L	60		1	250	7/3/2012				
Total Diss. Solids	2540C	mg/L	345		10	500	7/5/2012				
Total Nitrogen	Calculation	mg/L	Not Detected		0.5		7/12/2012				
Total Organic Carbon	SM5310C	mg/L	0.66	Е	0.20		7/9/2012				
Total Radium 226	EPA903.0	pCi/L	0.025 ± 0.111	Е		3	7/24/2012				
Trihalomethanes	EPA524.2	ug/L	33	Е		80	7/9/2012				
Uranium by ICP/MS	EPA200.8	ug/L	5		1	30	7/5/2012				
Vanadium, Total	EPA200.8	ug/L	4		1	1000	7/5/2012				
Zinc, Total	EPA200.8	ug/L	Not Detected		10	5000	7/5/2012				

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

PQL : Practical Quantitation Limit

Certificate of Analysis

Sampled by: Jonathan Lear Matrix: Water
 Report Issue Date:
 07/18/2012
 16:20

 Received Date:
 07/06/2012

 Received Time:
 08:30

 Lab Sample ID:
 A2G0476-04

 Sample Date:
 07/03/2012
 14:35

 Sample Type:
 Grab

Sample Description: SSMS Deep // 89548

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.66	0.20	mg/L	1	A207230	07/09/12	07/09/12	
Total Organic Carbon	SM 5310 C	0.71	0.20	mg/L	1	A207360	07/11/12	07/11/12	
Organics									
Analyte	Method	Pocult	DI	Unite	RL	Batch	Prepared	Applyzed	Qual
Analyte	Method	Result	RL	UTINS	Mult	Dalch	Fiepaleu	Analyzeu	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	10	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Bromoform	EPA 524.2	1.6	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Chloroform	EPA 524.2	14	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Dibromochloromethane	EPA 524.2	7.7	0.50	ug/L	1	A207204	07/09/12	07/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	101 %		Acceptable range:	70-130 %	6			
*Total Trihalomethanes, EPA 524.2		33	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	2.1	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A207499	07/13/12	07/17/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	5.7	1.0	ug/L	1	A207499	07/13/12	07/17/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	99 %	,	Acceptable range:	70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2G0476 FINAL 07182012 1620

www.bsklabs.com

Thursday, August 30, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA90581

Collection Date/Time: 8/2/2012 13:50 Submittal Date/Time: 8/2/2012

16:40

Sample Collector: LEAR J Sample ID

	Sample Description: SSMS (D)										
Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed					
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		8/2/2012					
Chloride	EPA300.0	mg/L	80	1	250	8/2/2012					
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	8/14/2012					
Trihalomethanes	EPA524.2	ug/L	19 E		80	8/9/2012					
Sample Comments:											

Report Approved by:

 Σ (<u>1</u> –

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm) ug/L : Micrograms per liter (=ppb) PQL : Practical Quantitation Limit H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Jonathan Lear

Matrix: Water

 Report Issue Date:
 08/15/2012
 16:29

 Received Date:
 08/08/2012
 16:29

 Received Time:
 09:30
 16:29

Lab Sample ID:A2H0678-01Sample Date:08/02/2012 13:50Sample Type:Grab

Sample Description: SSMS (D) // 90581

Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	5.2	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Bromoform	EPA 524.2	0.86	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Chloroform	EPA 524.2	8.8	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Dibromochloromethane	EPA 524.2	3.9	0.50	ug/L	1	A208743	08/09/12	08/09/12	
Surrogate: Bromofluorobenzene	EPA 524.2	110 %		Acceptable	range: 70-130 %	6			-
*Total Trihalomethanes, EPA 524.2		19	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A208842	08/10/12	08/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	1.7	1.0	ug/L	1	A208842	08/10/12	08/14/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	103 %		Acceptable	range: 70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2H0678 FINAL 08152012 1629

www.bsklabs.com

Page 3 of 12

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93861

Collection Date/Time: 10/30/2012 11:00 Submittal Date/Time: 10/30/2012

14:16

Sample Collector: Sample ID

LEAR J

Coliform Designation:

Sample Description: SSMS (D)									
Analyte	Method	Unit	Result Qua	al PQL	MCL	Date Analyzed			
Alkalinity, Total (as CaCO3)	2320B	mg/L	203	2		11/2/2012			
Aluminum, Total	EPA200.8	ug/L	Not Detected	10	1000	11/1/2012			
Ammonia-N	4500NH3 D	mg/L	0.06	0.05		11/6/2012			
Arsenic, Total	EPA200.8	ug/L	7	1	10	11/1/2012			
Barium, Total	EPA200.8	ug/L	43	10	1000	11/1/2012			
Bicarbonate (as HCO3-)	2320B	mg/L	248	10		11/20/2012			
Boron	EPA200.7	mg/L	0.08	0.05		11/6/2012			
Bromide	EPA300.0	mg/L	Not Detected	0.10		10/31/2012			
Calcium	EPA200.7	mg/L	66	0.5		11/6/2012			
Carbonate as CaCO3	2320B	mg/L	Not Detected	10		11/2/2012			
Chloramines	SM4500-CI G	mg/L	Not Detected	0.05		10/30/2012			
Chloride	EPA300.0	mg/L	90	1	250	10/31/2012			
Dissolved Organic Carbon	SM5310-C	mg/L	0.55 E	0.2		11/7/2012			
Fluoride	EPA300.0	mg/L	0.15	0.10	2.0	10/31/2012			
Gross Alpha	EPA900.0	pCi/L	3.34 ± 2.58 E		15	11/16/2012			
Haloacetic Acids	EPA552	ug/L	Not Detected E		60	11/7/2012			
Iron	EPA200.7	ug/L	Not Detected	10	300	11/6/2012			
Iron, Dissolved	EPA200.7	ug/L	Not Detected	10	300	11/6/2012			
Kjehldahl Nitrogen	4500-NH3 B,C.E	mg/L	Not Detected	0.2		11/14/2012			
Lithium	EPA200.8	ug/L	29	1		11/1/2012			
Magnesium	EPA200.7	mg/L	11	0.5		11/6/2012			
Manganese, Dissolved	EPA200.7	ug/L	11	10	50	11/6/2012			
Manganese, Total	EPA200.7	ug/L	12	10	50	11/6/2012			
Methane	EPA174/175	ug/L	0.62 E	0.1		11/9/2012			
Molybdenum, Total	EPA200.8	ug/L	7	1	1000	11/1/2012			
Nickel, Total	EPA200.8	ug/L	Not Detected	10	100	11/1/2012			
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	10/31/2012			
Nitrate as NO3-N	EPA300.0	mg/L	0.10	0.10	10	10/31/2012			
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	10/31/2012			
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		10/31/2012			
pH (Laboratory)	4500-H+B	рН (Н)	7.4			10/30/2012			

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Thursday, December 06, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA93861

Collection Date/Time: 10/30/2012 11:00 Submittal Date/Time: 10/30/2012 14:16

Sample ID

Sample Collector: LEAR J

Coliform Designation:

Sample Description: SSMS (D)

Analyte	Method	Unit	Result C	ual PQL	MCL	Date Analyzed
Phosphorus, Total	HACH 8190	mg/L	0.12	0.03		11/8/2012
Potassium	EPA200.7	mg/L	4.1	0.1		11/6/2012
QC Anion Sum x 100	Calculation	%	97%			11/7/2012
QC Anion-Cation Balance	Calculation	%	3			11/7/2012
QC Cation Sum x 100	Calculation	%	103%			11/7/2012
QC Ratio TDS/SEC	Calculation		0.59			11/5/2012
Selenium, Total	EPA200.8	ug/L	2	2	50	11/1/2012
Silica as SiO2, Total	EPA200.7	mg/L	38	0.5		11/6/2012
Sodium	EPA200.7	mg/L	90	0.5		11/6/2012
Specific Conductance (E.C)	2510B	umhos/cm	796	1	900	10/30/2012
Strontium, Total	EPA200.8	ug/L	413	5		11/1/2012
Sulfate	EPA300.0	mg/L	54	1	250	10/31/2012
Total Diss. Solids	2540C	mg/L	468	10	500	10/31/2012
Total Nitrogen	Calculation	mg/L	Not Detected	0.5		11/7/2012
Total Organic Carbon	SM5310C	mg/L	0.59 E	0.20		11/7/2012
Total Radium 226	EPA903.0	pCi/L	0.663 ± 0.292 E		3	11/26/2012
Trihalomethanes	EPA524.2	ug/L	10 E		80	11/5/2012
Uranium by ICP/MS	EPA200.8	ug/L	3	1	30	11/1/2012
Vanadium, Total	EPA200.8	ug/L	6	1	1000	11/1/2012
Zinc, Total	EPA200.8	ug/L	17	10	5000	11/1/2012

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Lear, J.

Matrix: Water

 Report Issue Date:
 11/13/2012
 16:22

 Received Date:
 11/02/2012

 Received Time:
 09:20

 Lab Sample ID:
 A2K0138-02

 Sample Date:
 10/30/2012
 11:00

 Sample Type:
 Grab

Sample Description: SSMS (D) // 93861

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	0.55	0.20	mg/L	1	A212622	11/07/12	11/07/12	
Total Organic Carbon	SM 5310 C	0.59	0.20	mg/L	1	A212623	11/07/12	11/07/12	
Organics									
Analyte	Method	Result	RI	Linits	RL	Batch	Prenared	Analyzed	Qual
/ dayte	Wictilda	Rooun	1.1	Onito	wult	Daton	ricpared	7 11 101 200	Quai
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	3.0	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Bromoform	EPA 524.2	0.72	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Chloroform	EPA 524.2	4.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Dibromochloromethane	EPA 524.2	2.3	0.50	ug/L	1	A212484	11/05/12	11/05/12	
Surrogate: Bromofluorobenzene	EPA 524.2	99 %		Acceptable range:	70-130 %	%			
*Total Trihalomethanes, EPA 524.2		10	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-	<u>MS</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212495	11/05/12	11/07/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212495	11/05/12	11/07/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	101 %		Acceptable range:	70-130 %	%			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

A2K0138 FINAL 11132012 1622

www.bsklabs.com

Page 4 of 12

Wednesday, April 25, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA86104

Collection Date/Time: 3/26/2012 15:30 Submittal Date/Time: 3/26/2012 17:00

Sample Collector: LEAR, J

Sample ID

Sample Description: PCA East Deep

Analyte	Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
Arsenic, Total	EPA200.8	ug/L	8		1	10	3/30/2012
Barium, Total	EPA200.8	ug/L	63		10	1000	3/30/2012
Chloramines	SM4500-CI G	mg/L	Not Detected		0.05		3/26/2012
Chloride	EPA300.0	mg/L	104		1	250	3/28/2012
Copper, Total	EPA200.8	ug/L	Not Detected		4	1300	3/30/2012
Gross Alpha	EPA900.0	pCi/L	0.302 ± 1.56	Е		15	4/18/2012
Haloacetic Acids	EPA552	ug/L	Not Detected	E		60	3/30/2012
Lithium	EPA200.8	ug/L	23		1		3/30/2012
Methane	EPA174/175	ug/L	0.33	E	5		4/2/2012
Molybdenum, Total	EPA200.8	ug/L	10		1	1000	3/30/2012
pH (Laboratory)	4500-H+B	STD. Units	7.4				3/26/2012
Selenium, Total	EPA200.8	ug/L	Not Detected		2	50	3/30/2012
Strontium, Total	EPA200.8	ug/L	305		5		3/30/2012
Total Radium 226	EPA903.0	pCi/L	0.278 ± 0.288	E		3	4/10/2012
Trihalomethanes	EPA524.2	ug/L	Not Detected	E		80	3/30/2012
Uranium by ICP/MS	EPA200.8	ug/L	Not Detected		1	30	3/30/2012
Vanadium, Total	EPA200.8	ug/L	Not Detected		1	1000	3/30/2012
Zinc, Total	EPA200.8	ug/L	Not Detected		10	5000	3/30/2012

Sample Comments:

Report Approved by:

)(**(**1

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Wednesday, April 25, 2012

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA86105

Collection Date/Time: 3/26/2012 Submittal Date/Time: 3/26/2012

Sample ID

15:30

17:00

Sample Description: PCA East Deep

LEAR, J

Sample Collector:

Analyte	Method	Unit	Result Qual	PQL	MCL	Date Analyzed
Alkalinity, Total (as CaCO3)	2320B	mg/L	192	2		3/27/2012
Ammonia-N	4500NH3 D	mg/L	0.06	0.05		3/30/2012
Boron	EPA200.7	mg/L	0.09	0.05		3/28/2012
Bromide	EPA300.0	mg/L	Not Detected	0.10		3/28/2012
Calcium	EPA200.7	mg/L	53	0.5		3/28/2012
Chloride	EPA300.0	mg/L	104	1	250	3/28/2012
Fluoride	EPA300.0	mg/L	0.29	0.10	2.0	3/28/2012
Hardness (as CaCO3)	2340B	mg/L	174	10		3/29/2012
Iron	EPA200.7	ug/L	45	10	300	3/28/2012
Magnesium	EPA200.7	mg/L	10	0.5		3/28/2012
Manganese, Total	EPA 200.7	ug/L	104	10	50	3/28/2012
Nitrate as NO3	EPA300.0	mg/L	Not Detected	1	45	3/28/2012
Nitrite as NO2-N	EPA300.0	mg/L	Not Detected	0.10	1.00	3/28/2012
o-Phosphate-P	EPA300.0	mg/L	Not Detected	0.10		3/28/2012
pH (Laboratory)	4500-H+B	STD. Units	7.4			3/26/2012
Potassium	EPA200.7	mg/L	3.8	0.1		3/28/2012
QC Anion Sum x 100	Calculation	%	98%			4/11/2012
QC Anion-Cation Balance	Calculation	%	-1			4/11/2012
QC Cation Sum x 100	Calculation	%	96%			3/29/2012
QC Ratio TDS/SEC	Calculation		0.58			4/10/2012
Sodium	EPA200.7	mg/L	84	0.5		3/28/2012
Specific Conductance (E.C)	2510B	umhos/cm	754	1	900	3/26/2012
Sulfate	EPA300.0	mg/L	31	1	250	3/28/2012
Total Diss. Solids	2540C	mg/L	437	10	500	4/5/2012
Total Organic Carbon	SM5310C	mg/L	0.52 E	0.20		4/4/2012

Sample Comments:

Report Approved by:

Ç1

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

 Report Issue Date:
 04/09/2012
 9:33

 Received Date:
 03/28/2012

 Received Time:
 08:00

 Lab Sample ID:
 A2C1985-01

 Sample Date:
 03/26/2012 15:30

 Sample Type:
 Grab

Sampled by: J. Lear Matrix: Water

Sample Description: PCA East (Deep) // 86104

Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A203229	03/30/12	03/30/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A203229	03/30/12	03/30/12	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A203229	03/30/12	03/30/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A203229	03/30/12	03/30/12	
Surrogate: Bromofluorobenzene	EPA 524.2	98 %		Acceptable ra	ange: 70-130 %	6			
*Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD									
Dibromoacetic Acid (DBAA)	EPA 552.2	ND	1.0	ug/L	1	A203136	03/27/12	03/30/12	
Dichloroacetic Acid (DCAA)	EPA 552.2	ND	1.0	ug/L	1	A203136	03/27/12	03/30/12	
Monobromoacetic Acid (MBAA)	EPA 552.2	ND	1.0	ug/L	1	A203136	03/27/12	03/30/12	
Monochloroacetic Acid (MCAA)	EPA 552.2	ND	2.0	ug/L	1	A203136	03/27/12	03/30/12	
Trichloroacetic Acid (TCAA)	EPA 552.2	ND	1.0	ug/L	1	A203136	03/27/12	03/30/12	
Surrogate: 2,3-Dibromopropionic Acid	EPA 552.2	72 %		Acceptable ra	ange: 70-130 %	6			
*Total Haloacetic Acids, EPA 552.2		ND	2.0	ug/L					

A2C1985 FINAL 04092012 0933

www.bsklabs.com

Page 3 of 12

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085 Lab Number: AA89127

Thursday, July 05, 2012

Collection Date/Time: 6/19/2012 Submittal Date/Time: 6/19/2012

Sample ID

Sample Collector:

15:30

15:55

Sample Description: PCA East Deep

LINDBERG T

Method	Unit	Result	Qual	PQL	MCL	Date Analyzed
2320B	mg/L	160		2		6/19/2012
4500NH3 D	mg/L	0.05		0.05		6/22/2012
EPA200.7	mg/L	0.09		0.05		6/22/2012
EPA300.0	mg/L	0.11		0.10		6/21/2012
EPA200.7	mg/L	42		0.5		6/22/2012
EPA300.0	mg/L	76		1	250	6/21/2012
EPA300.0	mg/L	0.27		0.10	2.0	6/21/2012
2340B	mg/L	138		10		7/5/2012
EPA200.7	ug/L	Not Detected		10	300	6/22/2012
EPA200.7	mg/L	8		0.5		6/22/2012
EPA 200.7	ug/L	36		10	50	6/22/2012
EPA300.0	mg/L	Not Detected		1	45	6/21/2012
EPA300.0	mg/L	Not Detected		0.10	1.00	6/21/2012
EPA300.0	mg/L	Not Detected		0.10		6/21/2012
4500-H+B	pH (H)	7.7				6/19/2012
EPA200.7	mg/L	3.5		0.1		6/22/2012
Calculaltion	%	97%				7/5/2012
Calculaltion	%	3				7/5/2012
Calculaltion	%	103%				7/5/2012
Calculation		0.66				6/25/2012
EPA200.7	mg/L	80		0.5		6/22/2012
2510B	umhos/cm	613		1	900	6/20/2012
EPA300.0	mg/L	28		1	250	6/21/2012
2540C	mg/L	403		10	500	6/20/2012
SM5310C	mg/L	0.27	E	0.20		6/27/2012
	Method 2320B 4500NH3 D EPA200.7 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA200.7 EPA200.7 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA300.0 EPA200.7 Calculaltion Calculaltion Calculaltion Calculaltion EPA200.7 2510B EPA300.0 2540C SM5310C	Method Unit 2320B mg/L 4500NH3 D mg/L EPA200.7 mg/L EPA300.0 mg/L EPA200.7 ug/L EPA200.7 ug/L EPA200.7 ug/L EPA300.0 mg/L EPA300.0 mg/L EPA300.0 mg/L EPA300.0 mg/L EPA300.0 mg/L EPA300.0 mg/L Galculation % Calculaltion % Calculation % EPA300.0	Method Unit Result 2320B mg/L 160 4500NH3 D mg/L 0.05 EPA200.7 mg/L 0.09 EPA300.0 mg/L 0.11 EPA300.0 mg/L 0.11 EPA300.0 mg/L 0.11 EPA300.0 mg/L 42 EPA300.0 mg/L 0.27 2340B mg/L 138 EPA200.7 ug/L Not Detected EPA200.7 ug/L 8 EPA200.7 ug/L 8 EPA200.7 ug/L 8 EPA200.7 ug/L 8 EPA300.0 mg/L Not Detected EPA300.0 mg/L Not Detected EPA300.0 mg/L Not Detected 4500-H+B pH (H) 7.7 EPA200.7 mg/L 3.5 Calculaltion % 3 Calculaltion % 103% Calculaltion % 103% </td <td>Method Unit Result Qual 2320B mg/L 160 </td> <td>Method Unit Result Qual PQL 2320B mg/L 160 2 4500NH3 D mg/L 0.05 0.05 EPA200.7 mg/L 0.09 0.05 EPA300.0 mg/L 0.11 0.10 EPA300.0 mg/L 76 1 EPA300.0 mg/L 0.27 0.10 2340B mg/L 138 10 EPA200.7 ug/L Not Detected 10 EPA300.0 mg/L 138 10 EPA200.7 ug/L Not Detected 10 EPA200.7 ug/L 8 0.5 EPA200.7 ug/L 36 10 EPA300.0 mg/L Not Detected 0.10 EPA300.0 mg/L 3.5 0.1</td> <td>Method Unit Result Qual PQL MCL 2320B mg/L 160 2 </td>	Method Unit Result Qual 2320B mg/L 160	Method Unit Result Qual PQL 2320B mg/L 160 2 4500NH3 D mg/L 0.05 0.05 EPA200.7 mg/L 0.09 0.05 EPA300.0 mg/L 0.11 0.10 EPA300.0 mg/L 76 1 EPA300.0 mg/L 0.27 0.10 2340B mg/L 138 10 EPA200.7 ug/L Not Detected 10 EPA300.0 mg/L 138 10 EPA200.7 ug/L Not Detected 10 EPA200.7 ug/L 8 0.5 EPA200.7 ug/L 36 10 EPA300.0 mg/L Not Detected 0.10 EPA300.0 mg/L 3.5 0.1	Method Unit Result Qual PQL MCL 2320B mg/L 160 2

Sample Comments:

Report Approved by:

David Holland, Laboratory Director

mg/L: Milligrams per liter (=ppm)

ug/L : Micrograms per liter (=ppb)

PQL : Practical Quantitation Limit

H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

 $\mathsf{D}=\mathsf{M}\mathsf{e}\mathsf{thod}$ deviates from standard method due to insufficient sample for MS/MSD

MPWMD Joe Oliver P.O. Box 85 Monterey, CA 93442-0085

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

> **ELAP Certification Number: 2385** Wednesday, December 05, 2012

Page 1 of 2

AA93959 Lab Number:

Collection Date/Time: 10/31/2012 Submittal Date/Time: 11/1/2012

14:30

15:10

Sample Collector: Sample ID

I FAR .I

Coliform Designation:

Sample Description: PCA East (D) Analyte Method Unit Result Qual PQL MCL Date Analyzed Alkalinity, Total (as CaCO3) 2320B 11/7/2012 mg/L 185 2 Aluminum, Total EPA200.8 ug/L Not Detected 10 1000 11/9/2012 Ammonia-N 4500NH3 D mg/L Not Detected 0.05 11/6/2012 Arsenic, Total EPA200.8 ug/L 1 10 11/9/2012 8 1000 Barium, Total EPA200.8 10 11/9/2012 ug/L 68 Bicarbonate (as HCO3-) 2320B mg/L 226 10 11/8/2012 EPA200.7 0.05 11/6/2012 Boron mg/L 0.10 Bromide EPA300.0 0.21 0.10 11/2/2012 mg/L Calcium EPA200.7 mg/L 51 0.5 11/6/2012 Carbonate as CaCO3 10 2320B mg/L Not Detected 11/1/2012 Chloramines SM4500-CI G Not Detected 0.05 11/1/2012 mg/L Chloride EPA300.0 mg/L 250 11/2/2012 92 1 **Dissolved Organic Carbon** SM5310-C Not Detected E 0.2 11/14/2012 mg/L Fluoride EPA300.0 mg/L 0.21 0.10 2.0 11/2/2012 0.236 ± 1.52 E EPA900.0 Gross Alpha pCi/L 15 11/16/2012 Haloacetic Acids EPA552 ug/L Not Detected E 60 11/14/2012 Iron EPA200.7 ug/L 10 300 11/6/2012 44 Iron, Dissolved EPA200.7 35 10 300 11/6/2012 ug/L Kjehldahl Nitrogen 4500-NH3 B,C.E mg/L Not Detected 0.2 11/14/2012 Lithium 11/9/2012 EPA200.8 ug/L 23 1 EPA200.7 11/6/2012 Magnesium 0.5 mg/L 10 Manganese, Dissolved EPA200.7 ug/L 10 50 11/6/2012 99 Manganese, Total EPA200.7 ug/L 101 10 50 11/6/2012 Methane EPA174/175 ug/L 0.64 Е 0.1 11/14/2012 Molybdenum, Total EPA200.8 ug/L 11 1 1000 11/9/2012 Nickel, Total EPA200.8 11/9/2012 10 100 ug/L Not Detected Nitrate as NO3 EPA300.0 45 11/2/2012 mg/L Not Detected 1 Nitrate as NO3-N EPA300.0 Not Detected 0.10 10 11/2/2012 mg/L Nitrite as NO2-N EPA300.0 mg/L Not Detected 0.10 1.00 11/2/2012

PQL : Practical Quantitation Limit mg/L: Milligrams per liter ug/L : Micrograms per liter MCL: Maximum Contamination Level

H = Analyzed ouside of hold time

E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Collection Date/Time: 10/31/2012 14:30 Sample Collector: LEAR J Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation: Collection Date/Time: 11/1/2012 15:10 Sample Description: PCA East (D) Analyte Method Unit Result Qual PQL MCL Date Analyzed o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 11/2/2012 PH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/8/2012 QC Anion-Cation Balance Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/8/2012 Selenium, Total EPA200.7 mg/L 47 0.5 11/9/2012 Selenium, Total EPA200.7 mg/L 91 0.5 11/8/2012 Sodium <th></th>	
Submittal Date/Time: 11/1/2012 15:10 Sample ID Coliform Designation: Coliform Designation: Analyte Method Unit Result Qual PQL MCL Date Analyzed o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 11/2/2012 pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/8/2012 02 QC Anion-Cation Balance Calculation % 94% 11/8/2012 02 02 11/9/2012 02 02 11/9/2012 02 02 0.1 11/9/2012 02 02 02 11/15/2012 02 02 03 11/8/2012 02 03 11/18/2012 02 04 04 04 04 04 04 04 04 04 04 04 04 04 04 <td></td>	
Sample Description: PCA East (D) Analyte Method Unit Result Qual PQL MCL Date Analyzed o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 11/2/2012 pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/8/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Cation Sum x 100 Calculation % 11/1/8/2012 11/1/2/2012 QC Cation Sum x 100 Calculation % 11/1/8/2012 11/1/9/2012 QC Ratio TDS/SEC Calculation 0.60 11/9/2012 11/9/2012 Selenium, Total EPA200.7 mg/L 47 0.5 11/6/2012 Solica as SiO2, Total EPA200.7 mg/L 91 0.5 11/9/2012 Solium EPA200.7 mg/L 91 0.5	
Analyte Method Unit Result Qual PQL MCL Date Analyzed o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 11/2/2012 pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/6/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 11/8/2012 11/8/2012 QC Cation Sum x 100 Calculation % 11/8/2012 11/8/2012 QC Cation Sum x 100 Calculation % 11/8/2012 11/8/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation 0.60 11/9/2012 Selenium, Total EPA200.7 mg/L 47 0.5 11/6/2012 Solica as SiO2, Total EPA200.7 mg/L	
o-Phosphate-P EPA300.0 mg/L Not Detected 0.10 11/2/2012 pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/6/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.7 mg/L 47 0.5 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012	
pH (Laboratory) 4500-H+B pH (H) 7.5 11/1/2012 Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/6/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 101% 11/8/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012	
Phosphorus, Total HACH 8190 mg/L 0.28 0.03 11/8/2012 Potassium EPA200.7 mg/L 3.9 0.1 11/6/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.7 mg/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012	
Potassium EPA200.7 mg/L 3.9 0.1 11/6/2012 QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
QC Anion Sum x 100 Calculation % 94% 11/8/2012 QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
QC Anion-Cation Balance Calculation % 3 11/15/2012 QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation % 101% 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
QC Cation Sum x 100 Calculation % 101% 11/8/2012 QC Ratio TDS/SEC Calculation 0.60 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
QC Ratio TDS/SEC Calculation 0.60 11/9/2012 Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
Selenium, Total EPA200.8 ug/L Not Detected 2 50 11/9/2012 Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
Silica as SiO2, Total EPA200.7 mg/L 47 0.5 11/6/2012 Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
Sodium EPA200.7 mg/L 91 0.5 11/6/2012 Specific Conductance (E C) 2510B umbos/cm 737 1 900 11/2/2012	
Specific Conductance (E.C.) 2510B umbos/cm 737 1 900 11/2/2012	
Strontium, Total EPA200.8 ug/L 271 5 11/9/2012	
Sulfate EPA300.0 mg/L 32 1 250 11/2/2012	
Total Diss. Solids 2540C mg/L 440 10 500 11/6/2012	
Total Nitrogen Calculation mg/L Not Detected 0.5 11/15/2012	
Total Organic Carbon SM5310C mg/L 0.29 E 0.20 11/14/2012	
Total Radium 226 EPA903.0 pCi/L 0.080 ± 0.173 E 3 11/26/2012	
Trihalomethanes EPA524.2 ug/L Not Detected E 80 11/13/2012	
Uranium by ICP/MS EPA200.8 ug/L Not Detected 1 30 11/9/2012	
Vanadium, Total EPA200.8 ug/L 1 1000 11/9/2012	
Zinc, Total EPA200.8 ug/L Not Detected 10 5000 11/9/2012	

Sample Comments:

Report Approved by:

20 Holl ٩ì

David Holland, Laboratory Director

mg/L: Milligrams per liter ug/L : Micrograms per liter PQL : Practical Quantitation Limit MCL: Maximum Contamination Level H = Analyzed ouside of hold time E = Analysis performed by External Laboratory; See External Laboratory Report attachments.

Certificate of Analysis

Sampled by: Jonathan Lear

Matrix: Water

 Report Issue Date:
 11/20/2012
 11:32

 Received Date:
 11/08/2012

 Received Time:
 09:36

 Lab Sample ID:
 A2K0640-01

 Sample Date:
 10/31/2012
 14:30

 Sample Type:
 Grab

Sample Description: PCA East (D) // 93959

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Dissolved Organic Carbon	SM 5310 C	ND	0.20	mg/L	1	A212881	11/14/12	11/14/12	
Total Organic Carbon	SM 5310 C	0.29	0.20	mg/L	1	A212882	11/14/12	11/14/12	
Organics									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Trihalomethanes by GC-MS									
Bromodichloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Bromoform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Chloroform	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Dibromochloromethane	EPA 524.2	ND	0.50	ug/L	1	A212806	11/13/12	11/13/12	
Surrogate: Bromofluorobenzene	EPA 524.2	108 %	Д	cceptable range:	70-130 %	5			
*Total Trihalomethanes, EPA 524.2		ND	0.50	ug/L					
Haloacetic Acids by GC-ECD, GC-M	<u>S</u>								
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1	A212818	11/13/12	11/14/12	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	A212818	11/13/12	11/14/12	
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	95 %	Д	cceptable range:	70-130 %	5			
Total Haloacetic Acids, EPA 552.3		ND	2.0	ug/L					

www.bsklabs.com

Page 3 of 11

AMERICAN WATER WORKS SERVICE COMPANY, INC.

Central Laboratory - 1115 South Illinois Street Belleville, IL 62220-3102 Phone: (618)235-3600 - Fax: (618)235-6349

Inorganic Chemical (IOC)Analysis Report

CALIFORNIA-AMERICAN WATER CO MONTEREY DISTRICT LESLIE JORDAN PO BOX 951 MONTEREY CA 93942-0951

PWS ID: CA2710004 County: MONTEREY Facility: Site ID: 2710004-048 Date of Report: 11/23/11 Lab Certification No.: 01161CA Federal Lab ID No.: IL00028

Report Summary

	24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -					An example of the end of the second second
	Location:	PARALTA WELL	Collection Date:	11/17/11	Received Date:	11/18/11
2	Sample Type	RAW	CollectionTime:	12:45	Received Time:	07:30
			SDG:	111811-22	Received Temp:	2 °C
88						

Case Narrative:

Results are at or above the reporting limit for the following analytes:

ARSENIC	SELENIUM
BORON	STRONTIUM
MAGNESIUM	CALCIUM
SODIUM	

This report may not be reproduced, except in full, without written approval from American Water. All analyses are performed using approved drinking water methodologies and meet method requirements unless otherwise noted. Each state may not offer certification for all analyses reported.

4

Technical Director or Designee

С	A			7()3	
1	10	90	9	2	5	1
co	C and	Repo	rt N	lum	ber	

Starting Sample: CS96244 Page 1 of 2

Sample Number: CS96244

		Qualifier Code	Analysis	State		Reporting		1114	•	A	1 T
ICP Metals		Code	Method	Code	MCL.	Luon	Result	Unit	Analyst	Analysis Date	/ Time
IRON			200.7R4.4	01045	0.3(s)	0.10	ND	mg/L	LKR	11/22/11	15:12
CALCIUM			200.7R4.4	00916		1	37	mg/L	LKR	11/22/11	15:12
MAGNESIUM			200.7R4.4	00927		1	<u>,</u> 10	mg/L	LKR	11/22/11	15:12
POTASSIUM			200.7R4.4	00937		5	ND	mg/L	LKR	11/22/11	15:12
SODIUM			200.7R4.4			0.2	64.7	mg/L	LKR	11/22/11	15:12
STRONTIUM			200.7R4.4			0.1	0.2	mg/L	LKR	11/22/11	15:12
Sample Number:	CS96244									1.	
		Qualifier	Analysis	State		Reporting					
ICP/MS Metals		Code	Method	Code	MCL	Limit	Result	Unit	Analyst	Analysis Date	I Time
ARSENIC			200.8R5.4	01002	0.010	0.001	0.003	mg/L	LG	11/22/11	15:33
BARIUM			200.8R5.4	01007	1	0.1	ND	mg/L	LG	11/22/ 11	15:33
MANGANESE			200.8R5.4	01055	0.05(s)	0.010	ND	mg/L	LG	11/22/11	15:33
NICKEL			200.8R5.4	01067	0.1	0.005	ND	mg/L	LG	11/22/11	15:33
SELENIUM			200.8R5.4	01147	0.05	0.002	0.004	mg/L	LG	11/22/11	15:33
ZINC			200.8R5.4	01092	5.0(s)	0.050	ND	mg/L	LG	11/22/11	15:33
BORON			200.8R5.4	01020		0.050	0.056	mg/L	LG	11/22/11	15:33
MOLYBDENUM			200.8R5.4	01062		0.1	ND	mg/L	LG	11/22/11	15:33
VANADIUM			200.8R5.4	01087		0.050	ND	mg/L	LG	11/22/11	15:33

Starting Sample: CS96244 Page 2 of 2

٠

Sample Number: CT12952

		Qualifier	Analysis	State		Reporting					
ICP Metals		0000	Mathod	Code	MCL	Limit	Result	Unit	Analyst	Analysis Date	/ Time
IRON			200.7R4.4	01045	0.3(s)	0.10	ND	mg/L	LKR	11/22/11	15:48
CALCIUM			200.7R4.4	00916		1	49	mg/L	LKR	11/22/11	15:48
MAGNESIUM			200.7R4.4	00927		1	13	mg/L	LKR	11/22/11	15:48
POTASSIUM			200.7R4.4	00937		5	ND	mg/L	LKR	11/22/11	15:48
SODIUM			200.7R4.4			0.2	72.6	mg/L	LKR	, 11/22/11	15:48
STRONTIUM			200.7R4.4			0.1	0.3	mg/L	LKR	11/22/11	15:48
Sample Number:	CT12952										
ICP/MS Metals		Qualifier Code	Analysis Method	State Code	8601	Reporting Limit	Roquit	Unit	Analyst	Analysis Data	/ Time
ARSENIC			200.8R5.4	01002	0.010	0.001	0.002	ma/L	LG	11/22/11	15:41
BARIUM			200.8R5.4	01007	1	0.1	ND	mg/L	LG	11/22/11	15:41
MANGANESE			200.8R5.4	01055	0.05(s)	0.010	0.012	mg/L	LG	11/22/11	15:41
NICKEL			200.8R5.4	01067	0.1	0.005	ND	mg/L	LG	11/22/11	15:41
SELENIUM			200.8R5,4	01147	0.05	0.002	0.003	mg/L	LG	11/22/11	15:41
ZINC			200.8R5.4	01092	5.0(s)	0.050	ND	mg/L	LG	11/22/11	15:41
BORON			200.8R5.4	01020		0.050	0.067	mg/L	LG	11/22/11	15:41
MOLYBDENUM			200.8R5.4	01062		0.1	ND	mg/L	LG	11/22/11	15:41
VANADIUM			200.8R5.4	01087		0.050	ND	mg/L	LG	11/22/11	15:41

CA 703 11110236 COC and Report Number Starting Sample: CT12952 Page 2 of 2

AMERICAN WATER WORKS SERVICE COMPANY, INC.

Central Laboratory - 1115 South Illinois Street Belleville, IL 62220-3102 Phone: (618)235-3600 - Fax: (618)235-6349

Organic Carbon Analysis Report PROCESS

CALIFORNIA-AMERICAN WATER CO MONTEREY DISTRICT LESLIE JORDAN PO BOX 951 MONTEREY CA 93942-0951 PWS ID: CA2710004 County: MONTEREY Facility: Site ID: 2710004-048 Date of Report: 11/29/11 Lab Certification No.: 01161CA Federal Lab ID No.: IL00028

Report Summary

Location	PARALTA WELL	Collection Date:	11/17/11	Received Date:	11/18/11
Sample Type	RAW	CollectionTime:	12:45	Received Time:	07:30
19 0.505		SDG:	111811-22	Received Temp:	2 °C

Case Narrative:

Results are at or above the reporting limit for the following analytes:

TOC

Process Sample - Analyte(s) is(are) not acceptable for compliance purposes.

Report Details

Sample Number: CT12957

	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Dat	te / Time
TOC		SM5310C			0.25	0.79	mg/L	RS	11/22/11	21:54

This report may not be reproduced, except in full, without written approval from American Water. All analyses are performed using approved drinking water methodologies and meet method requirements unless otherwise noted. Each state may not offer certification for all analyses reported.

Technical Director or Designee

CA	703
1111	0240
COC and Re	port Number

Starting Sample: CT12957 Page 1 of 1

AMERICAN WATER WORKS SERVICE COMPANY, INC.

Central Laboratory - 1115 South Illinois Street Belleville, IL 62220-3102 Phone: (618)235-3600 - Fax: (618)235-6349

DBP Analysis Report

CALIFORNIA-AMERICAN WATER CO MONTEREY DISTRICT LESLIE JORDAN PO BOX 951 MONTEREY CA 93942-0951

PWS ID: CA2710004 County: MONTEREY Facility ID: ASR Site ID: 2710004-048 Date of Report: 11/29/11 Drinking Water Certification No.: 01161CA Federal Lab ID No.: IL00028

Report Summary

······································	the state of a set of the state a set of the state		TRACTOR AND A REPORT OWNER AND PROPERTY AND THE OWNER WITH		S 80
Location	PARALTA WELL	Collection Date:	11/17/11	Received Date: 11/18/11	
Sample Type	RAW	CollectionTime:	12:45	Received Time: 07:30	
		SDG:	111811-22	Received Temp: 2 °C	

Case Narrative:

Results are at or above the reporting limit for the following analytes:

CHLOROFORM

TOTAL HAA (5) Result: 0

TOTAL THM Result: 2.6

This report may not be reproduced, except in full, without written approval from American Water. All analyses are performed using approved drinking water methodologies and meet method requirements unless otherwise noted. Each state may not offer certification for all analyses reported.

A

Technical Director or Designee

Starting Sample: CS96122 Page 1 of 2

Sample Number: CS961	22									
Regulated Haloacetic Acid	Qualifier Is Code	Analysis Method 552 3B1 0	State Code 82721	MCL	Reporting Limit	Result	Unit	Analyst BC	Analysis Dat	e / Time
DICHLOROACETIC ACID		552.3R1.0	77288		1.0	ND	ug/L	BC	11/22/11	23:21
MONOBROMOACETIC AC	ID	552.3R1.0	A-041		1.0	ND	ug/L	BC	11/22/11	23:21
MONOCHLOROACETIC AC	CID	552.3R1.0			2.0	ND	ug/L	BC	11/22/11	23:21
HAA5 TOTAL		552.3R1.0	A-049	60	1.0	ND	ug/L	BC	11/22/11	23:21
Sample Number: CS9612	22									
	Qualifier	Analysis	State		Reporting					

Unregulated Haloacetic Acids	Code	Method	Code	MCL	Limit	Result	Unit	Analyst	Analysis Dat	e / Time
BROMOCHLOROACETIC ACID		552.3R1.0	A-038		1.0	ND	ug/Ļ	BC	11/22/11	23:21

Sample Number:	CS96124										
Trihalomethanes		Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	e / Time
BROMOFORM			524.2R4.1	32104		0.5	ND	ug/L	ALJ	11/23/11	21:16
BROMODICHLORO	DMETHANE		524.2R4.1	32101		0.5	ND	ug/L	ALJ	11/23/11	21:16
DIBROMOCHLORO	DMETHANE		524.2R4.1	32105		0.5	ND	ug/L	ALJ	11/23/11	21:16
CHLOROFORM			524.2R4.1	32106		0.5	2.6	ug/L	ALJ	11/23/11	21:16
TOTAL TRIHALOM	ETHANES		524.2R4.1	82080	80	0.5	2.6	ug/L	ALJ	11/23/11	21:16

703

Starting Sample: CS96122 Page 2 of 2

Sample Number: CT12953

	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
ALKALINITY (as CaCO3)		SM2320B	00410		7	136	mg/L	AJA	11/22/11	02:12
DOC		SM5310C			0.25	0.71	mg/L	RS	11/21/11	20:05
Total Dissolved Solids (TDS	;)	SM2540C	70300	500 (s)	50	352	mg/L	AJA	11/21/11	15:15
Sample Number: CT1295	3									
Minerals	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
NITRATE-N		300.0R2,1		10	0.1	0.8	mg/L	RE	11/18/11	21:48
NITRITE-N		300.0R2.1		1	0.1	ND	mg/L	RE	11/18/11	21.48
Sample Number: CT1295	3									
Other	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
CONDUCTIVITY		SM2510B	00095		1	722	umhos/cm	AJA	11/21/11	13:21
Sample Number: CT1295 Minerals CHLORIDE ORTHO-PHOSPHATE-PO4 SULFATE	3 Qualifier Code	Analysis Method 300.0R2.1A 300.0R2.1 300.0R2.1A	State Code 00660	MCL 250(s) 250(s)	Reporting Limit 1.0 0.77 0.5	Result 86.7 ND 43.0	<mark>Unit</mark> mg/L mg/L mg/L	Analyst RE RE RE	Analysis Date 11/21/11 11/18/11 11/21/11	/ Time 16:38 21:48 16:38
Sample Number: CT1295	3									
ICP Metals IRON - Dissolved	Qualifier Code	Analysis Method 200,7R4.4	State Code	MCL 0.3(s)	Reporting Limit 0.10	Result ND	Unit mg/L	Analyst LKR	Analysis Date 11/22/11	/ Time 16:15
Sample Number: CT1295	3									
ICP/MS Metals	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unlt	Analyst	Analysis Date	/ Time
MANGANESE - Dissolved		200.8R5.4		0.05(s)	0.010	0.011	mg/L	LG	11/22/11	16:30

CA 703

11110237 COC and Report Number

Starting Sample: CT12953 Page 2 of 2

Sample Number: CT12954

	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
TOTAL KJELDAHL NITROGEN (TKN)		351.2R2.0			0.25	ND	mg/L	RE	12/01/11	17:26
Sample Number: CT12954										
Minerals	Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
TOTAL PHOSPHORUS		365.4			0.1	ND	mg/L	RE	12/01/11	16:16

CA 703 11110238 COC and Report Number

Starting Sample: CT12954 Page 2 of 2

Report Details											
Sample Number:	CT12955										
		Qualifier Code	Analysis Method	State Code	MCL	Reporting Limit	Result	Unit	Analyst	Analysis Date	/ Time
AMMONIA AS N		3	50.1R2.0MOD			0.05	ND	mg/L	AJA	12/07/11	12:34

CA 703 11110239 COC and Report Number Starting Sample: CT12955 Page 2 of 2

Travis Peterson California American Water 836 Carmel Ave. Monterey, CA 93940 **Certificate of Analysis**

 Report Issue Date:
 2/3/2012
 15:39

 Received Date:
 12/09/2011

 Received Time:
 08:30

 Lab Sample ID:
 A1L0660-02

 Sample Date:
 11/17/2011 12:45

 Sample Type:
 Grab

Client Project: ASR Bi-Annual/Radiologicals Sampled by: Susy Jacobson Matrix: Ground Water

Sample Description: Paralta Well // 2710004-048

Metals									
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
*Uranium *Uranium, Radiological	EPA 200.8	ND < 0.67	1.0	ug/L pCi/L	1	A114512	12/13/11	12/21/11	
Radiological									
Analyte	Method	Result		Units	MDA	Batch	Prepared	Analyzed	Qual
*Gross Alpha	EPA 00-02	5.73		pCi/L	1.09	A114663	12/15/11	12/19/11	
*1.65 Sigma Uncertainty		0.400		±					

A1L0660 FINAL 02032012 1539

www.bsklabs.com

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 1638 Roseytown Road - Sultes 2,3,4 Greensburg, PA 15601 (724)850-560)

ANALYTICAL RESULTS

8	Project: A1L Pace Project No.: 3059	0660 9739						
Granier Granier	Sample: A1L0660-01 PWS:	Lab ID: Site ID:	3059739001	Collected: 11/17/11 11:40 Sample Type:	Received:	12/19/11 10:30	Matrix: Drinking	Water
	Parameters	Metho	Act ± Unc (MDC)		Units	Analyzed	CAS No.	Qual
	Radium-226	EPA 903.1	0.551	± 0.433 (0.568)	pCI/L	01/18/12 15:13	13982-63-3	
Portente	Sample: A1L0660-02 PWS:	Lab ID: Site ID:	3059739002	Collected: 11/17/11 12:45 Sample Type:	Received:	12/19/11 10:30	vlatrix: Drinking V	Water
	Parameters	Metha	d	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
	Radium-226	EPA 903.1	1.40 ±	0.673 (0.650)	pCi/L	01/18/12 15:47	13982-63-3	

Date: 01/25/2012 11:41 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 5 of 7

4 Justin Court Suite D, Monterey, CA 93940 831.375.MBAS montereybayanalytical@usa.net

ELAP Certification Number: 2385

Cal Am Water Company Susy Jacobson / Leslie Jordan 511 Pacific Lodge Road, Suite 100 Pacific Grove, CA 93950

Page 1 of 1							Tues	day, De	cember 13, 2011	
Lab Number:	AA82550									
Collection Date/Time:	11/17/2011	11:40	Sample Collector:		JACOBSON S					
Submittal Date/Time:	11/17/2011	14:16	Sample ID							
Sample Description: Ord Grove Well 02										
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	
Chloramines			SM4500-CI G mg/L No		Not Detected		0.05		11/17/2011	
Lithium			EPA200.8	ug/L	21		1		12/2/2011	
Methane			EPA174/175	ug/L	0.42	E	5		11/28/2011	
Sample Comments:										
Lab Number:	AA82551									
Collection Date/Time:	11/17/2011	12:45	Sample Collector:		JACOBSON S					
Submittal Date/Time:	11/17/2011	14:16	Sample ID							
Sample Descriptio <mark>n: Paralta Well</mark>										
Analyte			Method	Unit	Result	Qual	PQL	MCL	Date Analyzed	
Chloramines	1		SM4500-CI G	mg/L	Not Detected		0.05		11/17/2011	
Lithium			EPA200.8	ug/L	7		1		12/2/2011	
Methane			EPA174/175	ug/L	Not Detected	Е	5		11/28/2011	
Sample Comments:										
			Report Appro	ved by:		11	00			

()Q 14

David Holland, Laboratory Director

mg/L: Milligrams per literug/L : Micrograms per literPQL : Practical Quantitation LimitMCL: Maximum Contamination LevelH = Analyzed ouside of hold timeE = Analysis performed by External Laboratory; See External Laboratory Report attachments.